The Software Life Cycle

Software Engineering
Andreas Zeller * Saarland University

Sign up!

eo0o Software Engineering Course Summer 2012

(<0) () () [ALALSB) (L) (][@]+ Ao wwwstcs uni-saariand de/eduse 2012/ 238 ¢ (- Coogle
&3 (O 5 News@® Morew Work™ Papers™ Apple™ Travel™ Shop™ Money™ Search~ Comics® Todo ™

H Software Engineering Chair (Prof. Zeller)
Software Engineering £ imriiir i
Core Lecture - Summer 2012 Campus E1 1

66123 Saarbriicken, Germany
E-mail: se12@st.cs.uni-saarland.de

About the Course

Software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software. In this core lecture (9 CP), we expand on earlier exposure to software engineering (for instance, the
software lab / SoPra from Saariand University's Bachelor's program) and do a detailed exploration of software engineering topics

like:
« Requirements Engineering « Software Quality Assurance
« Software Specification * Software Maintenance and Evolution
« Software Design and Architecture « Software Project Management
* Advanced Programming Techniques * andothers...

The course consists of two parts: A project part, in which you work in a team of 6-7 students with a customer to engineer a

protoypical software solution to a problem, and a course part, which provides the necessary skills for completing the projects.

Assuming that you already know about programming, the course will specifically focus on the early stages of software
(in particular requi d design) as well as on the ‘quality assurance).

The lecture starts on Tuesday, April 17, 08:30, Building E1 3, HS 002.

Thisis a highly pratical course. 70% of your grade will be based on the project, the remaining 30% is based on the written exam.
You need to pass the project as well as the written exam.

Registration

Please note, for reasons, yt
Deadines for the HISPOS registration will be posted in the HISPOS portal and announced by email.

—

in HISPOS.

http://

WWW.St.cs.uni-

Se

Sign ‘up!

Project proforences

Advanced Automatic Repository Creation for Redmine:

Bugkx Online:

Select Projects
Thursday, 18:00 — Monday, 12:00

xxxxxxxxx

BugExiipse BugEx Eolipse Plugink:

Buy ore, pay ane: Typechocks to anforce policies on
Cognitive Load: Data composition:

Database for Lipld Imaging Mass Spectrometry Data:

Database Systems Benchmark Running Framework:

Oynamic MapReduce Cluster Management Tool:

Graph Editor for Syntactic and Semantic Annctation of Natural Language:

HBKsaar: Vieual arts scheduling software:

1, Librarian: Battar managament of maets-informatian:

Increasing Software Quallty. Integrating High Quality Assertion Support In Eclipse:

Integration of Robotic Mapping in the NIFTI project with Google maps:

Making statisticsl queries on databases ssfo: Type-checking for differential privacy:

Markeriess Motion Capture: Meta-<data and more:

Moshito: Integrating the concept of non-sssential changes:

OpentdMap: Crowd-sourced peer-to-peer 3d mapping:

The Software Life Cycle

Software Engineering
Andreas Zeller * Saarland University

A Software Cirisis

Denver
International
— Airport (DIA)
Construction started
* Planned: 1.7 bio
- USD costs, opening

1993

Code and Fix

(1950-)

Build first version
Modify until
client is satisfied

Operate

Retirement

Code and Fix: Issues

® No process steps — no specs, docs, tests...
® No separation of concerns — no teamwork

® No way to deal with complexity

Code and Fix

Waterfall Model

(1968)

Communication ‘

project initiation
requirements

Planning

estimating .
scheduling
tracking
Modeling .
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

Communication

6.6 Map Series Tool

Communication S
2 S mags for a given boundary feature (camparnment
PI'O]eCt initiation } = EL“I::S“:GP" ote)
o o l Actors ser
reqwrements gat Pre-Conatons | User requires one of more maps sheets 1rom a senes,

for a boundary feature
Post Condtions | Map o senes of maps s generated and prnted
L Proy | Requred

Scenario
[) User starts the 1ol o)
| Systern displays a kst of map senes that the user can select from Delaut
| map senes will be Landscape 1.7920" Con be set st any scale
| 2) User selects map sencs on foem
[System then determnes I any boundiry features are selected
| | A" Features Selected
| i If features are selected, it asks the user to f they want fo
generale a map senes for the selected feature. Only one feature can
| usad at atme
B No Festures Selected
L I nofostures are selecled, or user opls to sekect the feature
manualy, the System prompés the user (o select the distnct and
compartment of interest from pull downs. It than 200ms 10 that
location. generates the map sheet boundaries, draws them with the
map sheet names
[3) User can select nchvicual sheets on screen, of SERCt 10 prt just an
|__index map_of the entice senes
| System starts generatng and printing maps based on the selected
sheets

{4)_User coliects maps from prefer

reMap and in ArcGIS Server 1

Waterfall Model

(1968)

Communication .

project initiation
requirements

Planning

estimating
scheduling
tracking
Modeling
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

Planning

|| Irstata:
5 loAQ system

0 Archeectura/P

Planning

Technology ¢ estimating

g’
2 *
scheduling]
~ | —
tracking
[
antrel system (DCS) w v
VR (sub-deectors, hal infrastruccure) | [—
Architectura/Ev huatons /R80 I {
Irkerf ace technalogy recommendations | * |
Inkwim GeveloomentT est beams/Prodhf e

Fnal Tachnology/Product chose %
Acauisition

0 inframtructure dev

Subdetector system s dev

o

System Instatason/integravon | M—

LHCD start:

Waterfall Model

(1968)
Communication .

project initiation
requirements

Planning

estimating .
scheduling
tracking
Modeling
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

Waterfall Model (1968)

Microsoft Outlook™ 2000 Object Model Extended View

Modeling

analysis

Waterfall Model

(1968)

Communication
project initiation
requirements
Planning
estimating .
scheduling
tracking
Modeling .
analysis

design
Construction .

code
test

Deployment

delivery

support
feedback

Waterfall Model

Ovderl = order
orxdarz = order

G - Construction

1(1 (L (fpm = code
fprintt test
exitl2)

)
#endilt e
~ e
T ordAe i 9 axov

7+ a)l)locBTE Tla umed YO P,

——

” 0”””'.00001

Waterfall Model

(1968)

Communication .

project initiation
requirements

Planning

estimating .
scheduling
tracking
Modeling
analysis

design
Construction
code

test
Deployment

delivery

support
feedback

Deployment

Deployment

delivery

support
feedback

Waterfall Model

(1968)

Communication
project initiation
requirements

Planning

estimating
scheduling
tracking

Modeling
analysis
design
Construction

code
test

Deployment

delivery
support
feedback

Waterfall Model

(1968)

T —

® Real projects rarely follow a sequential flow
® Hard to state all requirements explicitly
® No maintenance or evolution involved

e Customer must have patience

Any blunder can be disastrous

Boehm’s first law

Errors are most frequent
during requirements and design activities

and are the more expensive
the later they are removed.

This and other laws
are found in

- Endres/Rombach:
Handbook of

-~ Software and
Systems
Engi .

- .

Eulclle_ncel SEE“ eral

1TN7A

Problem Cost

[Relative cost of problem per phase

22.5

15.0
7.5
0
Coding Unit test Component test System test Field
Incremental Model
Features
Increment #3
Increment #2
Increment #1

Time

Incremental Model

® Each linear sequence produces a particular
“increment” to the software

® First increment typically core product;
more features added by later increments

® Allows flexible allocation of resources

Prototyping

7 ” QUiCk Plan
) ";f;.? “".
Y ST
Deployment and
uick Design
Feedback Q 8
i Prototype w5
Construction

Prototypes

Top Layer (GUI)

Bottom Layer

Horizontal Prototype

BEEEE

Prototypes

Top Layer (GUI)

Vertical Prototype

Top Layer (GUI)

Bottom Layer

Prototypes

® A horizontal prototype tests a particular layer
(typically the GUI) of the system

® A vertical prototype tests a particular
functionality across all layers

® Resist pressure to turn a prototype into a
final result!

Spiral Model

(1988)

Planning

g Modeling

TeSt E] System maintenance

D System enhancamant

Communication

l:l System cevelopment

Il Concept development

Spiral Model

System is developed in series of
evolutionary releases

Milestones for each iteration of the spiral

Process does not end with delivery

Reflects iterative nature of development

Unified Process

(1999)

Inception

Software

Communication Planning

Increment

Production Elaboration

Deployment Modelling

Construction

Transition

Inception

Inception

Communication [Planning

® Encompasses communication with user +
planning

® Results in a set of use cases

® Architecture is just a tentative outline

Elaboration

Planning

® Refines and expands

preliminary use cases * Elaboration

® Provides architecture
and initial design model

Modelling

Construction

® Builds (or acquires)
software components
according to architecture

® Completes design model

® Includes implementation, Modelling

unit tests, acceptance tests

Transition

® Software given to end users for beta testing
® Feedback reports defects and changes

® Support information written

Deployment

Production

Software ® Software is deployed

Increment

® Problems are monitored

Deployment

Production

Re-lteration

Communication

® Feedback results in new

St
B

iteration for next release
Deployment

Unified Process

Inception

Software

Communication Planning
Increment

Production Elaboration

Deployment

Transition /m\ Construction

Modelling

Unified Process

® Draws on best features of conventional
process models

® Emphasizes software architecture and
design

® |ntegrates with UML modeling techniques
(more on this later)

If a traditional process is like a
battleship, protected against everything
that might happen...

an agile process is like a speedboat,
being able to change direction very
quickly

Agile
Alliance

Manifesto for Agile Software Development (2001)

Individuals and activities over processes and tools.

® Working software over comprehensive documentation.

® Customer collaboration over contract negotiation.

Responding to change over following a plan..

What is Agile Development?

® Fast development? Hacking? Prototyping?
Uncontrolled fun? Programmer heaven?

® Agility = ability to react to changing situations
quickly, appropriately, and effectively.
® notice changes early
® initiate action promptly
® create a feasible and effective alternative plan quickly

® reorient work and resources quickly and effectively

Agile?

Communication
project initiation
requirements

Planning

estimating
scheduling
tracking

Modeling
analysis
design
Construction

code
test

Deployment

delivery
support
feedback

Incremental Model

Features

Increment #3

Communication
G

e

Increment #2

Communication Cons:::(uon

Increment #1 S
Gt
o g Construction

Deployment

Time

Agile Processes

Time
A
Waterfall Iterative Agile Processes

Implement !

Design

Analyse

n
>

Scope

Credits: Prof. Bodik

Agile vs. Plan-driven

Agile Plan-driven

® Low criticality ® High criticality

® Senior developers ® Junior developers

® Requirements change very ® Requirements don't change too
often often

® Small number of developers ® large number of developers

® Culture that thrives on chaos ® Culture that demands order

What is an Agile Process!?

e Difficult to predict which requirements will
persist or change in the future.

® For many types of software, design and
development are interleaved.

® Analysis, design, construction, and testing
are not as predictable.

So, how to tackle
unpredictability?

make the process adaptable...

Extreme Programming

(1999-)

Software
Increment

Planning

ereate o new Beckied, | Tt 0 be able 10 create aew
Tt e e B ORI bt e o e
Planning e | et o e e g
ity at &y ond Telephone are.
cnck for SO cnfem e L artomaticaly s
there 18 s’ complet The enly 4

\booking when T 1% 5
pre-exsting objects wil ba the O%S

mnp'w“"’*"’ el
At ony stoge during the creation of o T wont the Customer object 1o be ebie 1o
:::;;:""""""“" store Locations used by that customer
b return-journey Booking. All relevent wngnm‘::uw.m::
; across into the most frequently used Locations of
® |n XP planning takes — sstmmemeemini o i
mnwmﬁ

place by means of

———— - - - -
T wont eny Poyment Mathod, ond Telephone 1 want o City object to hold a st of

stories created in a Bosking 1o be associared comemon lscaticns (cg. Airparts, Theatres).

directly with the Customer, 50 I com re-use
them in o future booking. Where there are
muttiple Payment Methods and Telephones.

® Each story captures Zuiimncil 3

by dropping @ Location directly onfo

I want 10 be oble fo create & new Booking

essential behavior gyl

drop-off. This should work whether I am
doing it from o Customer's list of frequent

locations, o a City's list, e both.

Extreme Programming

Software
Increment

Extreme Programming

® Design is made on the fly, using the KISS
(keep it simple) principle

® Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)

Extreme Programming

Planning 2 e Design
Al 4
& gt

i

Software
Increment

Coding

® Each story becomes a
unit test that serves as
specification

® The program is :
continuously refactored
to have the design
match the stories

Coding

® To ensure continuous
review, XP mandates
pair programming

Extreme Programming

Software
Increment

Testing

Unit tests
® detect errors

® find missing
functionality

® measure progress

Extreme Programming

Planning

® The resulting
prototypes result in
new stories

Software
Increment

Extreme
Programming is
deliverables per

dav!
uu

Spot the Difference

Code and Fix

(1950-)

Extreme Programming
En E3
1T 4

*
re

So, aren’t agile
techniques just
“II IIF' 7 -
disguise? Why not?
explicit
—__requirements, and

fici '
__assurance)

Your Typical Life Cycle

Communication
project initiation
requirements

Planning

estimating
scheduling
tracking

Modeling

analysis

Deployment
delivery

Your Typical Life Cycle

® 2 iterations for requirements
® 3 iterations for use cases

® 4-5 iterations for GUI design
® 2 iterations for models

® 2— iterations for prototype

| 3 iterations total!

(it’s oo iterations
only if you are

V e' 71 V e' 7
successful)

Code and Fix

58

Waterfall Model

Communication

Construction

Deployment

Summary

Unified Process
(1999)

Extreme Programming

