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Questions To Be Answered By Statistics


• You buy two lightbulbs of the same brand, from different
stores. Both burn out within a month after you start using
them. Perhaps the brand is no good?


• You notice that all people of the same age seem to be about
the same height. Yet you constantly meet giants or midgets.
Does this mean that age and height are not related?


• How do you know whether a treatment for an illness is
effective?


• How do you know whether one method for automatically
finding defects in computer programs is better than
another, if you can’t prove it?


Statistical tests can answer all of these questions.
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How a Test Ought to Work


1. You choose a null hypothesis that you want to examine.
One example of a null hypothesis would be “our method is
no better than theirs”.
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How a Test Ought to Work


1. You choose a null hypothesis that you want to examine.
One example of a null hypothesis would be “our method is
no better than theirs”.


2. You choose a confidence level. That is a real number p
between 0 and 1 that gives the probability with which you
are willing reject the null hypothesis, even if it’s true.
Typical values for p are 0.05 and 0.01 (or 5% and 1%).


3. You run the tests and compute a statistic. For example, you
compute the number of 0 bits in a sample of 20,000 bits.


4. You compute the probability that the statistic has this value
(or is higher, or lower) if the null hypothesis is true. If this
probability is less than p, you reject the null hypothesis.
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• You never accept the null hypothesis; you only ever not
reject it.







3/51


�


�


�


�


�


�


	


More About Tests


• You never accept the null hypothesis; you only ever not
reject it.


• In practice, you’ll conduct the test first and then later
choose the lowest p that will not cause your null hypothesis
to be rejected. Therefore, if you see a study that claims that
“the hypothesis could be rejected at the 5% level”, you can
be sure that it could not have been rejected at 4%.
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• You never accept the null hypothesis; you only ever not
reject it.


• In practice, you’ll conduct the test first and then later
choose the lowest p that will not cause your null hypothesis
to be rejected. Therefore, if you see a study that claims that
“the hypothesis could be rejected at the 5% level”, you can
be sure that it could not have been rejected at 4%.


• If you see nonstandard levels (i.e., everything but 10%, 5%
or 1%), beware. This is a sure sign of trying to look good.


• A null hypothesis that can only be rejected at the 10% level
isn’t doing particularly well. Insist on 5% or better.


• A statistical dependency is not a cause-effect chain!
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Yet More About Tests


• In general, the statistic that you compute will be some
measure of the sample’s deviation from the ideal. For
example, if you count the number k of 0 bits in a sample of
supposedly equidistributed n bits, the statistic could be
0.5n− k
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Yet More About Tests


• In general, the statistic that you compute will be some
measure of the sample’s deviation from the ideal. For
example, if you count the number k of 0 bits in a sample of
supposedly equidistributed n bits, the statistic could be
0.5n− k or |0.5n− k| or (0.5n− k)2 or even
(0.5n− k)2/0.5n (the χ2 statistic for this case).


• That means that generally, large values of the statistic
signify large deviations from the distribution that would
occur if the null hypothesis were true.


• Therefore, most tables of statistics are computed to answer
the question, “what is the probability of the statistic being
this high, or higher, if the null hypothesis is in fact true?”
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Example: Lightbulbs (1)


The following data is supposed to be from a study of lightbulb
lifetime and gives the number of hours a lightbulb shone
before burning out: 1243, 2564, 2867, 2965, 2994, 3082,
3154, 3167, 3536, 4086. This is the empirical distribution:
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Example: Lightbulbs (1)


We suspect that the lightbulb lifetime might be distributed
normally with mean µ = 3000 and standard deviation σ = 400.
So the conjectured theoretical CDF would be
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Example: Lightbulbs (3)


If we actually perform a test, we will find that we cannot reject
the null hypothesis, not at the 1% level and not at the 5% level.
What does this mean?
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Example: Lightbulbs (3)


If we actually perform a test, we will find that we cannot reject
the null hypothesis, not at the 1% level and not at the 5% level.
What does this mean? Note, that a larger standard deviation
would have given an even better fit.
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Meaning of Tests


So the fact that you can’t reject the hypothesis does not mean
that it’s true!
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So the fact that you can’t reject the hypothesis does not mean
that it’s true! Also, if you can reject a null hypothesis, it
doesn’t mean it’s wrong!


In fact, the null hypothesis in this case is wrong, because I
chose the numbers to fake a normal distribution. They weren’t
actually drawn at random.


So what does a statistic of S and a significance of p mean? (We
will have 0 ≤ p ≤ 1.) It means that if we do N experiments, we
can expect Np of them to have a statistic of S or more. Hence
Np significances will be p or less. And that means that p itself
is uniformly distributed between 0 and 1.
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So the fact that you can’t reject the hypothesis does not mean
that it’s true! Also, if you can reject a null hypothesis, it
doesn’t mean it’s wrong!


In fact, the null hypothesis in this case is wrong, because I
chose the numbers to fake a normal distribution. They weren’t
actually drawn at random.


So what does a statistic of S and a significance of p mean? (We
will have 0 ≤ p ≤ 1.) It means that if we do N experiments, we
can expect Np of them to have a statistic of S or more. Hence
Np significances will be p or less. And that means that p itself
is uniformly distributed between 0 and 1.


And this we can, of course, test.
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Types of Data


Statistical data comes essentially in two types: binned (a.k.a.
discrete) and continuous.


Binned data falls naturally into a (usually rather small) number
of discrete cases. Examples: the number of points on the top
surface of a die, shoe size, number of students that fit into a
telephone booth, number of cases where a method led directly
to the defect.


Data is continuous if it is most naturally measured with a real
number. Examples: lifetime of a lightbulb, dick size, height of
people, running time of a program.
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More on Binned/Continuous Data


Data that is discrete but that has a very large number of bins is
effectively continuous! (This is often forgotten.)
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You can always bin data that is really unbinned, but that loses
information; besides the tests for continuous data are not
more difficult that the tests for discrete data, so why bother?







10/51


�


�


�


�


�


�


	


More on Binned/Continuous Data


Data that is discrete but that has a very large number of bins is
effectively continuous! (This is often forgotten.)


You can always bin data that is really unbinned, but that loses
information; besides the tests for continuous data are not
more difficult that the tests for discrete data, so why bother?


Sometimes, you measure more than one attribute at the same
time. Some attributes may be continuous, others may be
discrete. We won’t cover such multivariate analyses here.
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PDF and CDF


Let X be a random variable with discrete values, then its
probability density function (PDF) is defined as


φ(x) = Pr(X = x).


If X is any random variable (continuous or discrete), then the
cumulative distribution function (CDF) for X is defined as


Φ(x) = Pr(X ≤ x) =
∫ x
−∞
φ(u)du.


If X is a continuous random variable with a differentiable CDF,
then its PDF is


φ(x) = dΦ(x)/dx.
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Interesting Questions


• Do two samples have the same mean?
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• Do two samples have the same variance?


• Does a sample have a specified distribution?


• Do two samples have the same distribution?
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Tests For Same Mean: t Test


Idea behind the test: take two samples A and B of size NA and
NB, respectively, and see how many “standard errors” the two
sample means µA and µB are apart. (The null hypothesis is that
the two means are the same.)
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Tests For Same Mean: t Test


Idea behind the test: take two samples A and B of size NA and
NB, respectively, and see how many “standard errors” the two
sample means µA and µB are apart. (The null hypothesis is that
the two means are the same.)


The standard error is a measure of the accuracy with which the
sample mean approximates the expected value. In this way,
large samples get more significance than small samples.


If the two distributions have (or are thought to have) the same
variance, we can estimate the stadard error of the difference of
the means by


sD =
√∑


i∈A(xi − µA)2 +
∑
i∈B(xi − µB)2


NA +NB − 2


(
1
NA


+ 1
NB


)
(1)
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Tests For Same Mean


Next, compute the t statistic as


t = (µA − µB)/sD. (2)


Now, compute the significance of t, i.e., the probability that
the statistic should be this large or larger. You can do that by
looking the values up in a table, but this is not recommended
because you’d have to put the table into your code.


You could also let a statistics program compute the
significance for you, but that is also not something I’d
recommended, because it’s too easy to overlook factors of 2,√
N, or something when you just copy numbers from one


program to the next. If you write your own, (I find) that this
happens much more seldom.
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Significance of the t Statistic


The significance of the t statistic is given by the incomplete
beta function with d := NA +NB − 2 degrees of freedom:


Q(t|d) = 1− Id/(d+t2)
(
d
2
,
1
2


)
, (3)


where the incomplete beta function is:


Ix(a, b) = Bx(a, b)/B(a, b) =
1


B(a, b)


∫ x
0
ta−1(1− t)b−1dt


B(a, b) =
∫ 1


0
ta−1(1− t)b−1dt = Γ(a)Γ(b)


Γ(a+ b) ,


which can be found in any “special function” library (usually
called ibeta() or something like that).
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The Gamma Function


The Gamma function is like the factorial function extended to
complex numbers that are not negative integers (i.e.,
z 6= −1,−2, . . .). In Eq. (6), n is a nonnegative integer.


Γ(z) =
∫∞


0
tz−1e−t dt, (4)


Γ(z + 1) = zΓ(z), (5)


Γ(n+ 1) = n!. (6)
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Things to Watch Out For


Sometimes, libraries or programs have a function called
ibeta() that actually computes Bx(a, b), not Ix(a, b). This
happens with the incomplete gamma function, too (see below).


In this case, you take Bx(a, b) and multiply that with


exp(ln Γ(a+ b)− ln Γ(a)− ln Γ(b)).


Most libraries will have a routine usually called lgamma() that
gives you ln Γ(x) directly, without calculating Γ(x) first.


You do not multiply (or even calculate) Γ values that are
modified by later operations! (This is because intermediate Γ
values will overflow very quickly even if the end result is a
rather small number.)
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Plot of the Gamma Function


This is a plot of Γ(x) vs. x. Note that the y axis is logarithmic!
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t Test Summary


Name Student’s t Test
Question Do two distributions have same mean?


Applicable Two distributions have same variance.
Statistic Student’s t statistic, see Eq. (2).


Significance See Eq. (3).
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Unequal-Variance t Test


If we already know that the two distributions have unequal
variances, we still might want to wish to know whether their
means are different.


For example, one method of automated debugging may be
totally wrong some of the time and on the spot another time,
but we want to know whether it is better than our method on
the average.


We calculate


t = µA − µB√
Var(A)/NA + Var(B)/NB


(7)
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Degrees of Freedom


This statistic is distributed approximately as Student’s t with
this number of degrees of freedom:


d =


(
Var(A)
NA


+ Var(B)
NB


)2


(
Var(A)/NA


)2


NA − 1
+
(
Var(B)/NB


)2


NB − 1


(8)


This number is not an integer, but Eq. (3) works for noninteger
values of d, too.
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Unequal-Variance t Test Summary


Name Student’s t Test for unequal variances.
Question Do two distributions have same mean?


Applicable Two distributions have unequal variances.
Statistic Student’s t statistic, see Eqs. (7) and (8).


Significance See Eq. (3).







23/51


�


�


�


�


�


�


	


Paired Samples


We have N faulty programs that we submit to their and our
method in turn. The question is: Is our method or their method
better on the average? We compute:


Cov(A, B) =
( N∑
j=1


(xAj − µA)(xBj − µB)
)/
(N − 1), (9)


sD =
√


Var(A)+ Var(B)− 2Cov(A, B)
N


, (10)


t = (µA − µB)/sD, d = N − 1. (11)


(I’m doubtful about the formulas’ numerical stability; for
example, in Eq. (10), we could take the square root of a
negative number, due to rounding errors in Eq. (9).)
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Paired Sample t Test Summary


Name Student’s t Test for paired samples.
Question Do two distributions have same mean?


Applicable Same sample submitted to two methods.
Statistic Student’s t statistic, see Eqs. (9)–(11).


Significance See Eq. (3).







25/51


�


�


�


�


�


�


	


F-Test for Different Variances


Some of the t tests work only if we know that the variances
differ significantly or that the variances are not significantly
different. The F-Test can find that out. If we let VA = Var(A)
and VB = Var(B), the null hypothesis is that “VA = VB”, and the
statistic is simply


F = VA/VB (12)







26/51


�


�


�


�


�


�


	


Significance for F-Statistic


Its significance, i.e., the probability that the statistic should be
as large as F or larger if the null hypothesis is true, is again an
incomplete beta function. First compute


S = 2IVB/(VB+VAF)
(
VA
2
,
VB
2


)
(13)


Then the significance is


Q
(
F|VA, VB


)
=
{


S, if S ≤ 1
2− S, if S > 1. (14)


(The second case can happen if the null hypothesis is strongly
supported by the data. Eq. (13) sums up two tails of the F
distribution, which can overlap.)
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F-Test for Different Variances Summary


Name F-test for significantly different variances.
Question Do two distributions have same variance?


Applicable Always.
Statistic F-statistic, see Eq. (12).


Significance See Eqs. (13)–(14).
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F-Test for Greater Variances


If we want to know whether one variance is significantly
greater than the other, we compute F as in Eq. (12), but use a
“one-tailed” distribution:


Q
(
F|VA, VB


)
= IVB/(VB+VAF)


(
VA
2
,
VB
2


)
(15)


This cannot be greater than 1.
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F-Test for Greater Variances Summary


Name F-test for significantly different variances.
Question Do two distributions have same variance?


Applicable Always.
Statistic F-statistic, see Eq. (12).


Significance See Eq. (15)
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Are Two Distributions Different?


We have one sample A of which we suspect we know its
distribution. Do the numbers bear this out?
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Are Two Distributions Different?


We have one sample A of which we suspect we know its
distribution. Do the numbers bear this out?


Or: we have two samples A and B. Do they come from the
same distribution?


We’ll look at the top question first and consider binned
(discrete) data first.
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χ2 Test if We Know the Distribution


In this setting, we suppose that of all (independent)
observations that we have made, Ni are in category (bin) i. If
we know the distribution, we can compute the expected
number of observations in bin i. We call that number ni (this
need not be an integer). The null hypothesis is then that
“Ni = ni for all i”.


We then compute the mean square deviation of Ni and ni and
call that the χ2 statistic:


χ2 =
∑
i


(Ni −ni)2
ni


(16)


Warning: Omit any term with ni = Ni = 0. On the other hand, if
ni = 0 but Ni 6= 0, make χ2 = ∞ and reject the null hypothesis.
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Significance of χ2


The probability that the statistic should be as large as χ2 or
larger if the null hypothesis is true is


Q(χ2|d) = 1− P(d/2, χ2/2) (17)


P(a,x) = γ(a,x)
Γ(a)


= 1
Γ(a)


∫ x
0
e−tta−1dt, (18)


where γ(a,x) is an incomplete gamma function. This function
is often present in libraries as igamma(), but beware: Some
libraries compute γ(a,x)/Γ(a) under this name, or even
Γ(a,x)/Γ(a) = 1− γ(a,x)/Γ(a).
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Degrees of Freedom


If we have K categories (bins) and if
∑
ini =


∑
iNi, then we


have d = K − 1. Otherwise, d = K.


You may ask, how can we have
∑
ini 6=


∑
iNi if ni is supposed


to be the expected number of events in bin i? This is indeed a
rare case when we determine all of the ni beforehand and have
no additional constraints on the Ni.


Normally, we renormalize the ni so that
∑
ini =


∑
iNi, and in


that case, we have d = K − 1.
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Caveats


The distribution of χ2 as an incomplete gamma function has
been worked out only if the individual bins are normally
distributed. This is clearly not always the case.


But if either K is large of the number of observations in each
bin is large, then Eq. (17) is a good approximation to the
distribution of χ2 in case of the null hypothesis.


Consequence 1: If your (non-normally distributed) sample only
just fails the test at 5%, perhaps you should reconsider.


Consequence 2: Don’t bother computing significances to an
exorbitant number of significant digits. Make sure that the first
few leading digits are good, though.
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χ2 Test for Known Distribution Summary


Name χ2 Test for Known Distribution.
Question Does a sample have a given distribution?


Applicable Binned data.
Statistic χ2-statistic, see Eq. (16).


Significance See Eq. (17)
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χ2 for Two Samples


We have samples A consisting of K bins and a sample B,
consisting of the same K bins. Do A and B have the same
distribution? To find out, compute


χ2 =
∑
i


(Ai − Bi)2
Ai + Bi


(19)


If the data was collected in such a way that necessarily∑
Ai =


∑
Bi, use d = K − 1, as usual. If that’s not the case, use


d = K and


χ2 =
∑
i


(√
B/AAi −


√
A/B Bi


)2


Ai + Bi
A =


∑
i
Ai, B =


∑
i
Bi (20)
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Examples for Degrees of Freedom


Example 1: We submit the same 100 programs to our and their
bug finder. If the bins are “pinpoints the bug” and “does not
pinpoint the bug”, we have K = 2 and therefore d = 1.


Example 2: We take our test programs and put them through
our bug finder. Then we take their test programs and put them
through their bug finder. In this case we have d = 2.
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Examples for Degrees of Freedom


Example 1: We submit the same 100 programs to our and their
bug finder. If the bins are “pinpoints the bug” and “does not
pinpoint the bug”, we have K = 2 and therefore d = 1.


Example 2: We take our test programs and put them through
our bug finder. Then we take their test programs and put them
through their bug finder. In this case we have d = 2.


But then we test only if our bug finder is better with our
programs than their bug finder is with theirs
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Examples for Degrees of Freedom


Example 1: We submit the same 100 programs to our and their
bug finder. If the bins are “pinpoints the bug” and “does not
pinpoint the bug”, we have K = 2 and therefore d = 1.


Example 2: We take our test programs and put them through
our bug finder. Then we take their test programs and put them
through their bug finder. In this case we have d = 2.


But then we test only if our bug finder is better with our
programs than their bug finder is with theirs, which we
probably believe anyway!
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χ2 Test for Two Samples Summary


Name χ2 Test for Two Samples.
Question Do two samples have the same distribution?


Applicable Binned data.
Statistic χ2-statistic, see Eqs. (19) and (20).


Significance See Eq. (17).
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Continuous Data: KS Test


So far we have worked with data in bins and have used the
expected and observed numbers in each bin. In other words,
so far we have used the PDF.
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Continuous Data: KS Test


So far we have worked with data in bins and have used the
expected and observed numbers in each bin. In other words,
so far we have used the PDF.


The KS test works on the CDF, since for a continuous
distribution, Pr(X = x) is always zero.


Example: I draw a real number between 0 and 1 at random.
The probability to hit any given number is 0, even though I
actually do hit one every time. This is not a contradiction.
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Empirical CDF


If we have made N samples and sort them into increasing order
such that xi ≤ xj for 1 ≤ i < j ≤ N, then the empirical CDF is


cdf(x) = j/N, if xj ≤ x < xj+1. (21)


Here we assume the existence of two sentinel values x0 = −∞
and xN+1 = +∞. We also assume w.l.o.g. that all samples are
different.
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Empirical CDF Example


Here are our lightbulbs again:
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Empirical CDF
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Theoretical CDF


We suspect that the lightbulb lifetime might be distributed
normally with mean µ = 3000 and standard deviation σ = 400.
So the conjectured theoretical CDF would be


Pr(X < x) = 1
2


(
1+ erf


(
x − µ√


2σ


))
(22)
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KS Statistics


Now we compute the maximum deviations from above and
below between the empirical and the conjectured CDFs:


D+N = max
1≤j≤N


(
SN(xj)− Pr(X < xj)


)
(23)


D−N = max
1≤j≤N


(
Pr(X < xj)− SN(xj)


)
(24)


DN = max
1≤j≤N


∣∣SN(xj)− Pr(X < xj)
∣∣ (25)


= max{D+N,D−N} (26)


Warning: Some authors (notably Knuth) define K+N =
√
ND+N etc.


Note: The empirical CDF cannot be everywhere below (or
above) the conjectured CDF, because limx→−∞ Pr(X < x) = 0
and limx→∞ Pr(X < x) = 1.
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KS Statistics
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Significance of the KS Statistic


For small N (and also for D−N), use


Pr(D+N > x/N) =
x
NN


∑
x<k≤N


(
N
k


)
(k−x)k(x+N−k)N−k−1.
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Significance of the KS Statistic


For small N (and also for D−N), use


Pr(D+N > x/N) =
x
NN


∑
x<k≤N


(
N
k


)
(k−x)k(x+N−k)N−k−1. (27)


But don’t choose a small N! Instead, choose a large N and use


Pr(D+N > x) ≈ e−2Nx2
, x ≥ 0 (28)


Pr(D > x) ≈ Q
(
(
√
N + 0.12+ 0.11/


√
N) · x


)
(29)


Q(λ) = 2
∞∑
j=1


(−1)j−1e−2j2λ2
. (30)
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A Word of Caution


Eq. (27) is not a computationally effective formula. The value
for x/NN will get extremely small, and since the entire value is
going to be a probability and hence between 0 and 1, we know
that the sum must be extremely large in order to compensate
for this.


So my recommendation is again not to use small values of N.


How large should N be? Some authors tell you to choose
N > 4, but I wouldn’t trust any test that has N as small as 5,
even if Eq. (28) is a good approximation to Eq. (27) for N = 5.


Knuth says to use N > 30, which seems much better advice. In
my own tests, I have always used N > 1000, which went very
well, both numerically and statistically.
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And the Lightbulbs...?


In our example, D+N ≈ 0.15 and D−N ≈ 0.2. Using the formulas
for large N, we get


Pr(D+N > 0.15) ≈ e−2·10·0.152 = e−0.45 = 0.64


Pr(D−N > 0.2) ≈ e−2·10·0.22 = e−0.8 = 0.45


Since both values are larger than 0.05, we cannot reject the
null hypothesis that the lightbulb lifetime is indeed normally
distributed with mean 3000 and standard deviation 400,
neither at the 1% nor at the 5% levels.
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KS Test for Known Distribution Summary


Name Kolmogorov-Smirnov (KS) Test
Question Does a sample have a given distribution?


Applicable Continuous data.
Statistic KS statistics, see Eqs. (23)–(25).


Significance See Eqs. (27)–(29).
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KS Test for Two Samples


We have two samples A with the empirical CDF SA and B with
the empirical CDF SB, consisting of continuous data. The KS
statistic for two samples is analogous to Eq. (25):


DN = max
∣∣SA(x)− SB(x)∣∣ (31)


Note that the one-sided statistics of Eqs. (23)–(24) don’t make
sense here. The significance is calculated as in Eq. (29), only
that N is replaced by


NANB
NA +NB


(32)
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KS Test for Two Samples Summary


Name KS Test for Two Samples.
Question Do two samples have the same distribution?


Applicable Continuous data.
Statistic KS-statistic, see Eq. (31).


Significance See Eq. (32).







51/51


�


�


�


�


�


�


	


Libraries and References


The Linux standard math library has all of these special
functions already built in.


If Java doesn’t have them, I have written well-tested routines in
C that should be easy to port to Java. These routines have
withstood a decade or so of abuse by people like me.


One of the inspirations for these routines was Numerical
Recipes in C by Press et.al. This book has concise introductions
to the subject, but beware! It also has a few bugs!


No bugs can be found in D.E. Knuth, The Art Of Computer
Programming, Vol 2: Seminumerical Algorithms, Section 3.3.


More on tests and and testing can be found in my ancient
1993 paper Statistical Properties of IDEA session keys in PGP,
http://www.artdecode.de/download/pgprtest-long.ps



http://www.artdecode.de/download/pgprtest-long.ps
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