
TRANT — A Scalable Trace Analysis Toolset for Java

Kevin Streit · Clemens Hammacher · Andreas Zeller · Sebastian Hack
Saarland University, Saarbrücken, Germany

{streit, hammacher, zeller, hack}@st.cs.uni-saarland.de

ABSTRACT
Understanding and analyzing what is going on in program
runs is a common issue for researchers and tool builders.
We present TRANT—a toolset for trace analysis of Java
programs. TRANT allows for dynamic tracing of data de-
pendencies; unlike other approaches, it allows for running
Java programs in an unchanged form and has been designed
from the ground up for scalability. Typical applications of
TRANT include debugging support and finding candidates
for parallelization, which are both illustrated in this paper.

1. INTRODUCTION
Designing and implementing dynamic analyses of program

runs is an issue that many scientists have to deal with. Ma-
nipulation of the program has to be done in most cases in or-
der to collect the data needed for the analysis. The problem
is that correctly manipulating a program is error-prone and
requires deep knowledge of the used language—knowledge
that typically has nothing to do with the algorithms to im-
plement. In particular, one has to guarantee that the ma-
nipulations of the program to analyze do not change the
observable behavior. For this purpose, the manipulations
should be well formed and produce a valid output program.

In this work we introduce TRANT, a toolset providing an
API upon which one can build dynamic program analyses
of Java applications. By using TRANT, researchers and tool
builders can concentrate on their algorithms and let the te-
dious work of correctly instrumenting Java bytecode be done
by our tools. A typical usage of TRANT is to trace dynamic
dependencies (Figure 1), addressing the common debugging
question “Where does this value come from?”.

2. THE TRANT TOOLSET
The main tool we use to do all analyses described in this

paper is called TRANT, a toolset initiated by C. Hammacher
for his implementation of a dynamic slicer [4]. We mainly
make use of two components of the toolset:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Figure 1: Tracing dependences between variables.
This is a proof-of-concept implementation Eclipse
plugin on top of TRANT, allowing the programmer
to interactively trace back value origins.

Tracing executions. The first part of TRANT is its trac-
ing engine, a Java Agent which can be appended to the
Java program under concern. On load time, the en-
gine instruments the Java bytecode to gather dynamic
information during runtime of the program. The in-
formation is written to a trace file from which the full
execution trace of the program can be reconstructed.
TRANT can optionally compress the file using the very
efficient Sequitur algorithm [6].

Tracking dependencies. The second part of TRANT con-
sists of the implementation of several analyses. These
are all based on the data dependencies in the program.
The complete dynamic dependence graph (DDG) is
way too large to be held in memory, since it consists of
all data dependencies between individual instances of
Java bytecode instructions. A lot of effort has been
taken to minimize the memory consumption of the
analyses by only keeping absolutely necessary infor-
mation in memory while traversing the DDG. Other
analysis techniques or visualizations can hook into this
traversal process by following the well known visitor
pattern [3]. We will describe this in slightly more de-
tail in the next section.

TRANT and its documentation are publicly available [1].

3. USING THE TRANT APIS
Using the public TRANT APIs to load the trace file, one

can read some general information about the program run.
Some information provided for example is a representation
of all instrumented classes (e.g. all classes which have been
loaded during the program run), or a list of all threads which

have been started. One can then request the raw execution
trace for a specific thread. An iterator over the instruction
instances executed by this thread will be returned.

Beside this raw trace representation, there are several
analysis interfaces. One example is the dependence extrac-
tor, which works on top of the trace iterator to compute
all data and control dependencies between the bytecode in-
struction instances contained in the trace. The developer is
informed about the identified dependencies through several
visitors, and about additional events like object creations or
method entries and returns.

For complex analyses, it is often necessary to store some
user-defined data with the visited elements. For this pur-
pose, TRANT provides a factory which will be used to cre-
ate all objects needed during the traversal of the DDG. Ar-
bitrarily complex information can then be attached to each
of them. This design also facilitates garbage collection since
objects that are never visited are automatically discarded.

4. APPLICATIONS
Some analyses implemented on top of this framework are

shown below. They all use the dependency information as
described in the previous section to compute more complex
data, or to visualize parts of the information.

4.1 Debugging Support
Dynamic slicing is widely used for filtering the input to

certain analyses or to further focus the output generated by
these analyses [2]. Unfortunately a developer can not intu-
itively use the slicing technique by hand. The idea of know-
ing where the specific value of a variable at a specific point
in time comes from can be crucial for debugging. While ex-
perimenting with using the dynamic dependencies reported
by TRANT, we came up with a variable backtracker inte-
grated into the Eclipse IDE, supporting the Java debugging
process.

During debugging, developers often monitor the values
of variables. Starting from the variable view provided by
the Java debugger plugin the developer can open our back-
tracker for any variable. A bisected perspective opens with
a dynamic data flow graph on the one side and a Java ed-
itor on the other side. Each node in the graph represents
an instruction in the source code and contains all involved
variables that influenced the actual value of the target vari-
able. By clicking on a node, the corresponding source file is
opened in the editor part and the represented instruction is
highlighted.

Using our backtracker one can intuitively follow the path
of data flow that leads to the value in doubt.

4.2 Finding Parallelization Candidates
One of the biggest challenges imposed by multi-core archi-

tectures is to exploit their potential for legacy systems not
built with multiple cores in mind. By analyzing dynamic
data dependencies of a program run, one can identify inde-
pendent computation paths that could have been handled
by individual cores.

In this analysis, the critical path through the data de-
pendencies is used as a measure for the shortest possible
execution time of a given part of the trace. By dividing the
number of dynamic instruction instances, that is the num-
ber of individual instruction executions, by the length of the
critical path, one can compute the so called parallelization

potential of that part.
As one application of TRANT, we investigate the poten-

tial parallelism of loops in Java applications. To this end,
we first compute a loop tree [7] for every method in the
program, based on its control-flow graph (the CFG is given
by our toolset). Second, we perform a backward traversal
of the trace using the TRANT APIs. Each time the exe-
cution reaches a loop boundary, a new computation of the
critical path through the data dependencies is started for
this instance of the loop. Consecutive iterations of the loop
body of one dynamic instance of the loop are handled as one
execution for which the critical path is determined.

From the parallelization potential and the overall influence
of the loop instance, we finally calculate the gain of speed
which could at the best be realized when fully parallelizing
this loop. This is used to rank the loops according to their
ability to be parallelized. The ranking is then presented to
the developer in a result list. Additionally the top ten loops
in the source code are marked for the developer to be able
to easily identify the parallelization hot spots in the code.

More details on how the candidate proposal works can be
found in our earlier work [5].

5. CONCLUSION
TRANT is a high level scalable toolset for keeping the

troubles of low level program manipulation for observation
purposes away from scientists. This allows them to concen-
trate on their analyses to implement.

Often TRANT even renders unnecessary to actually imple-
ment a program transformation. Instead it can just be sim-
ulated on an arbitrary number of program traces to check
whether it meets the expectations. This may save several
days or weeks which would have been spent on really imple-
menting a technique just to discover that it does not work
out as desired in practice.

Based on TRANT, we already implemented several anal-
ysis and simulation techniques, and will be implementing
more. We are optimistic it will be just as useful for other
researchers and tool builders—and are happy to make it pub-
licly available [1].

6. REFERENCES
[1] http://www.st.cs.uni-saarland.de/javaslicer.

[2] M. Ducassé. A pragmatic survey of automated debugging. In
Proc. 1st Workshop on Automated and Algorithmic
Debugging, volume 749 of LNCS, 1993.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Abstraction and Reuse in Object-Oriented
Designs. In O. M. Nierstrasz, editor, ECOOP’93:
Object-Oriented Programming - Proc. of the 7th European
Conference, pages 406–431, Berlin, Heidelberg, 1993.
Springer.

[4] C. Hammacher. Design and implementation of an efficient
dynamic slicer for Java. Bachelor’s Thesis, November 2008.

[5] C. Hammacher, K. Streit, S. Hack, and A. Zeller. Profiling
java programs for parallelism. In Proc. 2nd International
Workshop on Multi-Core Software Engineering (IWMSE),
May 2009.

[6] C. G. Nevill-Manning and I. H. Witten. Linear-time,
incremental hierarchy inference for compression. In Data
Compression Conference, Snowbird, Utah, IEEE Computer
Society, pages 3–11, 1997.

[7] G. Ramalingam. On loops, dominators, and dominance
frontiers. ACM Trans. Program. Lang. Syst., 24(5):455–490,
2002.

APPENDIX
A. DEMO SETUP

Assuming a 30-minute slot for our demonstration, we aim
for the following structure:

• Introduction to dynamic dependences (slides; 2 min-
utes)

• A brief look at the TRANT framework (slides; 2 min-
utes)

• A simple instruction tracer (live programming; 5 min-
utes)

• Tracking value origins (live application demo; 3 min-
utes)

• Finding parallelization candidates (live application demo;
5 minutes)

• Scalability (live application demo; 2 minutes)

• Conclusion (slides; 1 minute)

In the above scheme, we have allocated 10 minutes for inter-
action with the audience and can take questions any time
to guarantee for an exciting event. Also, we will conduct
the presentation as a pair, thus allowing for lively on-stage
interaction in “pair programming” style.

B. DEMO EXECUTION
Because TRANT is a toolset providing public APIs to

build analyses on it is not easy to demonstrate TRANT itself.
Therefore, after shortly introducing TRANT basics, we will
demonstrate its usage on three examples—one developed live
on stage, and two proof-of-concept tools we implemented so
far. With this, we demonstrate how totally different types
of analysis can be realized on top of TRANT.

B.1 A Simple Instruction Tracer
We will shortly introduce the main APIs TRANT provides

and its main classes to use in order to get a simple analysis
up and running. In our example, we will implement a anal-
ysis method counting the number of dynamically executed
bytecode instructions in the traced program run.

The usage of the framework follows the well known visitor
design pattern and it should be easy to follow the demon-
stration. In our demonstration, we will show that we can
implement such an analysis in less than five minutes.

We will use this very lightweight and straight forward
analysis implementation to later on demonstrate the mem-
ory and runtime scalability of TRANT itself.

B.2 Tracking Variable Origins
Figure 2 shows our variable backtracker in action, as de-

scribed in Section 4.1.
The backtracker is a proof-of-concept implementation, but

it already perfectly works for small to medium scale pro-
grams. We plan to mainly base our demonstrations on this
tool.

We will:

• Introduce the short SumUp example program that can
be seen in the screenshot.

• Start a usual debugging session in the Eclipse IDE with
a breakpoint set at line 16 in the SumUp class.

• When the breakpoint is reached we will start variable
backtracking via the context menu of the overallSum
variable in the debugger.

• The Backtracking perspective will open and we will ex-
plain what the data flow graph that can be seen in the
screenshot shows.

• If time permits, we will shortly show that the back-
tracking equally works with medium to large scale real
world programs.

B.3 Finding Parallelization Candidates
Figure 3 shows our parallelization candidate proposal tool

described in section 4.2. This tool was developed as an
early artifact of our ongoing research in the area of auto-
mated parallelization. We presented this work at the In-
ternational Workshop on Multi-core Software Engineering
(IWMSE) hosted at ICSE 2009 in Vancouver, Canada [5].

Although the tool is in its infancy, it is already useful as a
first hint on where to start looking when parallelizing legacy
code. It also demonstrates a totally different kind of analysis
than the profiler or backtracker based on TRANT.

In our demonstration of the tool we will:

• Give a short explanation of our analysis framework in
the Eclipse IDE and explain the Trace Library, a library
for caching analysis results and traces of program runs.

• Explain how the trace of a program run is created and
stored in the Trace Library.

• Show how to start the analysis process right from the
Trace Library for the same SumUp example program
seen before.

• After a very short moment the analysis will finish and
the top ten parallelization candidates are presented in
a clear view.

• From this we will show how one can use the result view
to directly navigate to the corresponding source loca-
tions.

• If time permits, we will shortly show what other anal-
yses are already implemented in the toolset and how
these analyses scale to larger programs.

B.4 Scaling Up
In order to show how TRANT scales, we will use the sam-

ple profiler introduced in the demonstration of the APIs.
We use this particular analysis here since it introduces al-
most no overhead to the runtime or memory consumption
of TRANT itself and thus makes it possible to measure the
scalability of TRANT alone.

For the demonstrations, we will use several programs of
the DaCapo benchmark suite that range from 180,000 exe-
cuted bytecode instructions to several billion. The bench-
mark suite only contains real world Java applications like
for example parts of the Eclipse IDE itself.

These applications are a plausible candidate to show that
the bytecode instrumentations performed by TRANT are
sound and do not manipulate the observable program be-
havior. DaCapo performs several tests to ensure that the
programs did exactly what they should do without manip-
ulations.

Figure 2: The variable backtracking perspective — An active variable backtracking is shown for a simple
example program and the value of the overallSum variable in line 16. On the right hand site the partially
expanded data flow graph is shown. Each node represents a particular source code instruction and contains
all variables whose value took part in forming the actual value of a variable or a method return value.

Figure 3: The parallelization candidate proposals as reported by our parallelization toolset. Only the top ten
reported loops for a simple example program can be seen in this screenshot. Each of the entries in the result
list is selectable. On selection the corresponding source file, if available, will open in the Java editor and the
parallelization candidate will be highlighted.

C. POSTER
In addition to the live demos, we will also have a poster

showing the following:

• Motivation and benefits.

• The main classes and APIs provided by the TRANT

toolset.

• A rough sketch of the system architecture.

• The complete work flow starting from a program to
analyze, tracing a run of this program, using TRANT

to analyze the trace and producing and visualizing the
result of the analysis.

• The URL where TRANT can be downloaded [1].

