The Software Life Cycle

Software Engineering
Andreas Zeller * Saarland University

A Software Cirisis

Denver
International Airport

(DIA)
)
Construction started

iIn-1989 « 53 sgq miles-

Code and Fix

(1950-)

Build first version
Modify until |

client is satisfied

Code and Fix; Issues

® No process steps — no specs, docs, tests...
® No separation of concerns — no teamwork

® No way to deal with complexity

Code and Fix

Waterfall Model

(1968)

Communication
project initiation
requirements
Planning

estimating
scheduling
tracking

Modeling
analysis
design
Construction

code
test

Deployment

delivery
support
feedback

Communication

6.6 Map Series Tool ‘

H H [Use Case Description
Communication S o e ow s tomnvaer | |
maps for a given boundary feature (compartment
landscape efc)
Actors | EIMS User

project initiation
requirements gathering Pre-Condbions | User (€qures one of more maps sheets from o senes,
| for & boundary festure.
| Post.Condmons | Map of senes of maps s generatied and printed
| Pronty | Requred

| Scenario
[1) User starts the ool) .
| System displays a kst of map senes that the user Can select flom. Defaut
| map senes wil be Landscape 1.7920° Can be sat st any scale
| 2)_User selects map senes on form
[System then determines ¥ any boundiry fealures are selecied
| | A" Featues Selected
| & Iffeatures are seiocted, &t asks the user fo f they want fo
generate a map senes for the selected feature. Only one feature can
| uwsedatatme
| B No Features Seiected
1 I no features are selected of user opls 10 selec! the feature
manually, the system prompés the user 1o select the district and
compartment of interest from pull downs. It then zooms (o that
ihaat boundanes, draws them wih the

7
§
1
g
d

index map_or the enbre senes
| System starts generating and prnting maps based on the seleciod
| sheets
[4)_User coliects maps from preer

[Notes

| Deployment
[Tool n ArcMap and in ArcGIS Server

Waterfall Model

(1968)

Communication
project initiation
requirements -
Planning
estimating
scheduling
tracking

Modeling

analysis
design

Deployment
delivery
support
feedback

1D [Task Name
1 Detectors

RBD and prototypes
Constry
trstate

3
S DAQ system
6

Planning v

1 estimating
Ka| scheduling
5 >
—— tracking
11| System instalabon/in
2 1 LMHC tup
| 33 [Control system (DC5) v v
T8| UR (sub-detectors. hal efrastructure) | |
5| Arheecturaieranstons/Fs0 e |
16 | Irteface technology recommendatons *
(37 | irteren devekpment/Test beams/Prodh) [—— =]
T& il Technology/Product chore K
79| Acauston h
20 | Common efrastructure developmant | = —— —
27| subdecector systems davelopment -,

System Haton/integranon _
Lhcb startio ==

Woaterfall Model

(1968)
Communication .

project initiation
requirements

Planning

estimating
scheduling

tracking
Modeling .
analysis

design

Construction .

code
test

Deployment

delivery

fecdback
10

Waterfall Model (I 968)

Modeling
analysis

11

Waterfall Model

(1968)
Communication .

project initiation
requirements

Planning

estimating .
scheduling
tracking
Modeling
analysis

design
Construction
code

test

Deployment

delivery

support
feedback

12

-

-

-
| - ==

- e S

= ot s S kb

- SOrdmrl - order
| orderz = orAey
| .
. TR L O Construction
l ‘({ LF Lot = code

fprinti test
| - exiti2)
b
|
#endit

| v e)enent®
| T ordeci)t = ot
| ‘ /* allocatre -\0 ve wsed "“_:.‘. x

Waterfall Model

(1968)

Communication
project initiation
requirements :
Planning
estimating
scheduling
tracking

Modeling
analysis
design

Construction

code
test

Deployment
delivery
support
feedback

14

Deployment

Deployment

delivery
support
feedback

15

Waterfall Model

(1968)

Communication
project initiation
requirements

Planning
estimating
scheduling

tracking

Modeling
analysis
design

Construction

code
test

Deployment
delivery
support
feedback

16

Waterfall Model

(1968)

» TSUIEREL N
/

Real projects rarely follow a sequential flow

Hard to state all requirements explicitly

\.‘ > s P . .
No maintenance or evolution involved

Customer inst have patience

Any blunder can be disastrous

17

This and other laws

Boehm’s first law are found in

Endres/Rombach: —
andbook o

Errors are most frequent ngarr—&arnd—

during requirements and design activities SVStEffTTS—
and are the more expensive
the later they are removed. En g lneerin g

studies before

Problem Cost

B Relative cost of problem per phase

30.0
225
15.0
75
o e O
Coding Unit test Component test System test Field
Features
Increment #3
Communication
Planning
Increment #2 -
X Construction
B P —
fei
Increment #1 Modeling -
; -
Construction
23 Depdlgyment
Consgljcrinn
“ Deployment
- Time

Incremental Model

® Each linear sequence produces a particular
“increment” to the software

® First increment typically core product;
more features added by later increments

® Allows flexible allocation of resources

21

Prototyping

Communication [Quick Plan
! “;;;.a

ot
Deployment and
uick Design
Feedback © =
AR v
SN, oo
b Prototype .
Construction

22

Prototypes

Top Layer (GUI)

Bottom Layer

23

Horizontal Prototype

BEEEE

24

Prototypes

Top Layer (GUI)

Bottom Layer

25
Vertical Prototype
Top Layer (GUI)
Bottom Layer
26

Prototypes

® A horizontal prototype tests a particular layer
(typically the GUI) of the system

® A vertical prototype tests a particular
functionality across all layers

® Resist pressure to turn a prototype into a
final result!

27

Spiral Model

(1988)

Planning

Modelin
Communication g

Construction

Test [system mainenarce

D System enhancement

System development

[l Concept development

28

Spiral Model

® System is developed in series of
evolutionary releases

® Milestones for each iteration of the spiral
® Process does not end with delivery

® Reflects iterative nature of development

29

Unified Process

(1999)

Inception

Software

Communication Planning
Increment

Production Elaboration

Deployment Modelling

Transition /m\ Construction

30

Inception

Inception

Communication Planning

® Encompasses communication with user +
planning

® Results in a set of use cases

® Architecture is just a tentative outline

31

Elaboration

Planning

® Refines and expands

preliminary use cases Elaboration

® Provides architecture

i1] Modelling
and initial design model

32

Construction

® Builds (or acquires)
software components
according to architecture

® Completes design model

® Includes implementation, Modelling
unit tests, acceptance tests

33

Transition

® Software given to end users for beta testing
® Feedback reports defects and changes

® Support information written

Deployment

34
Production
® Software is deployed
Increment
® Problems are monitored
Production 82,
35

Re-lteration

Communication

® Feedback results in new

: iteration for next release
Deployment

36

Unified Process

Inception

Software AT Y .
Communication [Planning
Increment 1
% e R

Production R Lo "\ Elaboration

Deployment Modelling

Transition Construction

37

Unified Process

® Draws on best features of conventional
process models

® Emphasizes software architecture and
design

® Integrates with UML modeling techniques
(more on this later)

38

Extreme Programming

(1999-)

Test

Software
Increment

R
R

39

Planning

sooking.

hﬂ"‘m.'-
e 8 h ot rom O
Planni e
anning o ity o oy pomt S
mmaﬂﬁdﬂ"“’""m,ﬁ

when it i€ complete:

any stoge during the creation 8@ T want the Customer abject 19 be cble fo
Booking T want 1o be able o create o ‘store Locations used by that customer
return- journey Beoking. All relevant and 10 give them ‘micknames, with the

® |n XP planning takes — smees ey ;ﬁ,,ﬁ;:;wmms
place by means of — =
T wont any Payment Method, and Telephone T want @ ity object %0 heid @ bt of

drop-off locations reversed.
i created in o Booking to be associated common locations (eg. Airports, Theatres)
Stor’es directly with the Customer, %0 I con re-use 6

them in o future bocking. Where there ore.
muitiple Payment Methads and Telephones,

® Each story captures — ZENERITEL B civusen e
essential behavior e n g w4

drop-off. This thauld work whether T am
doing it from a Customer’s kst of frequent
lacations, or a City's list, or both.

40
Extreme Programming
Increment 41

Extreme Programming

® Design is made on the fly, using the KISS
(keep it simple) principle

® Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)

42

Extreme Programming

Planning o
."\‘ *‘;5"»
i

Software

Increment

43

Coding

® Each story becomes a
unit test that serves as
specification

® The program is .
continuously refactored Codm

to have the design
match the stories

44

Coding

® To ensure continuous
review, XP mandates
pair programming

45

A p ¢’.
4'{'
Software
Increment

46
Testing
Unit tests
® detect errors
functionality
® measure progress
47
Extreme Programming
,Bfﬁ“'
% ® The resulting
= prototypes result in
e new stories
Software
Increment 48

Extreme Programming

49

Extreme

Programming Is
fast - with multiple
deliverables per

day!

Waterfall Model

(1968)

Summary

Unified Process Extreme Programming

(1999)

50

