
The Software Life Cycle
Software Engineering

Andreas Zeller • Saarland University

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Sign up!

Sign up!

http://
www.st.cs.uni-
saarland.de/edu/
se/2012/

Select Projects
Thursday, 18:00 – Monday, 12:00

The Software Life Cycle
Software Engineering

Andreas Zeller • Saarland University

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

A Software Crisis
Denver
International
Airport (DIA)
Construction started
in 1989 • 53 sq miles
• Planned: 1.7 bio
USD costs, opening
1993

Code and Fix
(1950–)

Build first version

Modify until
client is satisfied

Operate

Retirement

Code and Fix: Issues

• No process steps – no specs, docs, tests…

• No separation of concerns – no teamwork

• No way to deal with complexity

Code and Fix

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Communication
Communication

project initiation
requirements gathering

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Planning

Planning
estimating
scheduling
tracking

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Waterfall Model (1968)

Modeling
analysis
design

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Waterfall Model

Construction
code
test

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Deployment

Deployment
delivery
support
feedback

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Waterfall Model
(1968)

• Real projects rarely follow a sequential flow

• Hard to state all requirements explicitly

• No maintenance or evolution involved

• Customer must have patience

• Any blunder can be disastrous

Boehm’s first law

Errors are most frequent
during requirements and design activities

and are the more expensive
the later they are removed.

Problem Cost

0

7.5

15.0

22.5

30.0

Coding Unit test Component test System test Field

Relative cost of problem per phase

Incremental Model
Features

Time

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #1

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #2

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #3

This and other laws
are found in
Endres/Rombach:
Handbook of
Software and
Systems
Engineering.
Evidence: Several
studies before
1974

Incremental Model

• Each linear sequence produces a particular
“increment” to the software

• First increment typically core product;
more features added by later increments

• Allows flexible allocation of resources

Prototyping

Quick Plan

Quick Design

Prototype
Construction

Deployment and
Feedback

Communication

Prototypes

Bottom Layer

Top Layer (GUI)

Horizontal Prototype

Bottom Layer

Top Layer (GUI)

Prototypes

Bottom Layer

Top Layer (GUI)

Vertical Prototype

Bottom Layer

Top Layer (GUI)

Prototypes

• A horizontal prototype tests a particular layer
(typically the GUI) of the system

• A vertical prototype tests a particular
functionality across all layers

• Resist pressure to turn a prototype into a
final result!

Spiral Model
(1988)

Communication

Planning
Modeling

Construction

Test
Deployment + Feedback

Spiral Model

• System is developed in series of
evolutionary releases

• Milestones for each iteration of the spiral

• Process does not end with delivery

• Reflects iterative nature of development

Unified Process
(1999)

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Inception

PlanningCommunication

Inception

• Encompasses communication with user +
planning

• Results in a set of use cases

• Architecture is just a tentative outline

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Elaboration

Planning

Modelling

Elaboration
• Refines and expands

preliminary use cases

• Provides architecture
and initial design model

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Construction

Modelling

Construction
Construction

• Builds (or acquires)
software components
according to architecture

• Completes design model

• Includes implementation,
unit tests, acceptance tests

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Transition

Construction

Deployment

Transition

• Software given to end users for beta testing

• Feedback reports defects and changes

• Support information written

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Production

Deployment

Software
Increment

Production

• Software is deployed

• Problems are monitored

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Re-Iteration

Deployment

Communication

• Feedback results in new
iteration for next release

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Unified Process

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

Unified Process

Planning

Modelling

Construction

Deployment

CommunicationSoftware
Increment

Inception

Elaboration

ConstructionTransition

Production

• Draws on best features of conventional
process models

• Emphasizes software architecture and
design

• Integrates with UML modeling techniques
(more on this later)

• Individuals and activities over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan..

Manifesto for Agile Software Development (2001)

If a traditional process is like a
battleship, protected against everything
that might happen…

an agile process is like a speedboat,
being able to change direction very
quickly

• Fast development? Hacking? Prototyping?
Uncontrolled fun? Programmer heaven?

• Agility = ability to react to changing situations
quickly, appropriately, and effectively.

• notice changes early

• initiate action promptly

• create a feasible and effective alternative plan quickly

• reorient work and resources quickly and effectively

What is Agile Development?

Agile?
Communication

project initiation
requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Incremental Model
Features

Time

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #1

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #2

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #3

Agile Processes

Time

Scope

Analyse

Design

Implement

Test

Waterfall Iterative Agile Processes

Credits: Prof. Bodik

Agile vs. Plan-driven

• Low criticality

• Senior developers

• Requirements change very
often

• Small number of developers

• Culture that thrives on chaos

Agile

• High criticality

• Junior developers

• Requirements don't change too
often

• Large number of developers

• Culture that demands order

Plan-driven

What is an Agile Process?

• Difficult to predict which requirements will
persist or change in the future.

• For many types of software, design and
development are interleaved.

• Analysis, design, construction, and testing
are not as predictable.

So, how to tackle
unpredictability?

make the process adaptable...

Extreme Programming
(1999–)

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Planning

Planning

• In XP, planning takes
place by means of
stories

• Each story captures
essential behavior

Extreme Programming

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Extreme Programming

DesignDesign

CodingTest

Planning

Software
Increment

• Design is made on the fly, using the KISS
(keep it simple) principle

• Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)

Extreme Programming

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Coding

Coding

Design

CodingTest

Planning

Software
Increment

• Each story becomes a
unit test that serves as
specification

• The program is
continuously refactored
to have the design
match the stories

Coding

Coding

Design

CodingTest

Planning

Software
Increment

• To ensure continuous
review, XP mandates
pair programming

Extreme Programming

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Testing

Test

Design

CodingTest

Planning

Software
Increment

Unit tests

• detect errors

• find missing
functionality

• measure progress

Extreme Programming

Test

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

• The resulting
prototypes result in
new stories

Extreme Programming

Design

CodingTest

Planning

Software
Increment

Design

CodingTest

Planning

Software
Increment

Extreme
Programming is
fast – with multiple
deliverables per
day!

Spot the Difference

Your Typical Life Cycle
Communication

project initiation
requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Your Typical Life Cycle

• 2 iterations for requirements

• 3 iterations for use cases

• 4–5 iterations for GUI design

• 2 iterations for models

• 2–∞ iterations for prototype

13 iterations total!

So, aren’t agile
techniques just
“code and fix” in
disguise? Why not?
(Hint: Think about
explicit
requirements, and
explicit quality
assurance)

(it’s ∞ iterations
only if you are
very, very
successful)

Summary

