
Distributed
Applications

Software Engineering 2017
Alessio Gambi - Saarland University

Based on the work of Cesare Pautasso, Christoph Dorn, and other sources

ReCap

Software Architecture

A software system’s architecture is the
set of principal design decisions made

about the system. N. Taylor et al.

Abstraction Communication

Visualization and
Representation Quality Attributes

Every system a software
architecture has

What designers want

Design

• Architectural Styles

• Architectural Patterns

• Building Blocks
- Software Components
- Component API/Interfaces
- Software Connectors

3-Tier Architecture

Web Browser

Front End App Server Back End

Business logic

Presentation

Data source

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Backend

Parser

ArticleEdit

Reads

Writes

ArticleView

Submit Logic

UI Page

Skinning Localization

Parser
Cache

Static
Resources

Loader

CachedCached

Cached

Job Runner

Writes

Job Queue

HTML File
Cache

Precompile/Recompile

Regenerate/Invalidate

Distributed Applications

Client/Server
• Many clients, active, close to users

• One server, passive, close to data

• Single point of failure, scalability

• Security, scalability

Distribution and Lifecycle
In distributed applications the lifecycle of remote

objects is disjoint from the local ones.
We must explicitly design the lifecycle of those

remote entities

Distribution and Lifecycle
In distributed applications the lifecycle of remote

objects is disjoint from the local ones.
We must explicitly design the lifecycle of those

remote entities

Static and Lazy instances Leasing

Per-request instances Pooling

Client-dependent instances Passivation

Server Process

M
ac

hi
ne

B

ou
nd

ar
y

Process B

Client

Object

Server
Application

n-1) shutdown

n) destroy
1) create

3) invoke

Process A

Client 2) invoke

Static Instances

Remote object instances exist independently of any clients
They last as long as their container (server)

Server Process
M

ac
hi

ne

B
ou

nd
ar

y

Servant
for Obj X

Server
Application

Process A

Client 3) Invoke
on Obj X Invoker

1) create

4) create

5) invoke

2) register Object “X”

Lazy Instances

Instantiate object upon first request
Save computational resources

Server Process

M
ac

hi
ne

B

ou
nd

ar
y

Process B

Client

Servant
for Obj X

Server
Application

3) Invoke
on Obj X

Process A

Client 2) Invoke
on Obj X Invoker

1) create Servant
for Obj X

2a) create
2b) invoke
2c) destroy

3a) create
3b) invoke
3c) destroy

Per-request Instances

Each request processed by a fresh instance
Provide max logical isolation (but high cost)

Server Process

Process B

Client

Object

Server
Application

5a) new
Instance

Process A

Client 2a) new
Instance Remote

Factory

1) create
Object

2b) create

5b) create

3) invoke 4) invoke

6) invoke

Client-dependent Instances

Requests from the same client processed by the same
instance (but there might be a one-to-many mapping)

Remote objects extend client logic and share its state

Server Process Object “X”

Lifecycle
Manager

Process A

Client
4) Invoke
on Obj X Invoker

3) create lease

1) Create X

4) renew lease

5) invoke

2) create

After lease expired:
6) destroy

Leasing

Avoid removal of per-client objects when not used by
periodically renew the lease

Pooling

Maintain a (possibly dynamic) set of generic objects to
serve clients requests

Clean up state before returning to the pool

Server Process

M
ac

hi
ne

B

ou
nd

ar
y

Servant
for X

Server
Application

Process A

Client 4) Invoke
on Obj X Invoker

1) create

6) invoke

3) register pooled instance “X”

Object
Pool “X”

Servant
for X Servant

for X Servant
for X

2) create

7) put servant back

5) get idle servant

Server Process Servant
for “X”

Lifecycle
Manager

Process A

Client
1a,4)
Invoke on
Obj X Invoker

5) activate (objId)

1b,8) invoke

7a) create
7b) activate

After timeout
2a) passivate
2b) destroy

3) storeState (objId)

6) getState (objId)

Passivation

Save resources by freezing “per-client” objects

Objects are reactivated upon first request

(A)Synchronization
Remote invocations can be either synchronous
or asynchronous. For asynchronous invocations
we must handle the evolution of the distributed

state across the nodes.

One-way Patterns Two-way Patterns

Fire and Forget Poll Object

Sync with Server Callback

Process A Process B

M
ac

hi
ne

B

ou
nd

ar
y

Client

Requestor Invoker
1) invoke

2b) send

2a) return

Fire and Forget

Best effort (or nobody cares) semantics

Process A Process B

Client

Requestor Invoker
1) invoke

2) send

3b) return

Object 3a) reply

3c) invoke

Sync with Server

Requestor ensures that the request correctly arrived  
to server (but not processed)

Delivery confirmation semantics

Poll Object (or Future)

Local stub on client’s machine checks if results are
ready

Process A Process B

Client

Requestor Invoker
1) invoke

2) invoke

3) isAvailable = false

Poll Object

6) getResult

4) storeResult

5) isAvailable = true

Callback

Execute code whenever the remote request returns

Process A Process B

Client

Requestor Invoker
2) invoke

3) invoke

Callback
Object

4) finished(result)

1) create
5) execute

Publish/Subscribe

• Subscription to queues or topics

• Loose coupling

Pub/Sub vs Event-Driven

Pub/Sub vs Event-Driven

no specific roles
local/distributed

Pub/Sub vs Event-Driven

opposite roles no specific roles
mostly distributed local/distributed

Message Bus

• Publish

• Subscribe

• Notify

MOM
Message-Oriented Middleware

Messaging
Middleware

Sender

Receiver

Receiver

Receiver

Queue

Queue

Send Message

Receive Message

Receive Reply

Send Reply

MOM
Message-Oriented Middleware

Messaging
Middleware

Sender

Receiver

Receiver

Receiver

Queue

Queue

Send Message

Receive Message

Receive Reply

Send Reply

• Processing always on
consumer

• Queues provide
persistence and
decoupling (async)

Reply or don’t reply?
MOMs enable both request-only and request-reply

interactions despite sender/receiver do not know each
other addresses

Reply or don’t reply?
MOMs enable both request-only and request-reply

interactions despite sender/receiver do not know each
other addresses

Uniquely identify a request message (ID)

Correlation between the requests and replies

MessageType=REQUEST|REPLY & MessageID = ID

+

=

Handling Messages
• Routing 

 Content-based, Dynamic

• Filtering 
 Message filter

• Transforming messages 
 Splitter, Aggregator

• Transforming messages content 
 Normalizer, Content Enricher, Content Filter

• Transforming message envelope 
 Envelope wrapper

Content-based Routing

Destination decided using the payload

Dynamic Routing

Destination not fixed but chosen using rules

Message Filter

Remove un-needed messages

Splitter

Decompose a composite message in parts

Aggregator

Use the parts to create a composite message

Content Filter

Filter from a composite message unneeded payload

Content Enricher

Use additional data to augment messages

Normalizer

Route messages to translators which transform the to a
common format

Enveloper Wrapper

Bridged delivery via wrapping messages into other
messages

Messaging Bridge
link multiple messaging systems to make messages

exchanged on one also available on the others

Pipe & Filter

• Clean separation: filter process, pipe
transport

• Heterogeneity and distribution

• Only batch processing, serializable data

• Composability, Reuse

Stream

• Send

• Receive

Streaming

• Infinite sequence of messages  
 simple/primitive, complex

• Discrete - Messages 
 stock markets, twitter

• Continuous - Data  
 video, audio

Streaming
Source

Streaming
Sink

Streaming
Sink

Streaming
Sink

MW

Streaming and Data Analytics

Unicast or multicast communication channels
No discrete unit of interaction (request/response)

Low overhead, but mostly transport/communication

Sync/Async Streams

• Synchronous  
 Time matters (e.g., minimum transfer rate)

• Asynchronous 
 Sequence matters (e.g., no specific transfer rate)

Sync/Async Streams

• Synchronous  
 Time matters (e.g., minimum transfer rate)

• Asynchronous 
 Sequence matters (e.g., no specific transfer rate)

• Isochronous 
 Time is essence (e.g., both min and max transfer rate)

Incoming streams

Streaming
data m

Output complex messages

m3 m2 m1

… … …

s3 s2 s1

m1

…

s1

m2

…

s2

m3

…

s3 Streaming
data s

Complex stream/multiple
streams data processing

Application-specific data processing

Processing Model
Complex Event Processor

Processing Model
Complex Event Processor

• Event representation  
 POJO, Maps, Object-Arrays, XML, etc..

• Continuous processing  
 events processes as they arrive and sent to output

• Listeners and notifications  
 both incoming and outgoing events

• Domain specific languages (DSL)  
 describe conditions, transformations, etc.

EPL
Event Processing Language

https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

Specify interests on certain types of events  
 event-patterns, correlations of events, and more

High-level language SQL-like
 standard and new clauses

Streams replace tables; events replace rows  
 it’s just an analogy

Statements target single and multiple data streams

EPL
Event Processing Language

https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

• Standard clauses  
 SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY

• Re-casted clauses  
 INSERT INTO

• New clauses  
 RETAIN, MATCHING, OUTPUT

EPL
Event Processing Language

• Retain 
 virtual window (constraint amount of data)

• Matching 
 sequence of events (logical and temporal operators)

• Output 
 control/stabilize the output rate

Event Processing
Incoming events processed through sliding windows  
 - incremental, one event  
 - batched, chunks of events

Size of window limits the maximum number of events
or the maximum amount of time to keep them  
 - time 
 - length

Conditions expressed on the window and events

Sliding Window with Length

Filter & Slide

Slide & Filter

Sliding Window with Time

Batched Window with Time

Service Oriented
• Components outside control

• Standard connectors, precise interfaces

• Interface compatibility problem

• Loose coupling, reuse

Components Services
Tight coupling Loose coupling

Client requires library Message exchanges

Client / Server Peer-to-peer

Extendable Composable

Fast Some overhead

Small/Medium Medium/Large

Buy and install Pay-per-use
Local Remote

Composition/Orchestration
build systems out of the composition of existing ones

Business Processes

• Many alternative notations and languages  
 WSCI, BPML, BPEL4WS, BPSS, XPDL

• Standard protocols and technologies  
 WSDL, XML, HTTP, JSON, SMTP, FTP, …

• Two “BIG” players 
 SOAP + WS-*, HTTP+RESTFul

Messaging Bridge
link multiple messaging systems to make messages

exchanged on one also available on the others

Software Architecture

• Work Flow Engine

• Enterprise BUS

https://www.slideshare.net/kumargaurav66/oracle-soaand-bpm

https://www.slideshare.net/kumargaurav66/oracle-soaand-bpm

Say “what what” ? In the cloud!

Heavy vs Light
Old vs New

https://i.stack.imgur.com/WQsEJ.jpg

Application

Resource URI

HTTP
GET

HTTP
POST

HTTP
PUT

HTTP
DEL

JSON...

Application

Endpoint URI

SMTP HTTP ...MQ

SOAP (WS-*)

Layered View

http://webtechsharing.com/soap-vs-rest/

Process View

Summary

• Understand the size and complexity of your system
and distribute functions and data (lifecycle)

• Embrace diversity: not only RPC, not only sync

• Aim at satisfy your the requirements with the right
method (different patterns/styles for different parts)

Additional Readings
- Sam Newman, Building Microservices, 2015. http://de.slideshare.net/spnewman/

principles-of-microservices-ndc-2014
- Markus Völter et al.: Remoting Patterns – Foundation of Enterprise, Internet and Realtime

Distributed Object Middleware, Wiley Series in Software Design Patterns, 2004
- Thomas Erl: Service-Oriented Architecture – Concepts, Technology and Design, Prentice

Hall, 2005
- Roy Fielding’s PhD thesis on REST: http://www.ics.uci.edu/~fielding/pubs/dissertation/

top.htm
- Martin Fowler’s blog: https://martinfowler.com/
- Fay Chang et al. Bigtable: a distributed storage system for structured data. (OSDI ’06)
- Eric Redmond and Jim R. Wilson: Seven Databases in Seven Weeks – A Guide to Modern

Databases and the NoSQL Movement
- CAP: http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
- Eventual consistency: http://queue.acm.org/detail.cfm?id=1466448
- Java Message Service: http://www.oracle.com/technetwork/java/index-jsp-142945.html
- Integration patterns: https://camel.apache.org/enterprise-integration-patterns.html,  

http://www.espertech.com/esper/release-5.0.0/esper-reference/html_single/index.html

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://martinfowler.com/
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://queue.acm.org/detail.cfm?id=1466448
http://www.oracle.com/technetwork/java/index-jsp-142945.html
https://camel.apache.org/enterprise-integration-patterns.html
http://www.espertech.com/esper/release-5.0.0/esper-reference/html_single/index.html

