
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2006; 11: 77–91
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spip.254

A Study on Optimal
Scheduling for Software
Projects

Research Section
Frank Padberg*,†

Fakultät für Informatik, Universität Karlsruhe, Germany

Software projects often suffer from unexpected rework and delays. Therefore, project scheduling
remains a difficult task for the managers. In this article, we compute optimal scheduling
strategies for a set of sample software projects and simulate their behavior. The computations are
based on a stochastic Markov decision model for software projects, which focuses on capturing
the feedback between concurrent development activities. Since the underlying process model is
stochastic, the strategies are stochastically optimal, that is, they minimize the expected project
duration. The ultimate goal of this research is to develop guidelines for managers to schedule
their software projects under uncertainty in the best possible way.

The sample projects are similar, but differ in certain characteristics of the project or product,
such as the strength of the coupling between the components or the degree of specialization
of the teams on the tasks. By using a set of related projects, we can study how the project
characteristics influence the optimal scheduling decisions in a project. After computing the
optimal scheduling policies for the sample projects, we use extensive discrete-event simulations
to study the behavior of the optimal policy for each given setting and compare the performance
of the optimal policy against the possible list policies. List policies are a simple and commonly
used class of scheduling policies. For our sample projects, the simulations show that the best
list policy in general is not optimal. The higher the degree of specialization of the teams,
the larger the performance gap is. On the other hand, the stronger the coupling between the
components, the smaller is the improvement that the optimal policy achieves over the best list
policy. Copyright  2006 John Wiley & Sons, Ltd.

KEY WORDS: project scheduling; optimal schedules; process simulation; rework modeling; stochastic process models

1. INTRODUCTION

The planning of software projects takes place under
considerable uncertainty. For various reasons,
the time needed to complete some development

∗ Correspondence to: Frank Padberg, Fakultät für Informatik,
Universität Karlsruhe, Germany
†E-mail: padberg@ira.uka.de
Contract/grant sponsor: Deutsche Forschungsgemeinschaft,
DFG

Copyright  2006 John Wiley & Sons, Ltd.

activities in a software project is hard to esti-
mate. In addition, feedback between the various
activities often causes rework and delays. These cir-
cumstances make project scheduling a notoriously
difficult task for the managers of software projects.

In this article, we begin a systematic study of how
the good scheduling decisions in a software project
depend on certain characteristics of the project or
the product. Examples of such characteristics are the
strength of the coupling between the components
or the degree of specialization of the teams on
different tasks. More specific research questions



Research Section F. Padberg

that we address in this study are:

• Can we save cost and time in software projects by
applying dynamic scheduling strategies instead
of the commonly used simple heuristics?

• If yes, which are the key factors that are taken into
account by the dynamic scheduling strategies to
yield this improvement?

• How does the inherent uncertainty about the
task-durations and project-path influence the
scheduling decisions and cost in a software
project?

• How much impact does the coupling in a soft-
ware system have on the cost and schedulability
of the development project?

The ultimate goal of this research is to develop
practical guidelines that indicate to managers how
to best schedule their software projects under
uncertainty.

Under conditions of uncertainty, the future path
of a project is not known in advance. Therefore, the
best a manager can do is to schedule the project in
such a way that cost or duration will likely be min-
imized. To model the uncertainty in the software
process we use a stochastic scheduling model, which
we have presented earlier in detail (Padberg 2001,
Padberg 2002a, 2002b). In this stochastic setting,
scheduling is optimal if it minimizes the expected
project cost (or duration).

In our model, the software is developed by teams
who work in parallel on the software’s components.
At any time during the project, each team works
on, at the most, one component only. Scheduling
is dynamic in the model: The assignment of the
components to the teams may change several times
during the project, depending on the scheduling
policy followed by the manager. The net progress of
a team when working on a component is described
by probability distributions. By definition, the net
progress for a component excludes any rework
performed on the component.

Our process model focuses on modeling the feed-
back between concurrent activities in a software
project. From time to time, some team may detect
a defect, an inconsistency, or some other ‘problem’
in the software’s high-level design. Since the com-
ponents are coupled, through common interfaces
for example, the necessary redesigning will force a
number of components to be reworked. As a result,
the teams do not work independently; the progress

of one task not only depends on the productiv-
ity of the team undertaking the task but also on
the progress of the other teams on their respective
tasks.

To study the relationship between scheduling and
a project’s characteristics, we evaluate the perfor-
mance of different scheduling strategies on a set of
related sample projects. The projects are hypotheti-
cal, but have realistic input data. More specifically,
we fix a set of two teams and four components. The
teams have different productivities and the com-
ponents have different complexities and risk-levels.
We then systematically vary the strength of the cou-
pling between the four components, the degree of
specialization of the two teams on the components,
and the scheduling strategy.

We study four different couplings (minimal,
uniform, maximal, asymmetric) in combination
with 21 different cases of specialization of teams
on components. This procedure yields a set of 84
different yet related projects. Specialization of a
team on a certain component is expressed in our
model by using a probability distribution for the
team’s net progress, which has a smaller mean
and variance as compared to a nonspecialized
team – see Subsection 4.4 for details. The coupling
strength is expressed in our model by suitable
change propagation probabilities. The stronger the
coupling between a software’s components, the
more likely it is that the design changes will
propagate through the software, as described in
more detail in Subsection 4.5.

For each of the 84 sample projects, we evaluate
25 different scheduling policies: all possible list
policies and the optimal policy. List policies use
a fixed priority list for assigning the components
to the teams – see Subsection 3.3 for more details.
With four components, there are 24 different list
policies for each project. We have already seen in a
previous study (Padberg 2002b), that the list policies
are a good starting point for analyzing scheduling
decisions in our process model.

For the purpose of this study, cost is defined to
be the project duration. Hence, an optimal policy
minimizes the expected project length. The optimal
policy for any given project setting is computed
using a particular dynamic programming algorithm
called value iteration – see Section 5.

Process simulation is an important technique in
this study. To evaluate the performance of the vari-
ous scheduling policies, we simulate 10,000 project

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

78



Research Section Optimal Scheduling for Software Projects

paths (trajectories) for each possible combination
of a project-setting with a policy. We observe the
project cost (duration) for each trajectory and use
the resulting frequency table and mean value as an
approximation of the true cost distribution and the
true expected cost of the policy. For a given setting,
we use the simulation results to determine the best
list policy. We also use the simulated mean cost
to compare the performance of the best list policy
against the optimal policy.

For our sample projects we find that the best list
policy, in general, is not optimal. The performance
gap between the best list policy and the optimal
policy is proportional to the degree of team
specialization. A dynamic scheduling policy can
take advantage of team specialization better than
the relatively inflexible list policies.

On the other hand, a strong coupling between
the components in the sample project results in a
small difference between the optimal policy and
the best list policy. With a strong coupling, the
redesigns that occur from time to time during the
project are highly likely to cause rework in many
components. Hence, the actual completion times for
the different components deviate considerably from
the values that can be expected from the teams’
probability distributions, making it more difficult
for dynamic policies to turn their knowledge of
these distributions into a cost advantage.

2. RELATED WORK

Scheduling is not currently supported by effort
estimation techniques in software engineering. Both
the classical curve-fitting models (see (Gray and
Mac Donell 1997) for an overview) and the more
recent estimation models, which use techniques
such as machine learning (Srinivasan and Fisher
1995), neural networks (Wittig and Finnie 1994),
and analogy (Shepperd et al. 1996), do not show
individual tasks and developers. Hence, deriving a
detailed schedule with these models is not possible.

In software process modeling we are aware
of only one simulation model, (Raffo and Kellner
1999) which is similar to our model in that it
shows individual activities and allows feedback
in the process to have an impact on the stochastic
durations of the tasks. This model uses statecharts
to describe the code error detection and correction
loop in the software process. The duration of

the activities in the loop is stochastic, depends
on the number of residual errors in the code,
and decreases stochastically with each iteration
through the loop. Yet, the model does not aim
at scheduling and deals with only part of the
software process. By explicitly modeling individual
components and individual scheduling actions, our
scheduling model is also much more fine-grained
than system dynamics models that operate at
the level of total workforce and overall schedule
length (Abdel-Hamid and Madnick 1991, Collofello
and Houston 1998, Madachy 1996, Tvedt and
Collofello 1995).

Stochastic scheduling models are being studied
in operations research, but these models are not
appropriate for describing the software process.
Closest to the dynamics of software engineering
projects are ‘stochastic project networks’ (Neumann
1990, 1999). A stochastic project network can
model parallel execution of activities and repeated
execution of activities. Yet, the duration of an
activity must not depend on any other activity that
runs at the same time, nor on the duration of an
activity that was performed earlier. This assumption
does not hold for software projects. Therefore, our
own scheduling model describes the rework and the
feedback between activities in a project in a way that
is novel in the literature on scheduling (Neumann
1999, Möhring 2000, Weglarz 1999).

This article is a revised and extended version of a
conference article (Padberg 2004). The article builds
upon our project scheduling model presented
earlier (Padberg 2001, 2002a, 2002b). As compared
to our previous work, we are now able to compute
the exact optimal policy for each sample project. In
addition, we now provide simulations for a whole
set of examples. For each example, we compare
the performance of the best list policy against the
optimal policy and study the impact of important
project characteristics on the scheduling decisions
in a project.

3. MARKOV DECISION MODEL

This section describes how the software process
is modeled as a Markov decision process (MDP).
Additional details are provided in (Padberg 2001,
2002b).

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

79



Research Section F. Padberg

3.1. States and Transitions

In the Markov decision model the software process
moves between states over time. In each state a
scheduling action is chosen by the manager. Once
an action has been chosen, the transition to the
next state is governed by the transition probabilities.
Hence, the software process appears as a stochastic
system.

In the software process MDP a transition to the
next state takes place if a phase ends. By definition,
a phase ends when a redesign occurs or a team
finishes its current component. Both events are
subject to chance. The project is completed if all the
components are completed. The project is cancelled
if the given deadline is exceeded.

For the software process, the state of the project
carries information about the net progress (that is,
excluding any rework) that has been made for each
component up to the current point in time. Progress
is measured in time units. In addition, the latest
task assignment and the amount of rework yet to be
completed for each component are included in the
state. Finally, the project state shows the time left
for the deadline to expire.

To illustrate the MDP mechanism, Figure 1 shows
a cutout from a sample software process MDP with
two teams and four components. The tree is to be
read from the bottom to the top. The state variables
ζ and η in the figure are simplified versions. The
state only shows the net progress made on the
components so far (this is the vector) and the time
left until the deadline expires (this is the number);
rework information has been left out. Please refer
to (Padberg 2001, 2002a) for more details on the
elements of the project state in the software process
model.

Suppose that the current state of the process is ζ

and that one time slice in model time corresponds
to 1 month of work in real time. Up to this state a net

progress of 2 months has been made on component
1, a net progress of 4 months on component 2, a
net progress of 3 months on component 3, and a
net progress of 1 month on component 4. There are
10 months left until the deadline is reached.

The dotted line shows part of a possible path of
the project from state ζ onwards. In this state the
manager chooses the scheduling action a = (1, 3).
This action assigns the first team to component 1
and the second team to component 3. Following
some other policy the manager might have made
a different scheduling decision, this is indicated in
the figure by the other branch of the tree originating
from state ζ .

After the manager has assigned the teams the
next development phase begins. The outcome of
this phase, that is, the next state η of the project,
is subject to chance (the transition probabilities are
not shown in the figure).

In our example the phase lasts for 4 months (the
remaining time has decreased to 6 months in state
η) and the net progress on components 1 and 3
has increased. In particular, component 1 has been
completed in this phase, which is indicated by
an infinity symbol ∞ for its net progress. Hence
the first team can be reassigned by the manager,
with his next scheduling action, to one of the
unfinished components. Then the next phase begins.
The project could have taken a different path by
chance, and the next state could have been different
from η. This is indicated in the figure by the other
edges originating from the action node.

3.2. Input Data

To compute the transition probabilities for the
software process or to simulate a project, some
input data are required: the base probabilities and the
dependency degrees.

Figure 1. Cutout from a software process MDP

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

80



Research Section Optimal Scheduling for Software Projects

The base probabilities are a measure for the pace
at which the teams have made progress in past
projects. The dependency degrees are a probabilistic
measure for the strength of the coupling between
the components. We give examples for the input
data in the next section.

3.3. Scheduling Policies

A rule or table that specifies which scheduling action
is to be taken for each possible state is called a
strategy or policy. When the scheduling strategy is
fixed, the software process turns into a Markov
chain.

A simple class of policies are the list policies. A list
policy uses a fixed priority list for the components to
prescribe an order in which they must be developed.
When a team finishes its current component it is
allocated to the next unprocessed component in the
list. Hence the list policies keep all teams busy all
the time. List policies are not very flexible but are
common in practice.

In a stochastic setting, the task completion times
are not known in advance. Thus, even for list
policies the actual schedule depends on the order in
which the teams finish their tasks, which is subject
to chance.

3.4. Cost and Optimization

Each transition bears some cost. The cost usually
equals the duration, but may also equal the
personnel cost or some other cost metric. A path
of the project consists of a sequence of state-
action pairs. The cost of a path is computed by
summing up the costs of all transitions in the path.
The probability of a path is the product of the
corresponding transition probabilities. For a fixed
policy the expected project cost is the expected value
for the cost of a full path from the project start to
the project end.

Since the process model is stochastic, the best
that one can achieve is a policy that minimizes
the expected project cost. How to compute such
an optimal policy is well known in operations
research. The basic algorithms in use are backwards
dynamic programming, value iteration, and policy
iteration (Bertsekas 1995, Ross 1983).

The effort for computing an optimal policy grows
exponentially with the number of states of the
MDP. Hence, exact optimization is feasible only

if the instance under study is not too large, that
is, if the instance does not have too many states
and transitions in each state (branching factor). This
applies to the software process model as the number
of states grows exponentially with the number of
components in the software.

4. INPUT DATA FOR THE SAMPLE
PROJECTS

4.1. Components and Teams

The sample project has four components (A, B,
C, and D) of varying complexities and risk-levels.
Differences between the components with respect
to their complexities and risk-levels are modeled as
follows:

• The probability distributions for the net devel-
opment times of the components have different
means and variances – see Table 1 in Subsec-
tion 4.3 for the values. The expected net effort
for A and B is smaller than for C and D. The
distributions for C and D have a higher variance
than those for A and B.

• The probability that design problems will origi-
nate from a component varies from component
to component – see Subsection 4.3 for details.
The risk is lowest for component A and highest
for component D.

According to their complexity and risk level, the
components are ranked A < B < C < D.

Two teams (One and Two) work simultaneously
on the project. A team may be specialized on
certain components. Specialization is expressed by
using base distributions as the input, which for the
specialized teams have a smaller mean as compared
to nonspecialized teams – see Subsection 4.4 for
details.

4.2. List Policies

Since the sample project has four components, there
are 24 different list policies, denoted as ABCD,
ABDC, . . .. DCBA. For example, list policy ABCD
initially assigns component A to team One and
component B to team Two. Whichever team finishes
first is allocated to component C. Finally, the next
team to finish is allocated to component D.

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

81



Research Section F. Padberg

4.3. Base Probabilities

The base probabilities P(Di
A(t)) specify how likely it

is that team i will finish component A after t time
units. These probabilities are taken from a binomial
distribution with parameters n = 2 and p = 0.5. The
binomial distribution has been shifted to the right
by 3 units and then scaled by a factor of 0.9. Scaling
was applied in order to model in a way that there
would be a 10% risk that a redesign will originate
from component A during development.

Accordingly, the base probabilities P(Ei
A(t)) specify

that there is a 5 percent risk that team i will report a
design problem (and hence trigger a redesign) after
3 (4) time units while working on component A.
These probabilities sum up to the risk of 10% that
component A will cause a redesign.

The base distributions for component B have the
same shape as for component A. The difference is
that there is a higher risk that design problems will
originate from component B (20% for B instead of
10% for A).

Without specialization, team One and Two have
the same base distributions for the components A
and B.

Figure 2 shows the base probabilities for compo-
nents A and B as histograms.

The base probabilities for components C and
D again are taken from a binomial distribution
(with parameters n = 3 and p = 0.5). The binomial
distribution has been shifted to the right by 5 units.
The distribution was scaled by a factor of 0.8 for
component C and 0.7 for component D. Therefore,
component D is most likely to trigger a design
change during development (risk of 30%).

Again, without specialization, team One and Two
have the same base distributions for the components
C and D. Figure 3 shows the base probabilities for
components C and D as histograms.

The mean and variance of the base distribution
for each team and component (without specializa-
tion) are given in Table 1. The table also shows the
risk level for each component, that is, the proba-
bility that a design problem will originate from the
component.

For each component there is also a probability
distribution for the rework time required should the
component be affected by a design change. For com-
ponents A and B the rework time always is one time
unit. For components C and D, one and two time
units of rework occur with equal probability. The
rework time is assumed to be independent of the
team that is currently working on the component.

(A) (B)

Figure 2. Base probabilities for components (A) and (B) (no specialization)

(A) (B)

Figure 3. Base probabilities for components (C) and (D) (no specialization)

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

82



Research Section Optimal Scheduling for Software Projects

Table 1. Mean, variance, and risk level of base probabilities (no
specialization)

Component Team Mean Variance Risk

A One, Two 4.0 1.0 0.10
B One, Two 4.0 1.0 0.20
C One, Two 6.5 1.5 0.20
D One, Two 6.5 1.5 0.30

4.4. Specialization

If a team is specialized on a particular component,
its base distribution for that component is shifted
to the left; the shape of the distribution remains
unchanged. For example, if a team is specialized on
component A, its corresponding base distribution
is shifted to the left by 2.0 units. Owing to the shift,
the expected net development time for a specialized
team working on component A equals 2.0 units
instead of 4.0 units for a nonspecialized team.

Similarly, with specialization the base distribu-
tions for the components B, C, and D are shifted to
the left by 2.0, 3.0, and 3.0 time units, respectively.
Figure 4 shows as histograms the base probabilities
for a specialized team working on component A
or C.

To codify if and how teams are specialized on
certain components, we use a 4-digit notation (one
digit for each component). 0 indicates no special-
ization, 1 indicates that team One is specialized on
the component, and 2 indicates that team Two is
specialized on the component. For example, a case
of no specialization at all in any component is coded
as 0000. As another example, the case of team One
being specialized on C, team Two being specialized
on D, and no team being specialized on A or B is
coded as 0012.

For any given component, we use the same base
distributions for team Two as for team One, except

when one team is specialized on that component
and the other team is not. Therefore, the case 1122
has the same input data and dynamics as 2211; only
the roles of the two teams are switched. Hence, we
need to study only half of the theoretically possible
specialization codings in our simulations.

In this study there is only one specialized team
for each component, if any. Having two specialized
teams for the same component does not make much
sense for this study: for that particular component,
no performance difference between the two teams
could be exploited by a dynamic scheduling policy.

Furthermore, we focus on having zero, two,
or four cases of specialization for a team on
components. The other cases are left for future
study.

4.5. Coupling

The stronger the coupling between the components,
the more likely it is that the design problems
that originate in one component will propagate to
other components and lead to rework there (ripple
effects). The strength of the coupling between the
components is measured by the dependency degrees
α(K, X). Here, K and X are sets of components.

For example, α({B}, {A, B, D}) is defined as
the probability that any changes in the design will
extend exactly over the components A, B, and D
given that the redesign was triggered by component
B.

In this study, we vary the strength of the coupling
by using four different sets of dependency degrees:

• Minimal coupling means that only those com-
ponents in which a design problem occurs will
have to be reworked, but no other components.
With minimal coupling, tasks are being worked

(A) (B)

Figure 4. Base probabilities for components (A) and (C) with specialized team

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

83



Research Section F. Padberg

on independently of each other. This is the best-
case scenario with no feedback between different
tasks.

• Maximal coupling means that all the compo-
nents will always have to be reworked in case
of a redesign, no matter in which component
a design problem occurs. This is the worst-case
scenario with maximal feedback between differ-
ent tasks.

• Uniform coupling assumes no prior knowledge
about the coupling between the components.
Each set of components bears the same risk of
being affected by rework in case of a redesign,
no matter from which component the design
problem arises.

• Asymmetric coupling assumes strong coupling
between certain pairs of components. Please
refer to (Padberg 2002a) or (2002b) for the spe-
cific values of the dependency degrees in this
case.

5. OPTIMIZATION AND SIMULATION

The simulations in this study are based on a re-
implementation of the stochastic simulation model
presented earlier (Padberg 2002a, 2002b). The new
implementation is written in C# under .NET
instead of the ModL language that comes with the
simulation environment EXTEND. The C# code is
much faster, of course.

In addition to the process simulation code, we
have implemented an algorithm to compute optimal
scheduling policies in our model. The algorithm
implements value iteration (Bertsekas 1995, Ross
1983) but also takes advantage of the fact that
our software process MDP has no cycles. This
yields a fast algorithm that combines value iteration
with depth-first search for accessible states. The
algorithm is exact, up to the precision of the floating
point arithmetic.

For each set of dependency degrees (minimal,
uniform, maximal, and asymmetric) and each
team specialization coding (0000 through 2221) we
computed the optimal policy for the given project
setting, simulated all possible list policies, and
finally simulated the optimal policy.

During optimization, we recorded the CPU time
required for computing the optimal policy and the
number of different states of the MDP. We also

recorded the expected project cost under the optimal
policy, which is usually called ‘the optimal cost.’

During the simulations, we simulated 10,000
full project trajectories for each policy and project
setting. We recorded the simulated cost distribution
and corresponding mean cost. A comparison of the
optimal cost against the simulated mean cost for the
optimal policy shows that 10,000 simulation runs
are enough to get a reliable picture for our sample
project.

In general, the effort for computing an optimal
policy grows exponentially with the number of
states of an MDP. Table 2 shows the maximum
number of MDP states and the maximum CPU
time (min: sec) required for computing the optimal
policy in our sample project settings of dependency
degrees.

The computations were carried out on a Pentium
III processor with 700 MHz clock rate and 256 MB
of main memory.

6. ANALYSIS OF RESULTS

6.1. Optimal Cost

Cost equals project duration in this study. Recall
that the optimal cost is defined as the expected cost
of the optimal policy. Figure 5 shows the optimal
cost for all the combinations of team specialization
and coupling strength. The bars are arranged in
groups of four, corresponding to the four different
couplings studied in this article.

The stronger the coupling between the compo-
nents, the higher is the optimal cost. This is as
expected because the risk of change propagation
and widespread rework increases with the strength
of the coupling.

The optimal cost is highest if none of the teams
are specialized; see the group of bars for the
specialization coding 0000. The optimal cost, in
general, is lowest if for each component there is a

Table 2. Number of MDP states and CPU time for schedule
optimization

Coupling: Minimal Uniform Maximal Asymm

Min MDP states 2685 293,037 87,809 228,183
Max MDP states 2833 336,615 103,477 254,651
Max CPU time 0:01 8:19 0:59 6:13

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

84



Research Section Optimal Scheduling for Software Projects

Figure 5. Optimal cost for varying coupling strength

Figure 6. Relative cost advantage of optimal policy over best list policy for varying coupling strength

team that is specialized on that component; see, e.g.
the group of bars for coding 1212. Again, this is as
expected because specialized teams have a shorter
expected net development time for the components
than nonspecialized teams. An optimal policy takes
advantage of this fact by assigning components to
specialized teams.

Figure 6 shows the relative cost advantage (in
percent) of the optimal policy over the best list
policy for each project setting. For the optimal
policy we use the expected cost computed during
optimization; for the best list policy we use the
simulated mean cost. We analyze this figure in the
following subsections.

The remainder of this section is organized along the
dimension ‘degree of specialization’. We shall call
the components A and B ‘small’ because they have
a shorter expected net development time than the
‘large’ components C and D.

6.2. No Specialization of Teams

This setting refers to the specialization coding 0000.
In this case the list policies fall into two broad
categories depending on whether a policy manages
to achieve a balanced task assignment (one large and
one small component assigned to each team) or not;
see Table 3.

Table 3. Optimal cost with no specialization

Coupling: Minimal Uniform Maximal Asymm

List policy median
(balanced)

12.5 13.2 13.8 13.1

List policy median
(unbalanced)

14.1 15.2 16.2 15.3

Best list policy
(simulated)

12.4 13.1 13.7 13.0

Optimal policy
(exact)

12.4 13.1 13.7 12.9

In the balanced case the simulated project cost
comes close to the optimal cost, no matter how
strong the coupling between the components is.
Consequently, without specialization of teams the
best list policy is close to the optimal in the sample
project.

6.3. Specialized Team for Each Component

These settings refer to the specialization codings
1111, 1212, 1221, 1222, 2122, 2211, 2212, and 2221.
For each component there is a specialized team, but
in some cases the same team is specialized on more
than half of the components.

In all these cases, except 1111, there is a significant
performance gap between the best list policy and

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

85



Research Section F. Padberg

the optimal policy; see Figure 6. The cost advantage
of the optimal policy ranges between 2 and 5.5%.

These percentages may look small. One must
bear in mind, though, that our sample projects
are small. Any policy will schedule two of the
four components as its first action. If a list policy
mimics the optimal policy by choosing the same
first scheduling action as the optimal policy, then
not too much can go wrong when assigning the
remaining two components later in the project. We
expect to observe a greater cost advantage for the
optimal policy over the best list policy in future
studies of larger projects.

We shall analyze in Subsection 6.5 why there is no
performance difference between the best list policy
and the optimal policy in case of the specialization
coding 1111; the analysis requires a more detailed
look at the schedules that actually occur for the
optimal policy and the best list policies in that
particular case.

Figure 6 also shows that the stronger the cou-
pling between the components the smaller is the
improvement that the dynamic scheduling achieves
over the best list policy. A possible explanation is
that because of the increased process feedback and
rework that comes with a stronger coupling, the
future behavior of the process is less predictable
from the expected net component completion times.
Therefore, it is difficult for a dynamic strategy
to make better scheduling decisions than the list
policies based on their knowledge of the base dis-
tributions.

Table 4 shows that the optimal cost is smallest if
one of the teams is specialized on one large and one
small component, whereas the other team is special-
ized on the remaining large and small component
(cases 1221 and 1212). The optimal cost increases if
the specialization is unbalanced, that is, if one team
is specialized on more components than the other
team (see, e.g. case 2212). The optimal cost also
increases if one team is specialized on the two large
components and the other team on the two small
components (see, e.g. case 2211). These observations
are independent of the coupling strength.

6.4. Specialized Team for Two Components

These project settings fall into three groups. The
first group contains the cases 0011 and 0012, where
(one or two) teams are specialized on the two large
components but no team is specialized on the two

Table 4. Optimal cost with one specialized team for each
component

Coupling: Minimal Uniform Maximal Asymm

1212 7.5 8.2 8.7 8.2
1221 7.5 8.2 8.7 8.0
2212 8.2 9.1 9.9 9.0
2221 8.1 9.0 9.9 8.9
1222 8.8 9.6 10.3 9.7
2122 8.8 9.6 10.3 9.7
2211 8.8 9.7 10.5 9.8
1111 9.1 10.0 10.8 9.8

small components. The second group contains the
cases 0101, 0102, 0110, 0120, 1001, 1002, 1010, and
1020, where teams are specialized on one large and
one small component but no team is specialized on
the remaining two components. The third group
contains the cases 1100 and 1200, where teams are
specialized on the two small components but no
team is specialized on the two large components.

We say that the specializations complement each
other if one team is specialized on one compo-
nent and the other team on the other component, as
opposed to one and the same team being specialized
on both components.

In all three groups the best list policy always is
close to the optimal; see Figure 6. An analysis of
the initial action chosen by the optimal policy indi-
cates that the best list policy takes advantage of the
team specialization in the same way the optimal
policy does: if the specialization is complementary,
allocate the teams to its favorite components; if the
specialization is noncomplementary, allocate the
specialized team to the larger of its favorite compo-
nents (and the other team to a component on which
neither team is specialized).

For example, in case 0102 with uniform coupling,
the optimal policy and the best list policy allocate
team One to component B and team Two to compo-
nent D as the first scheduling action. In case 0101
with uniform coupling, the optimal policy and the
best list policy first allocate team One to component
D (which is larger than component B) and team
Two to component C (on which neither team is
specialized).

Table 5 shows the optimal cost in each group. In
all the three groups, complementary specialization
shows a lower optimal cost than noncomplemen-
tary specialization (see, e.g. case 0101 versus 0102).
The difference increases with the strength of the
coupling.

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

86



Research Section Optimal Scheduling for Software Projects

Table 5. Optimal cost with specialized teams for two out of four
components

Coupling: Minimal Uniform Maximal Asymm

0011 9.5 10.2 10.9 10.3
0012 9.4 10.1 10.7 9.9
0101 10.2 11.2 12.3 11.1
0102 10.0 10.7 11.4 10.6
0110 10.2 11.2 12.3 11.1
0120 10.1 10.8 11.4 10.4
1001 10.3 11.3 12.3 11.3
1002 10.0 10.7 11.3 10.7
1010 10.3 11.3 12.4 11.1
1020 10.0 10.8 11.4 10.6
1100 11.1 12.0 12.9 11.9
1200 10.5 11.1 11.7 11.0

Suppose that the strength of the coupling is
fixed. If we focus on the project settings with
the complementary specialization, the optimal cost
is smallest in the first group and largest in the
third group (see, e.g. case 0012 versus 1200). In
addition, the optimal cost shows little variation
within the middle group; the corresponding median
lies between the optimal cost of the first and the third
group. Similar statements hold good if we focus on
the project settings with the noncomplementary
specialization (see e.g. case 0011 versus 1100).

Given our particular choice of the base proba-
bilities, the expected net development time for a
component is about 50% shorter with a specialized
team than with a nonspecialized team. Therefore it
is better to have specialized teams working on the
large, expensive components than on the small ones.

6.5. Typical Schedules

To visualize the schedules that actually occur for
an optimal policy we use special Gantt charts
called ‘average schedules’ that we first introduced
in (Padberg 2002b). These charts are computed from
the mean net development times and the mean
rework times for each component, which in turn
are collected from the simulation traces for the
policy. Recall that for each project setting we have
simulated 10,000 full project trajectories for the
policies under study, including the optimal policy.

No Specialization
Figure 7 shows a typical average schedule for the
optimal policy in the sample project, with no
specialization and uniform coupling. The optimal

cost for this project setting is 13.1 time slices. The
numbers below the bars are the mean development
times for the components (including rework).

In this typical scenario, the optimal policy first
assigns component C to team One and component
D to team Two. Team One finishes earlier than team
Two, thus the optimal policy assigns component B to
teamOne. The next team to finish is teamTwo, which
finally is assigned to the last unfinished component,
A. The simulations show that the project will take
this path with about 61% probability. The expected
cost in this scenario is 12.9 time slices.

There is another typical path that the project can
take under the given input data; see Figure 8. The
optimal policy assigns the components C and D as
described before; but now the first team to finish
its current task is team Two. Therefore, the optimal
policy assigns component B to team Two instead
of team One. Finally, component A is assigned to
team One. The project will take this alternative path
with about 38% probability. The expected cost in
this scenario is slightly higher than before, 13.3 time
slices.

Taking a second look at the behavior of the
optimal policy it becomes apparent that the list
policy CDBA will yield the same task assignments
as the optimal policy, no matter whether component
C is completed before component D, or vice versa.
In fact, the simulations show that list policy CDBA
is the best list policy in this setting and achieves the
same expected cost as the optimal policy.

Figure 7. First typical schedule for the optimal policy (no
specialization, uniform coupling)

Figure 8. Second typical schedule for the optimal policy
(no specialization, uniform coupling)

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

87



Research Section F. Padberg

Specialization 1212
In case of projects with specialized teams, the Gantt
charts show that the optimal policy tries to assign
the teams to their favorite components. For example,
if team One is specialized on components A and
C and team Two is specialized on components
B and D, the optimal policy always assigns the
components accordingly; see Figure 9. Clearly, the
project completion time with specialized teams is
much shorter than in the previous cases, about 8.2
time slices.

One might ask whether this behavior can also be
achieved with a list policy, similar to the previous
project setting with no specialization. The answer is
‘no’. To understand why, we briefly study several
candidate list policies in the next few paragraphs.

The simplest idea is to mimic the optimal policy
by applying list policy ABCD. Yet, this list policy
will assign component C not to team One but to
team Two in case component B is completed earlier
than component A. The simulations show that this
assignment will occur with a probability of about
30%, despite the fact that on average component A
has a shorter completion time than component B.
This assignment is unfavorable because it leads to a
higher mean project completion time of about 11.2
time slices in the end.

Recall that the performance of a policy is roughly
a weighted sum of the mean project completion
times of its possible assignments, the weights being
the probabilities with which the assignments occur.
Hence, the unfavorable assignment drags down the
total performance of list policy ABCD. Contrary
to list policy ABCD, the optimal policy will assign
component C to team One in any case, knowing that
the specialization of team One on component C will
payoff.

To avoid the problems with list policy ABCD
and make sure that the large components will
be assigned to their specialized teams, one might

Figure 9. Average schedule for optimal policy (special-
ization 1212, uniform coupling)

try list policy ADCB. Since component A is much
smaller than component D, one would expect that
team One will complete component A faster than
team Two takes to complete component D; by
definition, list policy ADCB would then assign
component C to team One. This idea actually works,
but has some other drawbacks. The simulations
show that in about 20% of the cases team One will
be so fast that it will finish A and C before team Two
has finished D. Hence, list policy ADCB will assign
the remaining component B also to team One. This
assignment is unfavorable as it leads to a mean
project completion time of about 10.4 time slices. As
a result, list policy ADCB is not optimal.

Finally, one might try to properly assign the two
large components C and D immediately, using list
policy CDAB. However, this list policy will lead to
the optimal assignment in only 47% of the cases.
In another 34% of the cases, components A and
B will be assigned to nonspecialized teams, which
will result in a higher mean project completion time
of about 10.2 time slices. In the remaining cases,
both components A and B will be assigned to team
One, leading to an unbalanced distribution of the
workload. The mean project completion will then
be about 10.4 time slices. Hence, list policy CDAB
also is not optimal.

Specialization 1111
Figure 10 shows an average schedule for the optimal
policy in the sample project with the specialization
coding 1111 and uniform coupling. The simulations
show that this scenario occurs with about 72%
probability and an expected cost of 9.2 time
slices. Because of the specialization of team One,
this team (on average) can complete the set of
components C, B, and A in about the same time
as the nonspecialized team Two takes to complete
component D.

Figure 10. First typical schedule for specialization 1111
with uniform coupling

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

88



Research Section Optimal Scheduling for Software Projects

The other typical scenario in this setting is shown
in Figure 11. This scenario occurs with about 22%
probability.

In this latter scenario, team Two is faster in
completing component D than before, whereas team
One needs longer for component C than before. As a
result, team Two will get allocated to component A
and the expected cost for this scenario will be much
higher, 11.8 time slices. Similar to the project setting
with no specialization and uniform coupling, this
scheduling behavior can also be achieved by a list
policy, namely, policy CDBA. Again, simulations
for list policy CDBA show that this is in fact true.
Hence, the best list policy is optimal in this project
setting, despite the fact that there is specialization
of a team on certain components. This explains
why specialization 1111 appeared as an exception
in Section 6.3

An average schedule is an analysis tool that gives
only an approximate picture of the corresponding
project scenario. In particular, in many cases the sum
of the mean development times for the individual
components, as specified in the average schedule,
differs somewhat from the overall mean project
completion time, as given in Tables 4 and 5.

7. CONCLUSIONS

In this article we studied the performance of differ-
ent scheduling strategies on a set of related sample
software projects. For each sample project we simu-
lated a large number of project trajectories under all
possible list policies and under the optimal policy.
The optimal policy in each setting was computed
using stochastic dynamic programming; the best
list policy in each setting was determined from
the simulated cost distributions. All computations
and simulations are based on our Markov decision
model for software projects.

Figure 11. Second typical schedule for specialization 1111
with uniform coupling

The sample projects differ in certain character-
istics of the project and software product. In the
analysis of the simulation results for the different
project settings, we focused on the cost difference
between the best list policy and the optimal policy.
We studied the impacts of the strength of the cou-
pling between the components and of the degree of
team specialization on the project cost. In the sample
projects, we tried to take a representative sample
from the large input space along the dimensions
‘specialization’ and ‘coupling’.

In our sample projects, the cost advantage of
the optimal policy over the best list policy ranges
between 2 and 5.5% of the expected project cost.
These figures may look small, but policy optimiza-
tion will yield a much larger improvement over
simple strategies as the size of the project grows
because a dynamic strategy will then have more
opportunities to take advantage of its knowledge of
the component sizes, team productivities, compo-
nent coupling, and current project state. This effect
is being studied in our ongoing work.

Even our small project-instances have upto sev-
eral hundred thousand states, and the optimal
policy stores an optimal action for each state. Hence
it is hard to understand the scheduling decisions
made by an optimal policy from the state-action
table. In other words, it is difficult to grasp how the
optimal policy actually behaves. This problem will
become more urgent for larger examples in future
studies. Process simulation is a very helpful tool
here as it quickly provides valuable information
about a policy. It is easy to collect and visualize
data such as the actual task assignments and the
cost for each component while simulating a project
trajectory.

To sum up, we have achieved the following
results in this article:

• Small project instances in our model actually can
be optimized in reasonable computing time.

• The best list policy in general is not optimal.
• The higher the degree of specialization of the

teams, the larger is the cost advantage of the
optimal policy over the best list policy.

• The stronger the coupling between the compo-
nents, the smaller is the improvement of the
optimal policy over the best list policy.

These results have important implications for
both researchers and practitioners. For researchers,

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

89



Research Section F. Padberg

our results show that systematic schedule opti-
mization for software projects is viable, even if we
allow our scientific models to reflect the complicated
dynamics of software projects, such as the strong
feedback between activities and the uncertainty
about the future path of a project. Optimization
studies for such complex scheduling models seemed
out of reach up to now. Doing research on soft-
ware project scheduling is also worthwhile because
theoretical results achieved in this area promise
substantial improvements in software project man-
agement practices.

For practitioners, our results indicate that much
cost can be saved by moving from simple scheduling
heuristics, such as list policies, to more dynamic
scheduling policies. For example, postponing the
assignment of some component until a team with
more expertise on that type of work is available can
prove beneficial, even if some other team is ready
and would remain idle in the meantime. The fact
that a high uncertainty about the task durations
is natural in software development might make
detailed planning appear as a useless task, but our
results indicate that better planning is possible even
under conditions of uncertainty. In addition, our
results underline that a strong overall coupling
within a software not only is problematic from
a design and maintenance perspective, but also
makes scheduling much harder.

It is well known that the computational effort
for the exact optimization of an MDP, in general,
grows exponentially with the size of the problem.
In our case, the computational effort grows with
the number of components in the software. We
succeeded in computing an exact optimal policy
for the small sample projects studied in this article,
but it is unlikely that realistic project instances with
dozens of components can be exactly optimized.

From a computational point of view, at least
two countermeasures can be taken. First, the size
of the state space depends on the choice of the
unit for the time axis in the model. If we choose
a time slice corresponding to 1 month instead of
1 week, the input probability distributions have a
much smaller support and the state space shrinks
considerably. Since we have modeled the process at
a more coarse-grained level in this case, the results
of our computations will provide less information,
but will still be useful.

Second, we can use simulation-based tech-
niques to approximate the optimal policies for large

instances. We have described such techniques
in (Padberg 2001). Although we will lose some
information as compared to the exact optimization,
we will still be able to increase our understanding
of scheduling under uncertainty by studying the
approximate solutions. This is a subject of ongoing
research.

Having just reflected on the scalability of an exact
optimization approach, we would like to emphasize
that exact optimization of large project instances is
not our primary research goal. Our research agenda
actually is:

• to study more project instances in detail through
a combination of exact optimization and process
simulation;

• on the basis of these examples, to understand
and explain the mechanisms and key factors
that drive the scheduling process in our model;

• to use our insight to derive useful, practical
guidelines that indicate how to best schedule
a software project under conditions of uncer-
tainty;

• to validate these guidelines through simulation
of large instances and through empirical case
studies in real software projects.

ACKNOWLEDGEMENTS

The simulation and optimization program was writ-
ten by Max Horstmann as part of his diploma
thesis (Horstmann 2004). This research is finan-
cially supported by the Deutsche Forschungs-
gemeinschaft DFG (project title: OASE).

REFERENCES

Abdel-Hamid TK, Madnick SE. 1991. Software Project
Dynamics. Prentice Hall.

Bertsekas DP. 1995. Dynamic Programming and Optimal
Control. Athena Scientific.

Collofello J, Houston D. 1998. A system dynamics
simulator for staffing policies decision support.
Proceedings of the 31st Annual Hawaii International
Conference on System Sciences, 103–111.

Gray A, Mac Donell S. 1997. A comparison of techniques
for developing predictive models of software metrics.
Information and Software Technology 39: 425–437.

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

90



Research Section Optimal Scheduling for Software Projects

Horstmann M. 2004. Untersuchung verschiedener
Methoden zur Berechnung optimaler Strategien bei der
Planung von Softwareprojekte. Diplomarbeit, Universität
Karlsruhe, (in German).

Madachy R. 1996. System dynamics modeling of an
inspection-based process. Proceedings of the 18th
International Conference on Software Engineering ICSE,
376–386.

Möhring RH. 2000. Scheduling under uncertainty:
Optimizing against a randomizing adversary.
Proceedings of the 3rd International Workshop
on Approximation Algorithms for Combinatorial
Optimization Problems, LNCS 1913. Springer: 15–26.

Neumann K. 1990. Stochastic Project Networks, Lecture
Notes in Economics and Mathematical Systems 344.
Springer.

Neumann K. 1999. Scheduling of Projects with Stochastic
Evolution Structure. Kluwer: 309–332.

Padberg F. 2001. Scheduling software projects to
minimize the development time and cost with a given
staff. Proceedings of the 8th Asia-Pacific Software
Engineering Conference APSEC, 187–194.

Padberg F. 2002a. Using process simulation to compare
scheduling strategies for software projects. Proceedings
of the 9th Asia-Pacific Software Engineering Conference
APSEC, 581–590.

Padberg F. 2002b. A discrete simulation model
for assessing software project scheduling strategies.
International Journal on Software Process Improvement and
Practice SPIP 10(3–4): 127–139.

Padberg F. 2004. Computing optimal scheduling policies
for software projects. Proceedings of the 11th Asia-Pacific
Software Engineering Conference APSEC, 300–308.

Raffo DM, Kellner MI. 1999. Modeling Software Processes
Quantitatively and Evaluating the Performance of Process
Alternatives. Elements of Software Process Assessment and
Improvement EL Emam K, Madhavji NH. IEEE Computer
Society Press: 297–341.

Ross SM. 1983. Introduction to Stochastic Dynamic
Programming. Academic Press.

Shepperd M, Schofield C, Kitchenham B. 1996. Effort
estimation using analogy. Proceedings of the 18th
International Conference on Software Engineering ICSE,
170–178.

Srinivasan K, Fisher D. 1995. Machine learning
approaches to estimating software development effort.
IEEE Transactions on Software Engineering TSE 21(2):
126–137.

Tvedt JD, Collofello JS. 1995. Evaluating the effectiveness
of process improvements on software development cycle
time via system dynamics modeling. Proceedings of the
19th International Computer Software and Applications
Conference COMPSAC, 318–325.

Weglarz J. 1999. Project Scheduling. Recent Models,
Algorithms, and Applications. Kluwer.

Wittig GE, Finnie GR. 1994. Using artificial neural
networks and function points to estimate 4GL software
development effort. Australian Journal of Information
Systems 1: 87–94.

Copyright  2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 77–91

91


