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A Software Crisis

Code and Fix
(1950–)

Build first version
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client is satisfied

Operate

Retirement
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Denver 
International Airport 
(DIA)
Construction started 
in 1989 • 53 sq miles 
• Planned: 1.7 bio 
USD costs, opening 
1993
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Code and Fix: Issues

• No process steps – no specs, docs, tests…

• No separation of concerns – no teamwork

• No way to deal with complexity
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Waterfall Model (1968)
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Waterfall Model
(1968)

• Real projects rarely follow a sequential flow

• Hard to state all requirements explicitly

• No maintenance or evolution involved

• Customer must have patience

• Any blunder can be disastrous

Boehm’s first law

Errors are most frequent
during requirements and design activities 

and are the more expensive
the later they are removed.
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This and other laws 
are found in 
Endres/Rombach: 
Handbook of 
Software and 
Systems 
Engineering.
Evidence: Several 
studies before 
197418



Problem Cost
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Increment #3

Incremental Model

• Each linear sequence produces a particular 
“increment” to the software

• First increment typically core product; 
more features added by later increments

• Allows flexible allocation of resources
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Prototyping
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Prototypes

Bottom Layer

Top Layer (GUI)

Vertical Prototype

Bottom Layer

Top Layer (GUI)

Prototypes

• A horizontal prototype tests a particular layer 
(typically the GUI) of the system

• A vertical prototype tests a particular 
functionality across all layers

• Resist pressure to turn a prototype into a 
final result!
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Spiral Model
(1988)
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Spiral Model

• System is developed in series of 
evolutionary releases

• Milestones for each iteration of the spiral

• Process does not end with delivery

• Reflects iterative nature of development

Unified Process
(1999)
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Inception

PlanningCommunication

Inception

• Encompasses communication with user + 
planning

• Results in a set of use cases

• Architecture is just a tentative outline
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Elaboration
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Elaboration
• Refines and expands 

preliminary use cases

• Provides architecture 
and initial design model
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Construction
Construction

• Builds (or acquires) 
software components 
according to architecture

• Completes design model

• Includes implementation, 
unit tests, acceptance tests
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Transition

Construction

Deployment

Transition

• Software given to end users for beta testing

• Feedback reports defects and changes

• Support information written
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Deployment
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• Software is deployed

• Problems are monitored
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Re-Iteration

Deployment

Communication

• Feedback results in new 
iteration for next release
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Unified Process
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• Draws on best features of conventional 
process models

• Emphasizes software architecture and 
design

• Integrates with UML modeling techniques 
(more on this later)

Extreme Programming
(1999–)
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Design
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Planning

• In XP, planning takes 
place by means of 
stories

• Each story captures 
essential behavior
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• Design is made on the fly, using the KISS 
(keep it simple) principle

• Virtually no notation besides
CRC cards (object sketches) and
spike solutions (prototypes)
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Extreme Programming
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• Each story becomes a 
unit test that serves as 
specification

• The program is 
continuously refactored 
to have the design 
match the stories
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• To ensure continuous 
review, XP mandates 
pair programming
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Extreme Programming
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Unit tests

• detect errors

• find missing 
functionality

• measure progress

Extreme Programming
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• The resulting 
prototypes result in 
new stories
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Extreme Programming

Design

CodingTest

Planning

Software 
Increment

Design

CodingTest

Planning

Software 
Increment

Summary

Extreme 
Programming is 
fast – with multiple 
deliverables per 
day!
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