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A Software Crisis
Denver 
International 
Airport (DIA)
Construction started 
in 1989 • 53 sq miles 
• Planned: 1.7 bio 
USD costs, opening 
1993



Code and Fix
(1950–)

Build first version

Modify until
client is satisfied

Operate

Retirement

Code and Fix: Issues

• No process steps – no specs, docs, tests…

• No separation of concerns – no teamwork

• No way to deal with complexity

Code and Fix
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• Real projects rarely follow a sequential flow

• Hard to state all requirements explicitly

• No maintenance or evolution involved

• Customer must have patience

• Any blunder can be disastrous



Boehm’s first law

Errors are most frequent
during requirements and design activities 

and are the more expensive
the later they are removed.

Problem Cost
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This and other laws 
are found in 
Endres/Rombach: 
Handbook of 
Software and 
Systems 
Engineering.
Evidence: Several 
studies before 
1974



Incremental Model

• Each linear sequence produces a particular 
“increment” to the software

• First increment typically core product; 
more features added by later increments

• Allows flexible allocation of resources

Prototyping

Quick Plan

Quick Design

Prototype
Construction

Deployment and 
Feedback

Communication

Prototypes

Bottom Layer

Top Layer (GUI)
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Prototypes

• A horizontal prototype tests a particular layer 
(typically the GUI) of the system

• A vertical prototype tests a particular 
functionality across all layers

• Resist pressure to turn a prototype into a 
final result!

Spiral Model
(1988)
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Spiral Model

• System is developed in series of 
evolutionary releases

• Milestones for each iteration of the spiral

• Process does not end with delivery

• Reflects iterative nature of development



Unified Process
(1999)
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• Encompasses communication with user + 
planning

• Results in a set of use cases

• Architecture is just a tentative outline
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Elaboration
• Refines and expands 

preliminary use cases

• Provides architecture 
and initial design model
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Construction

Modelling

Construction
Construction

• Builds (or acquires) 
software components 
according to architecture

• Completes design model

• Includes implementation, 
unit tests, acceptance tests
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• Software given to end users for beta testing

• Feedback reports defects and changes

• Support information written
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• Software is deployed

• Problems are monitored
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Re-Iteration

Deployment

Communication

• Feedback results in new 
iteration for next release
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• Draws on best features of conventional 
process models

• Emphasizes software architecture and 
design

• Integrates with UML modeling techniques 
(more on this later)



• Individuals and activities over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan..

Manifesto for Agile Software Development (2001)

If a traditional process is like a 
battleship, protected against everything 
that might happen…

an agile process is like a speedboat, 
being able to change direction very 
quickly



• Fast development? Hacking? Prototyping? 
Uncontrolled fun? Programmer heaven?

• Agility = ability to react to changing situations 
quickly, appropriately, and effectively. 

• notice changes early 

• initiate action promptly 

• create a feasible and effective alternative plan quickly 

• reorient work and resources quickly and effectively

What is Agile Development?
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Agile Processes

Time

Scope

Analyse

Design

Implement

Test

Waterfall Iterative Agile Processes

Credits: Prof. Bodik

Agile vs. Plan-driven

• Low criticality

• Senior developers

• Requirements change very 
often

• Small number of developers

• Culture that thrives on chaos

Agile

• High criticality

• Junior developers

• Requirements don't change too 
often

• Large number of developers

• Culture that demands order

Plan-driven

What is an Agile Process?

• Difficult to predict which requirements will 
persist or change in the future.

• For many types of software, design and 
development are interleaved.

• Analysis, design, construction, and testing 
are not as predictable.



So, how to tackle 
unpredictability?

make the process adaptable...

Extreme Programming
(1999–)
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Planning

• In XP, planning takes 
place by means of 
stories

• Each story captures 
essential behavior
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• Design is made on the fly, using the KISS 
(keep it simple) principle

• Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)
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Coding
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• Each story becomes a 
unit test that serves as 
specification

• The program is 
continuously refactored 
to have the design 
match the stories

Coding
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Design

CodingTest

Planning

Software 
Increment

• To ensure continuous 
review, XP mandates 
pair programming

Extreme Programming
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Testing

Test
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Unit tests

• detect errors

• find missing 
functionality

• measure progress
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• The resulting 
prototypes result in 
new stories
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Extreme 
Programming is 
fast – with multiple 
deliverables per 
day!



Spot the Difference

Your Typical Life Cycle
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Your Typical Life Cycle

• 2 iterations for requirements 

• 3 iterations for use cases

• 4–5 iterations for GUI design

• 2 iterations for models

• 2–∞ iterations for prototype

13 iterations total!

So, aren’t agile 
techniques just 
“code and fix” in 
disguise?  Why not?  
(Hint: Think about 
explicit 
requirements, and 
explicit quality 
assurance)

(it’s ∞ iterations 
only if you are 
very, very 
successful)



Summary


