
The Software Life Cycle
Software Engineering

Andreas Zeller • Saarland University

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

A Software Crisis

Code and Fix
(1950–)

Build first version

Modify until
client is satisfied

Operate

Retirement

1

Denver 
International Airport 
(DIA)
Construction started 
in 1989 • 53 sq miles 
• Planned: 1.7 bio 
USD costs, opening 
1993

2

3



Code and Fix: Issues

• No process steps – no specs, docs, tests…

• No separation of concerns – no teamwork

• No way to deal with complexity

Code and Fix

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

4

5

6



Communication
Communication

project initiation
requirements gathering

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Planning

Planning
estimating
scheduling
tracking

7

8

9



Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Waterfall Model (1968)

Modeling
analysis
design

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

10

11

12



Waterfall Model (1968)

Construction
code
test

Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Deployment

Deployment
delivery
support
feedback

13

14

15



Waterfall Model
(1968)

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Waterfall Model
(1968)

• Real projects rarely follow a sequential flow

• Hard to state all requirements explicitly

• No maintenance or evolution involved

• Customer must have patience

• Any blunder can be disastrous

Boehm’s first law

Errors are most frequent
during requirements and design activities 

and are the more expensive
the later they are removed.

16

17

This and other laws 
are found in 
Endres/Rombach: 
Handbook of 
Software and 
Systems 
Engineering.
Evidence: Several 
studies before 
197418



Problem Cost

0

7.5

15.0

22.5

30.0

Coding Unit test Component test System test Field

Relative cost of problem per phase

Incremental Model
Features

Time

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #1

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #2

Communication
project initiation

requirements gathering

Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction
code
test

Deployment
delivery
support
feedback

Increment #3

Incremental Model

• Each linear sequence produces a particular 
“increment” to the software

• First increment typically core product; 
more features added by later increments

• Allows flexible allocation of resources

19

20

21



Prototyping

Quick Plan

Quick Design

Prototype
Construction

Deployment and 
Feedback

Communication

Prototypes

Bottom Layer

Top Layer (GUI)

Horizontal Prototype

Bottom Layer

Top Layer (GUI)

22

23

24



Prototypes

Bottom Layer

Top Layer (GUI)

Vertical Prototype

Bottom Layer

Top Layer (GUI)

Prototypes

• A horizontal prototype tests a particular layer 
(typically the GUI) of the system

• A vertical prototype tests a particular 
functionality across all layers

• Resist pressure to turn a prototype into a 
final result!

25

26

27



Spiral Model
(1988)

Communication

Planning
Modeling

Construction

Test                   
Deployment + Feedback

Spiral Model

• System is developed in series of 
evolutionary releases

• Milestones for each iteration of the spiral

• Process does not end with delivery

• Reflects iterative nature of development

Unified Process
(1999)

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

28

29

30



Inception

PlanningCommunication

Inception

• Encompasses communication with user + 
planning

• Results in a set of use cases

• Architecture is just a tentative outline

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

Elaboration

Planning

Modelling

Elaboration
• Refines and expands 

preliminary use cases

• Provides architecture 
and initial design model

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

Construction

Modelling

Construction
Construction

• Builds (or acquires) 
software components 
according to architecture

• Completes design model

• Includes implementation, 
unit tests, acceptance tests

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

31

32

33



Transition

Construction

Deployment

Transition

• Software given to end users for beta testing

• Feedback reports defects and changes

• Support information written

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

Production

Deployment

Software 
Increment

Production

• Software is deployed

• Problems are monitored

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

Re-Iteration

Deployment

Communication

• Feedback results in new 
iteration for next release

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

34

35

36



Unified Process

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

Unified Process

Planning

Modelling

Construction

Deployment

CommunicationSoftware 
Increment

Inception

Elaboration

ConstructionTransition

Production

• Draws on best features of conventional 
process models

• Emphasizes software architecture and 
design

• Integrates with UML modeling techniques 
(more on this later)

Extreme Programming
(1999–)

Design

CodingTest

Planning

Software 
Increment

37

38

39



Design

CodingTest

Planning

Software 
Increment

Planning

Planning

• In XP, planning takes 
place by means of 
stories

• Each story captures 
essential behavior

Extreme Programming

Design

CodingTest

Planning

Software 
Increment

Design

CodingTest

Planning

Software 
Increment

Extreme Programming

DesignDesign

CodingTest

Planning

Software 
Increment

• Design is made on the fly, using the KISS 
(keep it simple) principle

• Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)

40

41

42



Extreme Programming

Design

CodingTest

Planning

Software 
Increment

Design

CodingTest

Planning

Software 
Increment

Coding

Coding

Design

CodingTest

Planning

Software 
Increment

• Each story becomes a 
unit test that serves as 
specification

• The program is 
continuously refactored 
to have the design 
match the stories

Coding

Coding

Design

CodingTest

Planning

Software 
Increment

• To ensure continuous 
review, XP mandates 
pair programming

43

44

45



Extreme Programming

Design

CodingTest

Planning

Software 
Increment

Design

CodingTest

Planning

Software 
Increment

Testing

Test

Design

CodingTest

Planning

Software 
Increment

Unit tests

• detect errors

• find missing 
functionality

• measure progress

Extreme Programming

Test

Planning

Software 
Increment

Design

CodingTest

Planning

Software 
Increment

• The resulting 
prototypes result in 
new stories

46

47

48



Extreme Programming

Design

CodingTest

Planning

Software 
Increment

Design

CodingTest

Planning

Software 
Increment

Summary

Extreme 
Programming is 
fast – with multiple 
deliverables per 
day!

49

50


