Distributed Applications

Software Engineering 2017 Alessio Gambi - Saarland University

Based on the work of Cesare Pautasso, Christoph Dorn, and other sources

Software Architecture

A software system's architecture is the set of principal design decisions made

about the system.

N. Taylor et al.

Abstraction	Communication
Visualization and Representation	Quality Attributes

Design

- Architectural Styles
- Architectural Patterns
- Building Blocks
 - Software Components
 - Component API/Interfaces
 - Software Connectors

Distributed Applications

Client/Server

- Many clients, active, close to users
- One server, passive, close to data
- Single point of failure, scalability
- Security, scalability

Distribution and Lifecycle

In distributed applications the lifecycle of remote objects is disjoint from the local ones. We must explicitly design the lifecycle of those remote entities

Distribution and Lifecycle

In distributed applications the lifecycle of remote objects is disjoint from the local ones. We must explicitly design the lifecycle of those remote entities

Static and Lazy instances	Leasing
Per-request instances	Pooling
Client-dependent instances	Passivation

Static Instances

Remote object instances exist independently of any clients They last as long as their container (server)

Lazy Instances

Instantiate object upon first request Save computational resources

Per-request Instances

Each request processed by a fresh instance Provide max logical isolation (but high cost)

Client-dependent Instances

Requests from the same client processed by the same instance (but there might be a one-to-many mapping)

Remote objects extend client logic and share its state

Leasing

Avoid removal of per-client objects when not used by periodically renew the lease

Pooling

Maintain a (possibly dynamic) set of generic objects to serve clients requests

Clean up state before returning to the pool

Passivation

Save resources by freezing "per-client" objects

Objects are reactivated upon first request

(A)Synchronization

Remote invocations can be either synchronous or asynchronous. For asynchronous invocations we must handle the evolution of the distributed state across the nodes.

One-way Patterns Two-way Patterns

Fire and Forget

Poll Object

Sync with Server

Callback

Fire and Forget

Best effort (or nobody cares) semantics

Sync with Server

Requestor ensures that the request correctly arrived to server (but not processed)

Delivery confirmation semantics

Poll Object (or Future)

Local stub on client's machine checks if results are ready

Callback

Execute code whenever the remote request returns

Publish/Subscribe

- Subscription to queues or topics
- Loose coupling

Pub/Sub vs Event-Driven

Pub/Sub vs Event-Driven

no specific roles local/distributed

Pub/Sub vs Event-Driven

opposite roles mostly distributed

no specific roles local/distributed

Message Bus

- Publish
- Subscribe
- Notify

MOM

Message-Oriented Middleware

MOM

Message-Oriented Middleware

- Processing always on consumer
- Queues provide persistence and decoupling (async)

Reply or don't reply?

MOMs enable both request-only and request-reply interactions despite sender/receiver do not know each other addresses

Reply or don't reply?

MOMs enable both request-only and request-reply interactions despite sender/receiver do not know each other addresses

Uniquely identify a request message (ID)

÷

MessageType=REQUEST|REPLY & MessageID = ID

Correlation between the requests and replies

Handling Messages

- Routing *Content-based, Dynamic*
- Filtering Message filter
- Transforming messages Splitter, Aggregator
- Transforming messages content Normalizer, Content Enricher, Content Filter
- Transforming message envelope
 Envelope wrapper

Content-based Routing

Destination decided using the payload

Dynamic Routing

Destination not fixed but chosen using rules

Message Filter

Remove un-needed messages

Decompose a composite message in parts

Aggregator

Use the parts to create a composite message

Content Filter

Filter from a composite message unneeded payload

Content Enricher

Use additional data to augment messages

Normalizer

Route messages to translators which transform the to a common format

Enveloper Wrapper

Bridged delivery via wrapping messages into other messages

Messaging Bridge

link multiple messaging systems to make messages exchanged on one also available on the others

Pipe & Filter

- Clean separation: filter process, pipe transport
- Heterogeneity and distribution
- Only batch processing, serializable data
- Composability, Reuse

Stream

- Send
- Receive

Streaming

- Infinite sequence of messages *simple/primitive, complex*
- Discrete Messages stock markets, twitter
- Continuous Data video, audio

Streaming and Data Analytics

Unicast or multicast communication channels No discrete unit of interaction (request/response) Low overhead, but mostly transport/communication

Sync/Async Streams

- Synchronous *Time matters (e.g., minimum transfer rate)*
- Asynchronous Sequence matters (e.g., no specific transfer rate)

Sync/Async Streams

- Synchronous *Time matters (e.g., minimum transfer rate)*
- Asynchronous Sequence matters (e.g., no specific transfer rate)
- Isochronous

Time is essence (e.g., both min and max transfer rate)

Processing Model

Complex Event Processor

Processing Model

Complex Event Processor

- Event representation POJO, Maps, Object-Arrays, XML, etc..
- Continuous processing events processes as they arrive and sent to output
- Listeners and notifications both incoming and outgoing events
- Domain specific languages (DSL) describe conditions, transformations, etc.

EPL

Event Processing Language

Specify interests on certain types of events event-patterns, correlations of events, and more

High-level language SQL-like standard and new clauses

Streams replace tables; events replace rows *it's just an analogy*

Statements target single and multiple data streams

https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

EPL Event Processing Language

- Standard clauses SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY
- Re-casted clauses
 INSERT INTO
- New clauses RETAIN, MATCHING, OUTPUT

https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

EPL Event Processing Language

Retain

virtual window (constraint amount of data)

• Matching

sequence of events (logical and temporal operators)

• Output

control/stabilize the output rate

Event Processing

Incoming events processed through sliding windows

- incremental, one event
- batched, chunks of events

Size of window limits the maximum number of events or the maximum amount of time to keep them

- time
- length

Conditions expressed on the window and events

Sliding Window with Length

Filter & Slide

Slide & Filter

Time

Sliding Window with Time

Batched Window with Time

Service Oriented

- Components outside control
- Standard connectors, precise interfaces
- Interface compatibility problem
- Loose coupling, reuse

Components

Tight coupling	Loose coupling
Client requires library	Message exchanges
Client / Server	Peer-to-peer
Extendable	Composable
Fast	Some overhead
Small/Medium	Medium/Large
Buy and install	Pay-per-use
Local	Remote

Composition/Orchestration

build systems out of the composition of existing ones

Business Processes

- Many alternative notations and languages WSCI, BPML, BPEL4WS, BPSS, XPDL
- Standard protocols and technologies WSDL, XML, HTTP, JSON, SMTP, FTP, ...
- Two "BIG" players
 SOAP + WS-*, HTTP+RESTFul

Application Handling and Invoicing Process

Messaging Bridge

link multiple messaging systems to make messages exchanged on one also available on the others

Software Architecture

- Work Flow Engine
- Enterprise BUS

Layered Target Architecture

SOA / BPM architecture

https://www.slideshare.net/kumargaurav66/oracle-soaand-bpm

Say "what what" ? In the cloud!

Heavy vs Light Old vs New

#	SOAP	REST
1	A XML-based message protocol	An architectural style protocol
2	Uses WSDL for communication between consumer and provider	Uses XML or JSON to send and receive data
3	Invokes services by calling RPC method	Simply calls services via URL path
4	Does not return human readable result	Result is readable which is just plain XML or JSON
5	Transfer is over HTTP. Also uses other protocols such as SMTP, FTP, etc.	Transfer is over HTTP only
6	JavaScript can call SOAP, but it is difficult to implement	Easy to call from JavaScript
7	Performance is not great compared to REST	Performance is much better compared to SOAP - less CPU intensive, leaner code etc.

Layered View

https://i.stack.imgur.com/WQsEJ.jpg

Process View

http://webtechsharing.com/soap-vs-rest/

Summary

- Understand the size and complexity of your system and distribute functions and data (lifecycle)
- Embrace diversity: not only RPC, not only sync
- Aim at satisfy your the requirements with the right method (different patterns/styles for different parts)

Additional Readings

- Sam Newman, Building Microservices, 2015. http://de.slideshare.net/spnewman/ principles-of-microservices-ndc-2014
- Markus Völter et al.: Remoting Patterns Foundation of Enterprise, Internet and Realtime Distributed Object Middleware, Wiley Series in Software Design Patterns, 2004
- Thomas Erl: Service-Oriented Architecture Concepts, Technology and Design, Prentice Hall, 2005
- Roy Fielding's PhD thesis on REST: <u>http://www.ics.uci.edu/~fielding/pubs/dissertation/</u> <u>top.htm</u>
- Martin Fowler's blog: <u>https://martinfowler.com/</u>
- Fay Chang et al. Bigtable: a distributed storage system for structured data. (OSDI '06)
- Eric Redmond and Jim R. Wilson: Seven Databases in Seven Weeks A Guide to Modern Databases and the NoSQL Movement
- CAP: <u>http://www.julianbrowne.com/article/viewer/brewers-cap-theorem</u>
- Eventual consistency: <u>http://queue.acm.org/detail.cfm?id=1466448</u>
- Java Message Service: <u>http://www.oracle.com/technetwork/java/index-jsp-142945.html</u>
- Integration patterns: <u>https://camel.apache.org/enterprise-integration-patterns.html</u>, <u>http://www.espertech.com/esper/release-5.0.0/esper-reference/html_single/index.html</u>