
Functional Testing
Software Engineering

Andreas Zeller • Saarland University

From Pressman, “Software Engineering
– a practitionerʼs approach”, Chapter 14
and Pezze + Young, “Software Testing
and Analysis”, Chapters 10-11

Today, weʼll talk about testing – how to
test software. The question is: How do
we design tests? And weʼll start with
functional testing.

1

Functional testing is also called “black-
box” testing, because we see the
program as a black box – that is, we
ignore how it is being written

2

in contrast to structural or “white-box”
testing, where the program is the base.

3

Testing Tactics

• Tests based on spec

• Test covers as much
specified behavior
as possible

• Tests based on code

• Test covers as much
implemented behavior
as possible

Functional
“black box”

Structural
“white box”

Why Functional?

• Program code not necessary

• Early functional test design has benefits
reveals spec problems • assesses testability • gives additional
explanation of spec • may even serve as spec, as in XP

Functional
“black box”

Structural
“white box”

If the program is not the base, then
what is? Simple: itʼs the specification.

4

If the program is not the base, then
what is? Simple: itʼs the specification.

5

6

Why Functional?

• Best for missing logic defects
Common problem: Some program logic was simply forgotten
Structural testing would not focus on code that is not there

• Applies at all granularity levels
unit tests • integration tests • system tests • regression tests

Functional
“black box”

Structural
“white box”

A Challenge

class Roots {
 // Solve ax2 + bx + c = 0
 public roots(double a, double b, double c)
 { … }

 // Result: values for x
 double root_one, root_two;
}

• Which values for a, b, c should we test?
assuming a, b, c, were 32-bit integers, we’d have (232)3 ≈ 1028 legal inputs
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

Life Cycle of the Sun

Structural testing can not detect that
some required feature is missing in the
code
Functional testing applies at all
granularity levels (in contrast to
structural testing, which only applies to
unit and integration testing)

7

2,510,588,971 years, 32 days, and 20
hours to be precise.

8

Note that in 900 million years, due to
increase of the luminosity of the sun,
CO2 levels will be toxic for plants; in
1.9 billion years, surface water will have
evaporated (source: Wikipedia on
“Earth”)

9

Life Cycle of the Sun
Note that in 900 million years, due to
increase of the luminosity of the sun,
CO2 levels will be toxic for plants; in
1.9 billion years, surface water will have
evaporated (source: Wikipedia on
“Earth”)

10

None of this is crucial for the
computation, though.

11

12

A Challenge

class Roots {
 // Solve ax2 + bx + c = 0
 public roots(double a, double b, double c)
 { … }

 // Result: values for x
 double root_one, root_two;
}

• Which values for a, b, c should we test?
assuming a, b, c, were 32-bit integers, we’d have (232)3 ≈ 1028 legal inputs
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

Random Testing

• Pick possible inputs uniformly

• Avoids designer bias
A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer
(especially if they are the same person)

• But treats all inputs as equally valuable

Why not Random?

• Defects are not distributed uniformly

• Assume Roots applies quadratic equation

and fails if b2 – 4ac = 0 and a = 0

• Random sampling is unlikely to choose
a = 0 and b = 0

13

One might think that picking random
samples might be a good idea.

14

However, it is not. For one, we donʼt
care for bias – we specifically want to
search where it matters most. Second,
random testing is unlikely to uncover
specific defects. Therefore, we go for
functional testing.

15

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Systematic Functional Testing

Functional
specification

Independently
testable feature

identify

Testable Features

Representative
values Model

Test case
specifications

identify derive

derive

Test case

generate

• Decompose system into
independently testable features (ITF)

• An ITF need not correspond to units or
subsystems of the software

• For system testing, ITFs are exposed
through user interfaces or APIs

Testable Fatures

class Roots {
 // Solve ax2 + bx + c = 0
 public roots(double a, double b, double c)
 { … }

 // Result: values for x
 double root_one, root_two;
}

• What are the independently testable features?

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

16

17

Just one – roots is a unit and thus
provides exactly one single testable
feature.

18

Testable Fatures

• Consider a multi-function
calculator

• What are the independently
testable features?

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Testable Features

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Representative Values

• Try to select inputs
that are especially
valuable

• Usually by
choosing
representatives of equivalence classes that
are apt to fail often or not at all

Every single function becomes an
independently testable feature. Some
functions (like memory access, for
instance) are dependent on each other,
though: to retrieve a value, you must
first store it.
(Note how the calculator shows the
#years required for the Roots
calculation.)

19

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

20

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

21

Needles in a Haystack

• To find needles,
look systematically

• We need to find out
what makes needles special

Failure (valuable test case)

No failure

Systematic Partition Testing
Failures are sparse in
the space of possible

inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will

include the dense parts

Functional testing is one way of
drawing orange lines to isolate

regions with likely failures

T
he

 s
pa

ce
 o

f p
os

si
bl

e
in

pu
t

va
lu

es
(t

he
 h

ay
st

ac
k)

Equivalence Partitioning

Input condition Equivalence classes

range one valid, two invalid
(larger and smaller)

specific value one valid, two invalid
(larger and smaller)

member of a set one valid, one invalid

boolean one valid, one invalid

22

We can think of all the
possible input values to a
program as little boxes ...
white boxes that the program
processes correctly, and
colored boxes on which the
program fails. Our problem is
that there are a lot of
boxes ... a huge number, and
the colored boxes are just an
infinitesimal fraction of the
whole set. If we reach in and
pull out boxes at random, we
are unlikely to find the

23

How do we choose equivalence
classes? The key is to examine input
conditions from the spec. Each input
condition induces an equivalence class
– valid and invalid inputs.

24

Boundary Analysis
Possible test case

• Test at lower range (valid and invalid),
at higher range(valid and invalid), and at center

Example: ZIP Code

• Input:
5-digit ZIP code

• Output:
list of cities

• What are
representative
values to test?

Valid ZIP Codes

1. with 0 cities
as output
(0 is boundary value)

2. with 1 city
as output

3. with many cities
as output

How do we choose
representatives rom
equivalence classes? A
greater number of errors
occurs at the boundaries of
an equivalence class rather
than at the “center”.
Therefore, we specifically
look for values that are at the
boundaries – both of the input
domain as well as at the
output.

25

(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

26

(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

27

Invalid ZIP Codes
4. empty input

5. 1–4 characters
(4 is boundary value)

6. 6 characters
(6 is boundary value)

7. very long input

8. no digits

9. non-character data

“Special” ZIP Codes

• How about a ZIP code that reads

12345‘; DROP TABLE orders; SELECT
* FROM zipcodes WHERE ‘zip’ = ‘

• Or a ZIP code with 65536 characters…

• This is security testing

Gutjahr’s Hypothesis

Partition testing
is more effective

than random testing.

(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

28

29

Generally, random inputs are easier to
generate, but less likely to cover parts
of the specification or the code.
See Gutjahr (1999) in IEEE
Transactions on Software Engineering
25, 5 (1999), 661-667

30

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Representative Values

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Model-Based Testing

• Have a formal model
that specifies software behavior

• Models typically come as

• finite state machines and

• decision structures

0

1 2
3

4 5 6

7 8

9

Finite
State
Machine

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

31

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

32

As an example, consider these steps
modeling a product maintenance
process…
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

33

Coverage Criteria

• Path coverage: Tests cover every path
Not feasible in practice due to infinite number of paths

• State coverage: Every node is executed
A minimum testing criterion

• Transition coverage: Every edge is executed
Typically, a good coverage criterion to aim for

0

1 2
3

4 5 6

7 8

9

Transition
Coverage

…based on these (informal)
requirements
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

34

35

With five test cases (one color each),
we can achieve transition coverage
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

36

State-based Testing

• Protocols (e.g., network communication)

• GUIs (sequences of interactions)

• Objects (methods and states)

Account states

empty
acctopen setup Accnt

set up
acct

deposit
(initial)

working
acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit
accntInfo

Figure 14.3 State diagram for Account class (adapted from [KIR94])

Decision Tables
EducationEducation IndividualIndividualIndividualIndividualIndividualIndividual

Education account

Current purchase >
Threshold 1

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier 1

Special price <
Tier 2

T T F F F F F F

– – F F T T – –

– – – – F F T T

F T F T – – – –

– – – – F T – –

– – – – – – F T

Out Edu
discount

Special
price

No
discount

Special
price

Tier 1
discount

Special
price

Tier 2
discount

Special
Price

Finite state machines can be used to
model for a large variety of behaviors –
and thus serve as a base for testing.

37

Hereʼs an example of a finite state
machine representing an Account class
going through a number of states.
Transition coverage means testing
each Account method once.
(From Pressman, “Software
Engineering – a practitionerʼs
approach”, Chapter 14)

38

A decision table describes under which
conditions a specific outcome comes to
be. This decision table, for instance,
determines the discount for a purchase,
depending on specific thresholds for
the amount purchased.
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

39

Condition Coverage

• Basic criterion: Test every column
“Don’t care” entries (–) can take arbitrary values

• Compound criterion: Test every combination
Requires 2n tests for n conditions and is unrealistic

• Modified condition decision criterion (MCDC):
like basic criterion, but additionally, modify
each T/F value at least once
Again, a good coverage criterion to aim for

MCDC Criterion
EducationEducation IndividualIndividualIndividualIndividualIndividualIndividual

Education account

Current purchase >
Threshold 1

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier 1

Special price <
Tier 2

T T F F F F F F

– – F F T T – –

– – – – F F T T

F T F T – – – –

– – – – F T – –

– – – – – – F T

Out Edu
discount

Special
price

No
discount

Special
price

Tier 1
discount

Special
price

Tier 2
discount

Special
Price

F

MCDC Criterion
EducationEducation IndividualIndividualIndividualIndividualIndividualIndividual

Education account

Current purchase >
Threshold 1

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier 1

Special price <
Tier 2

T T F F F F F F

– – F F T T – –

– – – – F F T T

F T F T – – – –

– – – – F T – –

– – – – – – F T

Out Edu
discount

Special
price

No
discount

Special
price

Tier 1
discount

Special
price

Tier 2
discount

Special
Price

T

40

We modify the individual values in
column 1 and 2 to generate four
additional test cases – but these are
already tested anyway. For instance,
the modified values in column 1 are
already tested in column 3.
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

41

This also applies to changing the other
values, so adding additional test cases
is not necessary in this case.
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

42

MCDC Criterion
EducationEducation IndividualIndividualIndividualIndividualIndividualIndividual

Education account

Current purchase >
Threshold 1

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier 1

Special price <
Tier 2

T T F F F F F F

– – F F T T – –

– – – – F F T T

F T F T – – – –

– – – – F T – –

– – – – – – F T

Out Edu
discount

Special
price

No
discount

Special
price

Tier 1
discount

Special
price

Tier 2
discount

Special
Price

F

MCDC Criterion
EducationEducation IndividualIndividualIndividualIndividualIndividualIndividual

Education account

Current purchase >
Threshold 1

Current purchase >
Threshold 2

Special price <
scheduled price

Special price <
Tier 1

Special price <
Tier 2

T T F F F F F F

– – F F T T – –

– – – – F F T T

F T F T – – – –

– – – – F T – –

– – – – – – F T

Out Edu
discount

Special
price

No
discount

Special
price

Tier 1
discount

Special
price

Tier 2
discount

Special
Price

F

Weyuker’s Hypothesis

The adequacy of a coverage criterion
can only be intuitively defined.

43

However, if we had not (yet) tested the
individual accounts, the MC/DC
criterion would have uncovered them.
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

44

Established by a number of studies
done by E. Weyuker at AT&T. “Any
explicit relationship between coverage
and error detection would mean that we
have a fixed distribution of errors over
all statements and paths, which is
clearly not the case”.

45

Learning from the past

Pareto’s Law

Approximately 80% of defects
come from 20% of modules

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Model-Based Testing

To decide where to put most effort in
testing, one can also examine the past
– i.e., where did most defects occur in
the past. The above picture shows the
distribution of security vulnerabilities in
Firefox – the redder a rectangle, the
more vulnerabilities, and therefore a
likely candidate for intensive testing.
The group of Andreas Zeller at
Saarland University researches how to
mine such information automatically
and how to predict future defects.

46

Evidence: several studies, including
Zellerʼs own evidence :-)

47

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

48

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Case Specs

• Input values enumerated in previous step

• Now: need to take care of combinations

• Typically, one
uses models and
representative
values to generate
test cases

Combinatorial Testing

IIS

Apache

MySQL Oracle

Linux

Windows OSServer

Database

Combinatorial Testing

• Eliminate invalid combinations
IIS only runs on Windows, for example

• Cover all pairs of combinations
such as MySQL on Windows and Linux

• Combinations typically generated
automatically
and – hopefully – tested automatically, too

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

49

Many domains come as a
combination of individual
inputs. We therefore need to
cope with a combinatorial
explosion.

50

51

Pairwise Testing
IIS

Apache

MySQL Oracle

Linux

Windows IIS

Apache

MySQL Oracle

Linux

Windows

IIS

Apache

MySQL Oracle

Linux

Windows IIS

Apache

MySQL Oracle

Linux

Windows

Testing environment

• Millions of configurations

• Testing on dozens of different machines

• All needed to find & reproduce problems

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Case Specs

Pairwise testing means to
cover every single pair of
configurations

52

In practice, such testing needs
hundreds and hundreds of PCs in every
possible configuration – Microsoft, for
instance, has entire buildings filled with
every hardware imaginable
Source: http://www.ci.newton.ma.us/
MIS/Network.htm

53

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

54

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Cases

• Implement test cases in code

• Requires building scaffolding –
i.e., drivers and stubs

Unit Tests

• Directly access units (= classes, modules,
components…) at their programming
interfaces

• Encapsulate a set of tests as a single
syntactical unit

• Available for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Cases

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

55

Hereʼs an example for automated unit
tests – the well-known JUnit

56

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

57

Functional
specification

Independently
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Systematic Functional Testing

Summary

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

58

59

