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Abstract: One of the major tasks in maintaining software systems is understanding
how specific effects came to be. This is especially true for effects that cause major
harm, and especially challenging for causes that actively prevent discovery.


We introduce Malfor, a system that, for any reliably reproducible and observable
effect, isolates theprocesses that cause the effect.We apply Malfor tointrusion anal-
ysis—that is, understanding how an intruder gained access to a system—and come up
with cause-effect chainsthat describe how an attack came to be: “An attacker sent a
malicious request to the Web server, which gave him a local shell, by which he gained
administrator provileges via a security hole in Perl, and thus installed a new adminis-
trator account”.


Malfor works byexperiments.First, we record the interaction of the system being
diagnosed. After the effect (the intrusion) has been detected, we replay the recorded
events in slightly different configurations to isolate the processes which were relevant
for the effect. While intrusion analysis is among the more spectacular uses of Malfor,
the underlying techniques can easily be generalized to arbitrary system behaviors.


1 Introduction


When a program fails, we have a great number of tools and techniques available that help
in understanding and fixing the failure. Today, the state of the art includes beneficial
techniques such as fully automated bug tracking and assignment, tools that capture and
replay a program’s interaction, as well as fully automatic techniques that need no more
than an automated test to come up with a precise diagnosis how the failure came to be and
where it should be fixed. (For a survey of these techniques, see [Zel05].)


Unfortunately, when a computer system fails, the cause for the failure may not necessarily
be confined to a single program. Frequently, it is theinterplayof multiple programs and
processes that causes the problem. As we keep moving from programming in the small to
programming in the large, so must our diagnostic techniques be lifted from the program
level to the system level—in other words, we need to think aboutdebugging in the large.


Diagnosing events at the system level is particularly important when system properties are
violated—for instance, when a security incident has taken place. As an example, think
of a situation where a system administrator realizes that the system’s password file is
compromised—the file contains a new account with administrator privileges which may
be used to gain unlimited system access (Figure 1). How did this intrusion come to be?







root:H5WJ3R0Hi.aNQ:0:0:root:/root:/bin/bash
nobody:*:65534:65534:nobody:/home:/bin/sh
sshd:!:100:65534::/var/run/sshd:/bin/false
user:unknown:456:100:Some User:/usr/someuser:/bin/bash
toor:31gJkafn50ltq:0:0:root:/:/bin/bash


Figure 1: The password file of a compromised Linux system. The account namedtoor (which is
root spelled backwards) has user ID 0 and group ID 0, which under Unix means that it is a system
administrator’s account. Having an account namedtoor on a system almost certainly means that it
is compromised. The encrypted passwords shown here are not real.


The problem of analyzing such security incidents is particularly challenging, because the
causes of the intrusion, the malicious programs, activelytry to evade detection.This is
in contrast to ordinary failures which happen inadvertently and which usually leave traces
that may guide the analysis process.


In this paper, we will see such an attack in action, and we will also see how our system,
called Malfor (short for MALware FORensics) automatically analyzes such an incident
and thus helps answer these questions. Malfor’s diagnosis contains the entire cause-effect
chain of the incident, such as “An attacker sent a malicious GET request to the web server,
which gave him a shell. He then used a weakness in Perl to escalate his privileges and
used his escalated privileges to install a new system administrator account”.


The remainder of this paper is organized as follows: We first show that current methods of
attack analysis are problematic (Section 2). We then briefly review the core of the Malfor
system, glossing over many technical details (Section 3). We refer to the canonical refer-
ence for further information and related work [NZ06]. The ultimate test of a system like
Malfor is to check its ability to analyze complex, realistic attacks that exploit weaknesses,
erase all traces and install backdoors. We describe such an attack (Section 4) and the way
Malfor analyzes it (Section 5). In the conclusion (Section 6), we discuss usages beyond
security diagnoses and close with ideas for future work.


2 Analyzing Attacks


When analyzing an attack, one of the first tasks is finding out which processes participated
in the attack and how they are related. If we do not have statistical information that can
help us classify and isolate malicious traffic [SEVS03, WS04], this must happen before
we can look for the input that caused the intrusion, theattack or infection vector. To find
these processes, we usually start from an observed failure of the security policy (such as a
compromised password file) and use log files or tools like The Coroner’s Toolkit [Far05,
FV05] to reason backwards to its causes (the malicious HTTP requests).


However, dealing exclusively with evidence after the fact severely limits even an expert’s
chances of reconstructing the event chain:







Completeness.The evidence might not be enough for the event chain to be reliably es-
tablished.


Minimality. The relevant evidence might be buried in a host of other evidence and may
thus be hard to see.


Correctness. Our reasoning (by human or machine) might be faulty, leading to wrong
conclusions.


To alleviate these problems, we are exploring a novel approach with Malfor. In a typical
scenario, Malfor would be deployed on a production machine, capturing all attackable
processes. When the machine is attacked, a host intrusion detection system signals a
compromise and triggers Malfor’s replay component.


Instead ofdeducingafter the fact what must have happened, Malforexperiments: in order
to learn which processes are necessary for the break-in to occur, we repeatedly replay
different process subsets using a capture and replay infrastructure that enables not only
verbatim replay, but replay under altered circumstances.


Malfor then finds the processes that were relevant for the attack and notifies a system
administrator, who can then complete the analysis with a much smaller body of relevant
evidence. This works without knowing the attack vector beforehand. When we introduced
Malfor, we evaluated the technique using an example and found that the extraction of three
relevant processes from a total of 32 processes took about six minutes.


3 How Malfor Works


How can we efficiently find those processes that are relevant for a break-in, possibly among
thousands? Malfor finds them in two phases. In the first phase, Malforcapturesthe system
calls of all interesting processes. As soon as the break-in is detected, Malforreplaysthose
processes. However, replaying all captured processes yields no insights because it will
recreate both relevant and irrelevant processes. If we want to find which processes were
actuallyrelevant for an intrusion, we need to be able to makeexperiments.


For example, if we want to check whether theinetd process was relevant for the attack
or not, we would like to replay the attack without theinetd process. If the attack still
succeeds, we have experimental and incontrovertible evidence thatinetd was indeed not
relevant. If the attack now fails, it must have been necessary for the attack.


If we can capture and replay the processes in a system so that we can control which pro-
cesses will be executed and which will not, we want to find aminimal process set that is
necessary for the intrusion. If there aren processes, this would take on the order of 2n


replays in the worst case, so we are willing to settle for a process subset that is small but
not necessarily minimal, if we can only compute it with less replays.


This problem is solved byDelta Debugging, a technique that originated in automated
debugging and test support. Delta debugging repeatedly runs various process subsets and







uses a test function that yields✔ (successful termination, no break-in),✘ (the break-in
occurred) or (something unexpected happened). These results drive a strategy that finds
a small subset of processes that make the break-in happen, but where removing any single
process from that subset causes the break-in not to happen any more. (Details of the
approach can be found in [Zel02, HZ02].)


Delta debugging is a variant of binary search: it halves the process set and tries each half
separately. However, complications arise because the relevant processes need not all be in
one half, which makes delta debugging somewhat more complicated than straightforward
binary search. In contrast to other methods in the same general area such as slicing [Tip94],
which use deduction, delta debugging usesexperimentsto arrive at its conclusions: it
actually tries various subsets of processes and lets the outcome of the test function drive
its strategy. It does not necessarily find the smallest process subset that causes the failure,
but in practice we find that results from delta debugging are close to optimal. In addition,
delta debugging is not restricted to source code analysis.


Delta debugging is a practical method. It has already been used successfully to automat-
ically find defects in programs as large as the GNU C Compiler [CZ05]. Its worst case
running time isO(n2) if there aren processes and executing a process takes unit time, but
it usually finishes inO(n logn) time.


We emphasize that Malfor’s result does not only contain the root cause of the attack, but all
intermediate attack-relevant processes too. So if an attack involves a long chain of events,
Malfor will produce all the intermediate steps that are needed to reproduce the attack.


One concern is that a process could not exhibit its original behavior during replay because
it took a different control path. For example, what if a process launches an attack only
upon the existence of certain files, or a successful challenge-response authentication with
a remote server? In these cases, the process must have made system calls that caused these
actions to be performed. Malfor then captures these system calls and replays them. For
example, if a process creates a random challenge as part of the challenge-response proto-
col, it will have to issue system calls to do so (for example, in order to read/dev/random).
When we replay the process, we also replay these system calls, so we will have recreated
the state of the process as it was when it made the original challenge-response authenti-
cation and the computed challenge will be the same in both cases. In the case of files on
the local file system, Malfor actually executes the system calls; in the case of a remote
challenge-response authentication, it replays a previously recorded conversation.


To our knowledge, Malfor is unique; no other system uses automatic experiments to find
the causes of a system-wide effect.


4 A Complex Attack


We already showed that Malfor can analyze a realistic, albeit simple attack [NZ06]. The
question was then, can Malfor handle a complex attack with multiple stages and processes
that erase traces? We have implemented such an attack.
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Figure 2: A graphical depiction of the attack described in the text. The attack proceeds in the usual
phases: download malcode, run malcode, escalate privileges, install backdoor, erase traces.


Our target machine is running a subset of Debian 3.0 on a Linux 2.4.24 kernel. We have
installed Apache httpd 2.0.54 together with version 1.2.2 ofmodauth any, a module
that uses a configuration file to launch authentication programs. We have also installed
Perl 5.8.4. The attacker knows that:


• The 1.2.2 version ofmodauth anycontained a shell code insertion flaw by which
it is possible to execute arbitrary shell commands as the user that Apache runs as
(usuallywww-data);


• Perl 5.8.4 had a buffer overflow bug in itssuidperlcomponent that allowed the cre-
ation of files in arbitrary places through clever manipulation of thePERLIO DEBUG
environment variable. These files are writable by anyone. This is particularly ironic
sincesuidperlis touted as a safe alternative to suid shell scripts and C programs.


• If one could manipulate the/etc/ld.so.preloadfile, one can insert code that preëmpts
system calls likegetuid().


• If one can convince the/bin/suprogram that one is already the superuser—for exam-
ple by prëemptinggetuid() to always return zero—,suwill not ask for the superuser
password before executing an arbitrary command as root.


The attack now proceeds along the usual steps: download malcode, run malcode, escalate
privileges, install backdoor, erase traces (see Figure 2).


1. Use the flaw inmodauth any to downloadex perl.c. Do this in chunks so that the
download can be spread over multiple HTTP requests. (This is designed to foil
behaviour-based intrusion detection systems.) Use the same flaw to launch the C
compiler to compile the malcode intoex perl.







int getuid()
{


return 0;
}


Figure 3: The source code for the fakegetuid() function. The function always returns 0, thereby
suggesting that the caller is always the superuser.


2. Using the same flaw, downloadattackmod.o, a precompiled loadable kernel module
(LKM).


3. Using the same flaw, executeex perl. This program will first of all compile a C
file that contains the source to a fakegetuid() function (see Figure 3) into a shared
library /tmp/getuid.so.


4. Next,ex perl will executesuidperlusing a specially preparedPERLIO DEBUGen-
vironment variable.


5. This will cause the file/etc/ld.so.preloadto have write permissions for everyone.


6. Now that the process can write to the preload file, it will install/tmp/getuid.sointo
/etc/ld.so.preload. The effect is that every command that executesgetuid() will get
0 as the result, thinking that the process has root privileges. The remainder of the
attack is executed in a separate shell script by/bin/su.


7. Install the LKM downloaded above. This step could have been done together with
the previous step but the intention here is to spread the attack out over multiple steps
in order to make detection and analysis more difficult.


8. The LKM modifies the password file and installs a new system administrator ac-
count.


9. Lastly, the kernel module is unloaded and all temporary files erased.


At this point, one might wonder why we take what appears to be an unnecessarily awkward
route to our goal of adding another account. Why do we go to all the trouble to install a
LKM once we have superuser privileges? Why don’t we just modify the password file
straightaway? The rason is that we wish to elude not only potential host-based intrusion
detection systems (including those that analyze the system calls that are being made by
processes), but also those systems that analyze attacks by looking at a process’s system
calls, such as Backtracker [KC03]: if we had modified the password file directly, we would
have had to issue a system call to open the password file, which would be clearly visible in
the process’s stream of system calls. Installing the LKM allows us to open the password
file from within the kernel, without issuing a system call.


The attack generates a process tree containing 168 processes (see Figure 2). Most of these
processes are concerned with downloading the various source files. For technical reasons,
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Figure 4: The process tree induced by the attack described in the text. Rectangular nodes are pro-
cesses that execute a program, oval nodes are processes that may create other processes, but that do
not execute other programs. To the left is the invocation of Apache. In the center is the Apache
daemon after detaching itself from its controlling terminal. The regular structure that covers most
of the circle represents the downloading of the various source files. The irregular structures on the
right represent the rest of the attack. For technical reasons, the attack creates several processes that
run /bin/true, which has no side effects. These processes are eliminated by Malfor as irrelevant.


every process spawned through the hole inmodauth anygenerates two processes that run
/bin/true. The/bin/trueprogram does nothing but exit successfully; it has no side effects.
Those processes executing this program are therefore irrelevant for the attack: if it were
possible for an attacker to forego the creation of these processes, the attack would still
succeed.


5 Malfor’s Analysis


All the system administrator sees is the modified password file. For him, the system is
compromised only after Step 9 above. How does Malfor reconstruct the chain of events?







Malfor considers the set of all 168 processes and applies delta debugging to those pro-
cesses (see Figure 5). After we have replayed a process subset, three outcomes can occur:


• The attack manifests itself, that is, the password file has been modified and the new
system administrator account has been added. All processes that were necessary for
the attack are therefore included in the subset. We denote this by✘. On a✘ outcome,
delta debugging knows that those processes not included in the process subset must
be irrelevant to the attack: after all, the attack has succeeded even without those
processes.


• The attack does not manifest itself. Not all processes that were necessary for the
attack are included in the subset. We denote this by✔. When the outcome is✔, we
know that the process set does not contain all relevant processes. We therefore need
to include some of those processes that are currently being excluded.


• The proposed process subset is impossible to replay because it contains nodes whose
parent is not included. We denote this by. Note that runs do not take much time
because they are detected before replay is attempted.


All in all, delta debugging executes 1330 tests of which 56 fail and 1274 pass; an additional
1220 tests yield invalid process trees. These tests contain on the average 117 processes.
From the 168 processes, Malfor correctly identifies those 96 processes that do not run
/bin/true as culprits and tags as irrelevant the remaining 72.


On a typical system, and with a typical attack, we would record thousands of processes,
only a small fraction of which would be relevant. These are circumstances under which
delta debugging works particularly well [HZ02]. However, this attack is designed to be
very difficult for delta debugging to analyze: the proportion of relevant processes is high,
and the relevant processes are not bunched up together, but rather spread out evenly.


6 Conclusion and Future Work


We have introduced Malfor, a system that uses a new experiment-based approach to iso-
late the processes that cause a system failure. Malfor produces results that are complete,
minimal, and correct because the processes it finds—andonly these processes—have been
experimentally shown to be relevant. We have shown how Malfor analyzes an attack that
defies all other current methods of automatic attack analysis.


In the future, we plan to extend Malfor in several ways. These extensions include:


Optimizing the minimization process. If we assume that no process undoes the actions
done by a previous process, we can speed up delta debugging dramatically: We
find the earliest relevant process by straightforward binary search, then find the next
relevant process by binary search and so on. Instead ofO(n2), this process will have
a complexity ofO(k logn), wherek is the number of relevant processes.







Figure 5: Delta debugging the process tree in Figure 4. On thex-axis are the processes arranged in
order of increasing process IDs. A process is shown in a dark color if it is included in the set that
delta debugging tests, and it is shown light-colored if it is excluded. One unit on they axis represents
one execution of a process subset. Time passes from the top of the page to the bottom as Malfor tries
1330 tests. A test that results in✘ is shown with a horizontal line at the side; all other tests shown are
✔. We can see how delta debugging systematically eliminates processes: the white stripes running
down the page represent processes that have been permanently excluded from consideration by a
failing test. Delta debugging tries many more test cases than are shown here. However, these test
cases result in impossible process sets—sets where processes are included whose parent process is
not included. Malfor automatically skips these tests.







Analyzing distributed attacks. At the moment, we analyze break-ins that happen on a
single computer. Many important systems today are distributed, however, and inci-
dent analysis on distributed systems is a relevant problem. Apart from the problem
of synchronizing event streams between machines [Mat99], this work could also
make use of results derived by Mattern and others [MS94] to find events that cannot
be the cause of the break-in because they happen concurrently with it. It is easier to
find concurrent events in a distributed system than on a single machine, so it could
turn out that finding causes of break-ins is easier in distributed systems.


Finding attack vectors. Most importantly, we are already working on applying the same
simple technique of delta debugging to find the relevantinputs, that is, the infection
vector. In fact, one of the original applications of delta debugging was to minimize
inputs to failing test cases [HZ02]. This could lead to the automatic generation of a
signature for a network intrusion detection system like snort [Sou05], or to a vector
that can be used by Sidiroglou and Keromytis’s patch generation system [SK05].


Large software systems.Processes and process interaction are just one mechanism to
split a system into multiple components. The underlying techniques of Malfor—that
is, capturing, replaying, and isolating interaction—can easily be applied to arbitrary
software systems. We are currently applying Malfor’s techniques to isolate compo-
nent interaction in Java programs; first results are highly promising [OJBZ06].


Again, Malfor is not limited to finding the causes of attacks; in fact, it has no concept
of an attack. All it does it makes experiments and look at their outcomes. Therefore,
Malfor can be used to diagnose any effect that can be reliably reproduced and detected,
thus effectively raising fault diagnosis from programs to entire systems of programs—and
thus providing a means for understanding and fixing the problems of these systems.


Information about Malfor can be obtained from


http://www.st.cs.uni-sb.de/malfor/
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