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Code and Fix; Issues

® No process steps — no specs, docs, tests...
® No separation of concerns — no teamwork

® No way to deal with complexity
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Waterfall Model (I 968)
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Waterfall Model

(1968)
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Real projects rarely follow a sequential flow

Hard to state all requirements explicitly

\.‘ > s P . .
No maintenance or evolution involved

Customer inst have patience

Any blunder can be disastrous
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This and other laws

Boehm’s first law are found in

Endres/Rombach: —
andbook o

Errors are most frequent ngarr—&arnd—

during requirements and design activities SVStEffTTS—
and are the more expensive
the later they are removed. En g lneerin g

studies before




Problem Cost

B Relative cost of problem per phase
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Incremental Model

® Each linear sequence produces a particular
“increment” to the software

® First increment typically core product;
more features added by later increments

® Allows flexible allocation of resources
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Prototypes

Top Layer (GUI)

Bottom Layer
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Horizontal Prototype

BEEEE
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Prototypes
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Vertical Prototype
Top Layer (GUI)
Bottom Layer
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Prototypes

® A horizontal prototype tests a particular layer
(typically the GUI) of the system

® A vertical prototype tests a particular
functionality across all layers

® Resist pressure to turn a prototype into a
final result!
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Spiral Model

(1988)

Planning

Modelin
Communication g

Construction

Test [ system mainenarce

D System enhancement

System development

[l Concept development

28

Spiral Model

® System is developed in series of
evolutionary releases

® Milestones for each iteration of the spiral
® Process does not end with delivery

® Reflects iterative nature of development
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Unified Process

(1999)
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Inception

Inception

Communication Planning

® Encompasses communication with user +
planning

® Results in a set of use cases

® Architecture is just a tentative outline
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Elaboration

Planning

® Refines and expands

preliminary use cases Elaboration

® Provides architecture

i1 ] Modelling
and initial design model
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Construction

® Builds (or acquires)
software components
according to architecture

® Completes design model

® Includes implementation, Modelling
unit tests, acceptance tests
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Transition

® Software given to end users for beta testing
® Feedback reports defects and changes

® Support information written

Deployment
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Production
® Software is deployed
Increment
® Problems are monitored
Production 82,
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Re-lteration

Communication

® Feedback results in new

: iteration for next release
Deployment
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Unified Process
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Unified Process

® Draws on best features of conventional
process models

® Emphasizes software architecture and
design

® Integrates with UML modeling techniques
(more on this later)
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Extreme Programming

(1999-)
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Planning
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when it i€ complete:

any stoge during the creation 8@ T want the Customer abject 19 be cble fo
Booking T want 1o be able o create o ‘store Locations used by that customer
return- journey Beoking. All relevant and 10 give them ‘micknames, with the

® |n XP planning takes — smees ey ;ﬁ,,ﬁ;:;wmms
place by means of — =
T wont any Payment Method, and Telephone T want @ ity object %0 heid @ bt of

drop-off locations reversed.
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® Each story captures — ZENERITEL B civusen e
essential behavior e n g w4

drop-off. This thauld work whether T am
doing it from a Customer’s kst of frequent
lacations, or a City's list, or both.
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Extreme Programming
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Extreme Programming

® Design is made on the fly, using the KISS
(keep it simple) principle

® Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)
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Extreme Programming
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Coding

® Each story becomes a
unit test that serves as
specification

® The program is .
continuously refactored Codm

to have the design
match the stories
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Coding

® To ensure continuous
review, XP mandates
pair programming
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Testing
Unit tests
® detect errors
functionality
® measure progress
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Extreme Programming
,Bfﬁ“'
% ® The resulting
= prototypes result in
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Software
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Extreme Programming
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Extreme

Programming Is
fast - with multiple
deliverables per

day!

Waterfall Model

(1968)

Summary

Unified Process Extreme Programming

(1999)
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