From Requirements
to Design

® Describe requirements as use cases

® Refine use cases to alternate scenarios

® |dentify classes and operations

If ’'m at a remote location, | can use any PC with
appropriate browser software to log on to the SafeHome
| enter my user ID and two levels of
passwords and, once I'm validated, | have access to all
the functionality. To access a specific camera view, |
“surveillance” and then
Alternatively, | can look at thumbnail snapshots from all

Web site.

select

Initial Use Case

Use case: display camera views
Actor: homeowner

cameras by selecting “all cameras”.
camera, | select “view”...

“select a camera”.

Once | choose a

ag
e

Use-case: Access camera
surveillance—display camera views
(ACS-DCV).

Primary actor: Homeowner.

Goal in context: To view output of camera placed

throughout the house from any

remote location via the Internet.

System must be fully configured;

appropriate user ID and passwords

must be obtained.

The homeowner decides to take a

look inside the house while away.

5 !e homeowner logs onto the SafeHome Products

Web site.

2. The homeowner enters his or her user ID.

3. The homeowner enters two passwords (each at least
eight characters in length).

4. The system displays all major function buttons.

5. The homeowner selects “surveillance” from the major
function buttons.

6. The homeowner selects “pick a camera.”

7. The system displays the floor plan of the house.

8. The homeowner selects a camera icon from the
floor plan.

Preconditions:

Trigger:

Use-Case Template for Surveillance

9. The homeowner selects the “view” button.
10. The system displays a viewing window that is
identified by the camera ID.
11. The system displays video output within the viewing
window at one frame per second.

1. ID or passwords are incorrect or not recognized—
see use-case: “validate ID and passwords.”

2. Surveillance function not configured for this system—
system displays appropriate error message; see use-
case: “configure surveillance function.”

3. Homeowner selects “view thumbnail snapshots for all
cameras”—see use-case: “view thumbnail snapshots
for all cameras.”

4. Afloor plan is not available or has not been
configured—display appropriate error message and
see use-case: “configure floor plan.”

5. An alarm condition is encountered—see use-cose:
“alarm condition encountered.”

Priority: Moderate priority, o be
implemented after basic
functions.

When available: Third increment.

Frequency of use: Infrequent.

N and user ID

may also be
selected

Homeowner

‘ (~ Enter password ™\
\

(Select major function
\

Other functions,

(Select surveillance

Thumbnail views

o

Camera

e |

valid passwords/ID

No input

fries remain

Input tries
remain

N

Select a specific camera

‘ Select specific
\._camera - thumbnail

(~ View camera output \/

lect i
D\Seec camera -::D’

|
| Generate video
oufput

- Prompt for

\.n labelled window J/

Exit this

another view)

ee
another
camera

Requirements for

Potential Classes

|. Retained Information

The information is necessary for the system to function

2. Needed Services

The potential class must have a set of potential operations

3. Multiple Attributes

We are focusing on potential classes with more than one attribute

4. Common Attributes and Operations

The attributes and operations apply to all instances of the class

5. Essential Requirements

External entities — producers and consumers of information — almost

always become classes

Classes and Methods

® Class-Responsibility-Collaborator (CRC) modeling
is a simple means for identifying and
organizing classes

® Makes use of virtual or actual index cards

A CRC index card

0]

Class: FloorPlan

Description

Responsibility: Collaborator:

Defines floor plan name/type

Manages floor plan positioning

Scales floor plan for display

Scales floor plan for display

Incorporates walls, doors and windows Wall

Shows position of video cameras Camera

CRC Responsibilities

® System intelligence should be distributed
across classes (- modularity)

® State responsibilities as general as possible
(= abstraction)

® [nformation and related behavior goes into
the same class (= encapsulation)

® [nformation about one thing should be
localized in a single class (= modularity)

® Responsibilities should be shared among
related classes (- hierarchy)

