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From Pressman, “Software Engineering
— a practitioner’s approach”, Chapter 14
and Pezze + Young, “Software Testing
and Analysis”, Chapters 10-11

Today, we’ll talk about testing — how to
test software. The question is: How do
we design tests? And we’ll start with
functional testing.

Functional testing is also called “black-
box” testing, because we see the
program as a black box — that is, we
ignore how it is being written

in contrast to structural or “white-box”
testing, where the program is the base.




If the program is not the base, then
what is? Simple: it’s the specification.

If the program is not the base, then
what is? Simple: it’s the specification.

Testing Tactics

Functional Structural
“black box” “white box”

® Tests based on spec ® Tests based on code

® Test covers as much ® Test covers as much
specified behavior implemented behavior
as possible as possible

Why Functional?

Functional
“black box”

® Program code not necessary

® Early functional test design has benefits
reveals spec problems ¢ assesses testability ¢ gives additional
explanation of spec * may even serve as spec, as in XP




Structural testing can not detect that
some required feature is missing in the
I ? code
Why FU nCtlona’I * Functional testing applies at all
granularity levels (in contrast to
structural testing, which only applies to

Functional unit and integration testing)
“black box”

® Best for missing logic defects
Common problem: Some program logic was simply forgotten
Structural testing would not focus on code that is not there

® Applies at all granularity levels
unit tests ¢ integration tests * system tests * regression tests

2,510,588,971 years, 32 days, and 20
hours to be precise.

A Challenge

class Roots {
// Solve ax? + bx + c = 0@
public roots(double a, double b, double c)

{ .1

// Result: values for x
double root_one, root_two;

}

® Which values for a, b, c should we test?
assuming a, b, ¢, were 32-bit integers, we'd have (232)* = 10?8 legal inputs
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

Note that in 900 million years, due to
increase of the luminosity of the sun,
1 velloa - : CO2 levels will be toxic for plants; in
Llfe C)’Cle Of the ' Su n 1.9 billion years, surface water will have
’ ’ : . evaporated (source: Wikipedia on
" . . - “Earth”)
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A Challenge

class Roots {
// Solve ax? + bx + c = 0
public roots(double a, double b, double c)

{ .17

// Result: values for x
double root_one, root_two;

}

® Which values for a, b, ¢ should we test?
assuming a, b, ¢, were 32-bit integers, we'd have (232)3 = 1028 legal inputs
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

Random Testing

® Pick possible inputs uniformly
® Avoids designer bias
A real problem: The test designer can make the same logical

mistakes and bad assumptions as the program designer
(especially if they are the same person)

® But treats all inputs as equally valuable

Why not Random!?

® Defects are not distributed uniformly

® Assume Roots applies quadratic equation

—b+ /b2 —4ac
Tr=
2a

and fails if b2 —4ac=0and a =0

® Random sampling is unlikely to choose
a=0andb=0
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One might think that picking random
samples might be a good idea.
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However, it is not. For one, we don’t
care for bias — we specifically want to
search where it matters most. Second,
random testing is unlikely to uncover
specific defects. Therefore, we go for
functional testing.




The main steps of a systematic
approach to functional program testing

Syste matic FU nction al Te stin g (from Pezze + Young, “Software Testing

and Analysis”, Chapter 10)
identify
Functional Independently
specification testable feature

identify derive

Representative
P Model
values

derive

generate
Test case
Test case : :
specifications
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Testable Features

identify
Functional Independently
specification testable feature

® Decompose system into
independently testable features (ITF)

® An ITF need not correspond to units or
subsystems of the software

® For system testing, ITFs are exposed
through user interfaces or APlIs

17

Just one — roots is a unit and thus
provides exactly one single testable

Testable Fatures feature.

class Roots {
// Solve ax? + bx + c = 0
public roots(double a, double b, double c)
{ .1}

// Result: values for x
double root_one, root_two;

}

® What are the independently testable features?

18




HP48-R (G
(3

HOME ¥
:  2.518.589.971,09
: 32,87

ma@%ﬁ
-

1
q
3
pa
1

PRG o CSI" VAR : K v: Calculator

Testable Features

identify
Functional Independently
specification testable feature

Representative

[ P Model
values
Test case
Test case e
specifications

Representative Values

. Independently
® TI")' to select Inputs testable feature

that are especially
identify

valuable
Representative

o Usua”)’ b)’ values
choosing

representatives of equivalence classes that
are apt to fail often or not at all

Testable Fatures

I ® Consider a multi-function

® What are the independently
testable features?

Every single function becomes an
independently testable feature. Some
functions (like memory access, for
instance) are dependent on each other,
though: to retrieve a value, you must
first store it.

(Note how the calculator shows the
#years required for the Roots
calculation.)

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)




The space of possible input values

Needles in a

® To find needles,
look systematically

® We need to find out
what makes needles special

Haystack
I
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If we systematically test some
cases from each part, we will
include the dense parts

Failures are sparse in
the space of possible

... but dense in some
parts of the space

uts ...
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unctional testing is one way of
drawing orange lines to isolate
regions with likely failures
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We can think of all the
possible input values to a
program as little boxes ...
white boxes that the program
processes correctly, and
colored boxes on which the
program fails. Our problem is
that there are a lot of

boxes ... a huge number, and
the colored boxes are just an
infinitesimal fraction of the
whole set. If we reach in and
pull out boxes at random, we

Equivalence Partitioning

Input condition Equivalence classes

range

one valid, two invalid
(larger and smaller)

specific value

one valid, two invalid
(larger and smaller)

member of a set

one valid, one invalid

boolean

one valid, one invalid
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How do we choose equivalence
classes? The key is to examine input
conditions from the spec. Each input
condition induces an equivalence class
—valid and invalid inputs.




How do we choose
. representatives rom
Boundary Analy5|s equivalence classes? A
greater number of errors
occurs at the boundaries of

O Possible test case
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00 00 OO0 O00/00 00 OO0/00 OO0 OO0 OO0 oo Oog aa an equ|va|ence CIaSS rather
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00 00 OO0 0O@|EQ OF OE/E0 00 00 00 00 00 00 than at the “center”.
OO 0o 0o Oo|oo 0o oo|oo oo oo oo 0o oo oo Therefore, we specifically
Oo 0O 0D 00 0o 0o 0o 0o 0 0o 0o 08 oo oo look for values that are at the
00 00 00 00 00 00 00 00 00 00 00 00 00 00 boundaries — both of the input
00 OO0 00 00 00 00 00 00 00 00 00 00 00 0o i

: o domain as well as at the
® Test at lower range (valid and invalid),

output.
25

at higher range(valid and invalid), and at center

(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

Example: ZIP Code

~ UNITED STATES
B POSTAL SERVICE

® |nput:
A 5-digit ZIP code
@‘ ZIP Code Lookup
i e Qutput:
S W By Addr 3 Search By City
list of cities

Find a list of cities that are in a ZIP Code.
* Required Fields L What are

* ZIP Cod 12345 .

’ representative

values to test?
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(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

Valid ZIP Codes

~y UNITED STATES
P POSTAL SERVICE

I. with O cities

as output
(0 is boundary value)

2. with | city
as output

Find a list of cities that are in a ZIP Code.

* Required Fields
e e 3. with many cities
as output

27




Invalid ZIP Codes

UNITED STATES

B pOSTAL SERVICE. 4, empty input

5. 1—4 characters

(4 is boundary value)

Search By Address » Search By City » ] 6. 6 characters
Find a list of cities that are In a ZIP Code. (6 is boundary value)

* Required Fields .
e i T 7. very long input

8. no digits

9. non-character data

“Special” ZIP Codes

® How about a ZIP code that reads

12345‘; DROP TABLE orders; SELECT
* FROM zipcodes WHERE ‘zip’ =

® Or a ZIP code with 65536 characters...

® This is security testing

Gutjahr’s Hypothesis

Partition testing

is more effective
than random testing.

28

(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)
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Generally, random inputs are easier to
generate, but less likely to cover parts
of the specification or the code.

See Gutjahr (1999) in IEEE
Transactions on Software Engineering
25, 5 (1999), 661-667




The main steps of a systematic
approach to functional program testing

1 (from Pezze + Young, “Software Testing
Representatlve Val ues and Analysis”, Chapter 10)

(GRS identify
| Functional Independently
. specification testable feature
identify 8 derive
Representative [
values |

derive

( — generate — -
Test case

| Testcase o

| specifications
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The main steps of a systematic
approach to functional program testing

- I (from Pezze + Young, “Software Testing
MOdeI Based TeStIng and Analysis”, Chapter 10)
Independently
ble f
® Have a formal model i e
that specifies software behavior ~ derive

® Models typically come as

® finite state machines and

® decision structures

32

. As an example, consider these steps
[ antssanco | modeling a product maintenance

e s E’% Uregtes (from Pezze + Young, “Software Testing
a 7-,§§ Mg, ) .
?wm 1 ?Ma.mﬂm i A and Analysis”, Chapter 14)
retumning (no warranty) \ Sg ég Wait for
~ / —— 5 _gcg:.s . pick up
G, Y3y, a& 8 -
%v é% oty EB uv/
e;% g
. . wv::;‘,:‘:ce . accept (maﬁo‘_’::nce repair completed—®-  Repaired \i
inite N )
%
°‘¢§f°<,
State T |
ac I n e = - componen \ ..__T,,...,/
arrives (b)
(nolul;‘tsa!:: éou":::cdren!) q%'n
component "%,/
amives (c) < -
e

{_headquarters)
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Maintenance: The Maintenance function records the history of items undergoing e ba_sed on these (l nformal)
maintenance. requirements

If the product i; covered byA warranty qr maintenance contract, maintenance can (from Pezze + YOUﬂg, “Software Testing
be requested either by calling the maintenance toll free number, or through the .

Web site, or by bringing the item to a designated maintenance station. and AnaIyS|s”, Chapter 1 4)

If the maintenance is requested by phone or Web site and the customer is a US
or EU resident, the item is picked up at the customer site, otherwise, the customer
shall ship the item with an express courier.

If the maintenance contract number provided by the customer is not valid, the
item follows the procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance
can be requested only by bringing the item to a maintenance station. The mainte-
nance station informs the customer of the estimated costs for repair. Maintenance
starts only when the customer accepts the estimate. If the customer does not ac-
cept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the main-
tenance station cannot solve the problem, the product is sent to the maintenance
regional headquarters (if in US or EU) or to the maintenance main headquarters
(otherwise).

If the maintenance regional headquarters cannot solve the problem, the product
is sent to the maintenance main headquarters.

Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer. 3 4

Coverage Criteria

® Path coverage: Tests cover every path
Not feasible in practice due to infinite number of paths

® State coverage: Every node is executed
A minimum testing criterion

® Transition coverage: Every edge is executed
Typically, a good coverage criterion to aim for

35

With five test cases (one color each),
we can achieve transition coverage
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

NO
Maintenance |

e
- R
Waitfor | Maintenance |
retuming | {no warranty)

J \

request at

Wait for ‘
pickup |

Wait for
acceptance |

Repaired

Transition
Coverage

L headquarters) |
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Finite state machines can be used to
model for a large variety of behaviors —

State-based Testi ng and thus serve as a base for testing.

® Protocols (e.g., network communication)
® GUIs (sequences of interactions)

® Objects (methods and states)

37

Here’s an example of a finite state
machine representing an Account class

T setup gomg_t_hrough a number of states.
@ open acct |7 setupAccnt acct Transition coverage means testing

——t each Account method once.

deposit (From Pressman, “Software
A (intal) Engineering — a practitioner’s
cCcou nt StateS deposit approach”, Chapter 14)
working
balance acot .
credit withdraw
accntinfo
withdrawal
(final)

nonworking
acct
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A decision table describes under which
o o conditions a specific outcome comes to
DeC|S|0n Tab|eS be. This decision table, for instance,
determines the discount for a purchase,
depending on specific thresholds for
the amount purchased.

Education account (from Pezze + Young, “Software Testing
Current purchase > and AnalySiS”, Chapter 14)
Threshold |
Current purchase >
Threshold 2
Special price <
scheduled price

Special price <
Tier | F T - -

Special price < _ _ _ _ _
Tier 2 F T

Out Special No Special | Tier | | Special | Tier 2 | Special
. price |discount| price [discount| price |discount| Price

39




Condition Coverage

® Basic criterion: Test every column
“Don’t care” entries (—) can take arbitrary values

® Compound criterion: Test every combination
Requires 2" tests for n conditions and is unrealistic

® Modified condition decision criterion (MCDC):
like basic criterion, but additionally, modify

each T/F value at least once
Again, a good coverage criterion to aim for

40
We modify the individual values in
M C DC C . . column 1 and 2 to generate four
rlte rron additional test cases — but these are
already tested anyway. For instance,
=l oo aoialinl the modified va}lues in column 1 are
already tested in column 3.
Education account F F F F F (from Pezze + Young, “Software Testing
Current purchase > F T T and AnaIySiS”, Chapter 14)
Threshold | B -
Current purchase >
Threshold 2 - F F T T
Special price <
scheduled price T - - B -
Special price <
Tier | - F T - -
Special price <
Tier 2 - - - - - F T
Special No Special | Tier | | Special | Tier 2 | Special
price |discount| price [discount| price |discount| Price
41

This also applies to changing the other
. . values, so adding additional test cases
MCDC Crlte rion is not necessary in this case.
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

Education account
Current purchase >
Threshold |
Current purchase >
Threshold 2
Special price <
scheduled price

Special price <
Tier | T

Special price < _ _ _ _ _ _
Tier 2 F T

Out Edu Special No Special | Tier | | Special | Tier 2 | Special
. discount| price |discount| price |discount| price [discount| Price

42




MCDC Criterion

Education Individual

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2
Special price <
scheduled price

Special price <
Tier | F T - B

Special price <
Tier 2 - - - - B F T
Out Tier | | Special | Tier 2 | Special

discount| price [discount| Price

Special No Special
price |discount| price

MCDC Ceriterion

Education account

Current purchase >
Threshold |

Current purchase >
Threshold 2
Special price <
scheduled price

Special price < _ _
Tier | F T

Special price < _ _ _ _ _
Tier 2 F T

Special No Special
price |discount| price

Tier | | Special
discount| price

Tier 2 | Special
discount| Price

Weyuker’s Hypothesis

The adequacy of a coverage criterion

can only be intuitively defined.

43
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However, if we had not (yet) tested the
individual accounts, the MC/DC
criterion would have uncovered them.
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 14)

45

Established by a number of studies
done by E. Weyuker at AT&T. “Any
explicit relationship between coverage
and error detection would mean that we
have a fixed distribution of errors over
all statements and paths, which is
clearly not the case”.
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Pareto’s Law

Approximately 80% of defects

come from 20% of modules

Model-Based Testing

—— identify
Functional Independently
specification testable feature

identify x&a‘ derive
Representative
P Model
values
derive

“ generate ‘
i e Test case
specifications
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To decide where to put most effort in
testing, one can also examine the past
—i.e., where did most defects occur in
the past. The above picture shows the
distribution of security vulnerabilities in
Firefox — the redder a rectangle, the
more vulnerabilities, and therefore a
likely candidate for intensive testing.
The group of Andreas Zeller at
Saarland University researches how to
mine such information automatically
and how to predict future defects.

47

Evidence: several studies, including
Zeller's own evidence :-)
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The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)




Deriving Test Case Specs

® |nput values enumerated in previous step

® Now: need to take care of combinations

® Typically, one
uses models and Representative
] values
representatlve

values to generate derive

test cases
Test case

specifications

Combinatorial Testing

OS

Server

Database

Combinatorial Testing

® Eliminate invalid combinations
IIS only runs on Windows, for example

® Cover dll pairs of combinations
such as MySQL on Windows and Linux

® Combinations typically generated

automatically
and — hopefully — tested automatically, too

49

The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

50

Many domains come as a
combination of individual
inputs. We therefore need to
cope with a combinatorial
explosion.

51




Pairwise Testing

Pairwise testing means to
cover every single pair of
configurations

= -l [

Millionsgoficonfiglirations ““' I T

“#"Testing on dozens of different machines

All needed to find ‘&'reprgduce |137r‘<')ble|‘n

| il

In practice, such testing needs
hundreds and hundreds of PCs in every
possible configuration — Microsoft, for
instance, has entire buildings filled with
every hardware imaginable

Source: http://www.ci.newton.ma.us/
MIS/Network.htm

Deriving Test Case Specs
Functioﬁal Independently
specification testable feature
values

derive

— — generate
Test case
Test case : ;
specifications
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The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)




The main steps of a systematic
approach to functional program testing

Vi (from Pezze + Young, “Software Testing
Der|V| ng TeSt Cases and Analysis”, Chapter 10)

® |mplement test cases in code

® Requires building scaffolding —
i.e., drivers and stubs

generate
Test case
Test case : :
specifications
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Here’s an example for automated unit
tests — the well-known JUnit

Unit Tests

® Directly access units (= classes, modules,
components...) at their programming
interfaces

® Encapsulate a set of tests as a single
syntactical unit

® Auvailable for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)

56

The main steps of a systematic
approach to functional program testing

Derivi ] g Te St C ases (from Pezze + Young, “Software Testing

and Analysis”, Chapter 10)
. identify :
Functional Independently
specification testable feature

Representative
r;*wvv Model
values
generate
Test case
Test case 3 :
specifications
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Systematic Functional Testing

identify
B

Functional

Independently
specification

testable feature

. - hdD &g .
identify ?j,f ?ﬁé‘. derive
Representative

Model
values

}&: derive ?;nbﬂ

generate
3 Test case

Test case

specifications
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The main steps of a systematic
approach to functional program testing
(from Pezze + Young, “Software Testing
and Analysis”, Chapter 10)

Systematic Partition Testing

W Faiure (vabable test case)
ONo faiure

Systematic Functional Testing
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