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Abstract—Regression verification (RV) seeks to guarantee the
absence of regression errors in a changed program version.
This paper presents Partition-based Regression Verification (PRV):
an approach to RV based on the gradual exploration of differen-
tial input partitions. A differential input partition is a subset of
the common input space of two program versions that serves as a
unit of verification. Instead of proving the absence of regression
for the complete input space at once, PRV verifies differential
partitions in a gradual manner. If the exploration is interrupted,
PRV retains partial verification guarantees at least for the explored
differential partitions. This is crucial in practice as verifying the
complete input space can be prohibitively expensive.

Experiments show that PRV provides a useful alternative to
state-of-the-art regression test generation techniques. During the
exploration, PRV generates test cases which can expose different
behaviour across two program versions. However, while test cases
are generally single points in the common input space, PRV can
verify entire partitions and moreover give feedback that allows
programmers to relate a behavioral difference to those syntactic
changes that contribute to this difference.

Keywords-Software Verification, Testing and Analysis

I. INTRODUCTION

Software verification seeks to guarantee the absence of
errors in a program, but is rather expensive in practice. There
are two main reasons: 1) verification requires specifications,
which may be difficult to write and maintain; and 2) the
verification process can be very time-consuming.

However, there is some hope for a cheap form of Regression
Verification (RV) [1], [2]. The goal of RV is not to verify the
correctness of a program ad absolutum but relative to an earlier
version. Thus, RV seeks to guarantee the absence of regression
errors. This more modest goal allows RV to avoid separate
forms of formal specifications. The previous version serves
as sufficient specification for checking whether the changed
version is at least as correct as the previous version.

Yet, in practice, RV for all inputs is very time-consuming.
Godlin and Strichman [1] proposed a decision procedure that
takes two program versions and either proves behavioral equiv-
alence (thus the absence of regression) or provides a witness of
behavioral difference. The authors report that the verification
of non-equivalent versions can take a long time to terminate or
run out of memory. In fact, generally proving the equivalence
between two programs is an undecidable problem. While the
termination of RV provides strong regression guarantees for
all inputs, the interruption of the verification procedure (due
to time or memory constraints) yields no guarantees at all.

Regression Verification Regression Testing
Partition-based 

Regression Verification

Unverified Input Space
Verified Input Space

Fig. 1. PRV versus Regression Verification and Regression Testing

This paper presents Partition-based Regression Verification
(PRV), a gradual approach to RV based on the exploration
of differential partitions. A differential partition is a subset
of the common input space of two program versions that
serves as unit of verification. Instead of verifying the entire
input space at once, PRV allows gradually verifying such
partitions one-by-one. As illustrated in Figure 1, PRV shares
the advantages of both, Regression Testing (RT) and RV.
Like RV , if all differential partitions are shown equivalent, then
PRV guarantees the absence of regression errors for all inputs.
More importantly, PRV allows a form of partial verification:
if the verification procedure is interrupted, PRV guarantees
the absence of regression errors for the explored partitions
that are shown equivalent. Thus, like RT, PRV allows the
gradual checking for regression. However, while RT provides
verification guarantees only for the concrete, executed sample
inputs, PRV seeks to guarantee the absence of regression
for entire input partitions. In practice, this partial verification
approach is crucial, as verifying the complete input space can
be infeasible due to time or other resource constraints.

Technically, differential partitions are computed using a
form of symbolic execution [3] and require deterministic
program execution. In contrast to other input partitioning
techniques [4]–[8], differential partitioning accounts for the
inputs of two programs. A differential partition is characterized
by a symbolic condition that defines a range (or subset) of
valid input for that partition. Input is grouped according to
whether it reaches the same syntactic changes and whether
it propagates the same differential state to the output. If an
input computes the same output in both versions, the respective
partition is said to be equivalence-revealing. In such case, both
versions are soundly guaranteed to compute the same output
for all input satisfying the symbolic condition. Otherwise, the
respective partition is said to be difference-revealing.
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� �
1 input(i);
2 a = 0; o = 0;
3 i = i; //i=i+1
4 if(i>0)
5 a++;
6 if(a>0)
7 o=i;
8 output(o);� �

(a) Programs P and P’

Input Output

P i ≤ 0 o = 0
i > 0 o = i

P’ i + 1 ≤ 0 o′ = 0
i + 1 > 0 o′ = i + 1

PRV
i < 0 o = o′

i = 0 o = 0 ∧ o′ = i + 1
i > 0 o = i ∧ o′ = i + 1

(b) Differential Partitions

Fig. 2. Running Example (Incomplete Bugfix)

Figure 2 illustrates differential partitions in a concrete
example. Program P computes output o based on the values
of input i and is changed to P ′ by substituting line 3 with the
commented code. Figure 2.b shows the symbolic output that
is computed based on the evaluation of the input variables for
both programs. The bottom three rows depict one equivalence-
revealing and two difference-revealing input partitions. Note
that the analysis of only a single version is insufficient to
expose all interesting subsets of input. In particular, a test suite
T ← {i = −1, i = 1} covers all paths in both programs and
even reveals a difference. However, input i = 0 is a missing
test case that could represent a regression error. Intuitively,
it is interesting because the branch in line 4 is evaluated in
different directions in both versions. PRV explores a distinct,
difference-revealing partition for this input.

PRV provides an alternative to regression test generation
techniques [9]–[12]. Upon allowing the continued exploration
even of difference-revealing partitions, the developer may
(in)formally verify such partitions. The test cases generated for
each difference-revealing partition can be checked against the
developer’s expectation. The program slice, used to compute
the partition, can be inspected to determine the changed state-
ments contributing to the difference. The symbolic conditions
and summaries (cf. Fig. 2.b) can be further analyzed by tools.

Our initial experience with PRV is very encouraging. For the
studied subjects, PRV efficiently exposes regression errors that
are not detected by the considered test generation methods.

In summary the main contributions of this paper are:
• A gradual approach to regression verification that con-

tinuously verifies the input space of a program against
another version of that program to find regression errors.
If the verification procedure is interrupted, PRV guaran-
tees the absence of regression errors for the explored
input space that has been shown equivalence-revealing.

• A differential partitioning technique, based on symbolic
execution, that soundly partitions the input of two ver-
sions. The partitioning technique symbolically groups
input of the two programs, and creates partitions which
either guarantee behavioral equivalence, or expose differ-
ences for a certain subset of inputs.

• An alternative to regression test generation. The approach
can be used to generate test cases for partitions where
differences are found. As illustrated by our experimental
evaluation, finding such test cases is competitive with
state-of-the-art regression test generation techniques.

• The implementation and experimental evaluation of PRV.

Unexplored Partition

(a) Execute Test Case (b) Compute Differential Partition

(c) Generate Next Test Case

Witnessing Test Case
Equivalence-Revealing Partition
Difference-Revealing Partition

(d) Continuous Exploration

Fig. 3. Exploration of Differential Partitions

II. PARTITION-BASED REGRESSION VERIFICATION

PRV takes two successive program versions and contin-
uously verifies differential partitions (Def. 1). The gradual
regression verification can be interrupted at any time. In this
case, the regression guarantees are retained for the verified
input space. For every partition, PRV generates a concrete
sample input that is added to regression test suite T . The
programmer can check difference-revealing test cases in T
for regression errors and relate an output difference to the
set of syntactic changes that contribute to that difference. The
intuition of partition-based regression verification is presented
in Figure 3, while the detailed procedure is outlined in Algo-
rithm 1. Later, in Theorem 2, we will claim the exhaustiveness
of this exploration algorithm.
Definition 1 (Differential Partition)

A differential partition dP,P ′ is obtained by partitioning of
the common input space of two program versions P , P ′.
Inputs in any differential partition dP,P ′ have the following
property: either all inputs in dP,P ′ produce the same output
in P and P ′ (an equivalence-revealing partition), or all inputs
in dP,P ′ produce different outputs in P and P ′ (a difference-
revealing partition).

The exploration starts with a random test case in the queue.
Depicted as black dot in Figure 3.a) this random test case t is
taken from the queue and executed upon both versions. Test
case t is a point in the common input space1 of both ver-
sions, representing concrete knowledge about the differential
behavior. In Figure 3.b), input is grouped into a differential
partition that yields the same differential behavior as t. This
input exercises all those statement instances that are “relevant”
to the reachability and propagation of the syntactic program
changes exercised by t. Hence, in Algorithm 2 the symbolic
condition is computed as a conjunction of the pertinent branch
conditions. Later, in Theorem 1, we will claim the soundness
of this generalization from a test case to a differential partition.

1The derivation of the common input space for versions with different input
spaces is discussed in [9], e.g., the new version has one more input variable.
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Algorithm 1 Partition-based Regression Verification
Input: Versions P and P ′, Changes C and C ′

1: let queue← ∅
2: let T ← ∅
3: let V ← ∅
4: add randomInput() to queue
5: while queue 6= ∅ do
6: let t← chooseNextTestcase(queue)
7: let condition← computeDPartition(t, P, P ′, C, C ′)
8: call generateAdjacentTestcases(condition, queue)
9: add t to T

10: add condition to V
11: end while
Output: Verified Input Space V , Regression Test Suite T

As depicted in Figure 3.c), the next test case is executed
outside of the explored input space. To generate such “adja-
cent” test cases, the constituent branch conditions are negated
one-by-one (cf. Alg. 4), similar to other path exploration tech-
niques. This yields a number of intermediate constraints. If a
constraint solver finds a satisfying witness to one of these con-
straints, then it is added to the queue waiting to be executed.

As depicted in Figure 3.d), after the execution of the next
test case from the queue, again, the corresponding differential
partition is computed. This procedure repeats until all differen-
tial partitions are explored or some (time) budget is exhausted.
A search strategy would assign some distance or fitness to
each constraint and decide the order in which the partitions
corresponding to intermediate constraints are explored. This is
implemented in the procedure chooseNextTestcase (not listed).
In particular, PRV takes from the queue in the order they arrive
but prioritizes test cases that promise 1) different output, 2) the
propagation of already exercised changes and 3) the execution
of another set of changes, in that order. Finally, every executed
test case is added to the regression test suite T . Each test case
is a witness of one differential partition. The set of explored
differential partitions V represents the verified input space.

A. Computing Differential Partitions

The computation of the differential partition for a given test
case is presented in Algorithm 2. It implements the function-
ality of procedure computeDPartition called in Algorithm 1
and requires determinism - for every execution of the same
input on the same program the same output is computed. Also,
the deletion of variable assignments (e.g., x=x++) in P is
represented by dummy-statements (e.g, x=x) in P ′ (cf. [13]).

Upon execution of the test case t on both programs, P and
P ′, the symbolic condition is computed. Input that does not
exercise a syntactic change or that does not propagate the
differential state to the output is equivalence-revealing. If t
does not exercise a changed statement, then PRV employs the
reachability condition (Def. 3) to group input that does not
execute a change for the same “reason”. If t exercises at least
one changed statement but yields the same output in both ver-
sions, then PRV employs the propagation condition (Def. 4).

Algorithm 2 - Procedure computeDPartition
Input: Input t, Versions P and P ′, Changes C and C ′

1: let trace π ← execute(t, P )
2: let trace π′ ← execute(t, P ′)
3: let condition← false
4: if not exist an instance of c′ ∈ C ′ in π′ then
5: let condition← ∧

c′∈C′ reach(c′, π′)
6: else
7: let oi be the instance of output o in π
8: let o′i be the instance of output o in π′

9: if value(oi) = value(o′i) then
10: let condition← prop(o, π, π′, C, C ′)
11: else
12: let condition← diff(o, π, π′, C, C ′)
13: end if
14: end if
Output: Condition condition

Input that yields different output is difference-revealing.
If t yields different output in both program versions, then
PRV employs the difference condition (Def. 5) to group input
that computes different output for the same “reason”. These
reasons are defined upon the exercised dynamic and static
program dependencies, as enunciated in the following.

B. Computing Reachability Conditions

Intuitively, an input t does not execute a changed statement c
because the conditions of the branch instances si upon which
c statically control-depends are evaluated in the direction that
does not favor the execution of c.� �

1 input(i,j);
2 a = 0; b = 0;
3 if(i>0)
4 a=1;
5 for(c=0; c < j; c++)
6 b += c;
7 if(j>0)
8 if(a>0)
9 //change c� �

Fig. 4. Intuition of Reachability Condition

An example is shown in Figure 4. Input (0, 1) does not
execute the changed statement in line 9. Why? Because the
branch in line 8 is not evaluated to true. This is because the
condition in line 7 is evaluated to true and the condition in
line 3 to false. The remainder of this section explains the
computation of the reachability condition based on the relevant
slice of the branch in line 8.
Definition 2 (Relevant Slice [14], [15])

Given an execution trace π and a statement instance si in π,
the relevant slice of si in π contains all statement instances ri
in π that are in the transitive closure of dynamic data, control-
and potential dependence of si.
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A statement instance si potentially depends [14] on conditional
statement instance ri in path π iff. there exists a variable v
used in si such that (1) v is not defined between ri and si in
π but there exists another path σ from ri to si along which
v is defined, and (2) evaluating ri differently may cause this
untraversed path σ to be executed.

Note that relevant slices have a desirable property: If two
inputs t0 and t1 exercise the same relevant slice computed
w.r.t. a statement instance si, then the variables used in si
have the same symbolic values for t0 and t1 [7]. Relevant
slices are used to define the reachability, propagation, and
difference conditions. The property of relevant slices is utilized
to prove Theorem 1, establishing that these conditions indeed
characterize differential partitions as defined in Definition 1.
Definition 3 (Reachability Condition)

The reachability condition, reach(c, π), computed over the
trace π w.r.t. statement c is the path condition computed over
the union of the relevant slices of all instances si in π of every
statement s that c transitively, statically control-depends on.

If an input t0 does not exercise statement c, then every
input t1 satisfying reach(c, π(t0, P )) does not exercise c. A
path condition is a quantifier free first order logic formula on
program inputs. Any test input satisfying the path condition of
a path π is guaranteed to also exercise all statement instances
in path π. The negation of a constituent branch condition in the
reachability condition computed w.r.t. statement c may change
the reachability of c.

C. Computing Propagation Conditions

Intuitively, an input t does not propagate the semantic
effect of the exercised changes to the output because certain
statement instances Ni upon which the output dynamically
depends carry the same values in both versions. On a high
level, Ni represents the point where the differential program
states converge. Any attempt of negating a branch beyond that
point to propagate a difference in program state is futile.

1

2a

3

4

6

8

2o

= -1

= -1

false = = 0

0 = = false

1

2a

3

4

6

8

2o

= -1

= 0

false = = 0

0 = = false

(a) Old Version P (b) New Version P'

0 =0 =

Fig. 5. Intuition of Propagation Condition

Figure 5 shows the dynamic dependency graphs augmented
by concrete values and computed for the execution of input
(−1) upon the version pairs in Figure 2. The dashed arrows
indicate potential dependence while the concrete arrows indi-
cate either dynamic data- or control-dependence. Each node
is labeled with the line number of the statement instance it

represents. The values for the instance of line 3 are different
in both versions. That is, the program state is “infected” after
the execution of the change. However, the value of the output
in line 8 is the same for both versions. Why?

The semantic effect of the change in line 3 is not propagated
to the output in line 8 for the execution of (−1) on P and P ′

because the branch in line 4 is evaluated in the same direction
in both versions even though it dynamically depends on the
statement in line 3, which carries different values in both
versions. In the remainder of this section, we explain how
the instance of line 4 is added to the convergence set Ni and
define the propagation condition based on Ni.

As shown in Algorithm 3, both dynamic dependency graphs
(DDGs) are computed over the traces π and π′ for the
execution of input t on both versions P and P ′. The DDGs are
augmented by potential dependencies and the concrete values
for the variables used in every node. Output instances oi in π
and o′i in π′ are aligned and passed into procedure PROPALIGN
to compute Ni recursively.

Algorithm 3 Computing Differential State Convergence Ni

Input: Execution Traces π and π′, Output Statement o
1: aDDG← augmentedDDG(π)
2: aDDG′ ← augmentedDDG(π′)
3: (oi, o

′
i)← alignableOutput(aDDG, aDDG′, o)

4: Ni ← ∅
5: if isChanged(o′i) then add (oi, o

′
i) to Ni

6: else call PROPALIGN(oi, o
′
i)

7: procedure PROPALIGN(si, s′i)
8: Ri ← si.getDependsOn()
9: R′i ← s′i.getDependsOn()

10: for all r′i ∈ R′i do
11: if ¬isChanged(r′i) ∧ ∃ri ∈ Ri. align(ri, r

′
i) ∧

(value(ri) = value(r′i)) then
12: call PROPALIGN(ri, r

′
i)

13: else
14: add (si, s

′
i) to Ni and return

15: end if
16: end for
17: end procedure
Output: Statement instances Ni

Assuming that instances si and s′i can be aligned, the tuple
(si, s

′
i) is added to the set Ni if 1) not all of the “subsequent”

instances r′i can be aligned, 2) the values of the variables used
in ri and r′i are different, or 3) r′i is a changed statement. This
is represented by the intuitively named predicates in line 10.
Note, we do not assume that both DDGs can be aligned
completely, which would be rather difficult indeed due to
the different number of instances every statement can have in
both executions. Instead, the alignment begins from the output
statement instances (e.g., return), which we assume to be
alignable, and follow the dependence edges recursively. The
instance at which alignment fails is added to Ni. In Figure 5,
the instances in line 4 are added to Ni because they depend on
the changed statement in line 3 that also has different values.

303



Definition 4 (Propagation Condition)
Let statements C in program P be changed to C ′ yielding
P ′. Given traces π and π′ for the execution of input t on P
and P ′ and Algorithm 3 computes Ni for π and π′ and pro-
gram output statement o, the propagation condition is defined
as prop(o, π, π′, C, C ′)

def
= ∀(ni, n′i) ∈ Ni.rsc(ni, π) ∧

rsc(n′i, π
′)∧ value(ni) = value(n′i)∧

∧
c∈C reach(c, π)∧∧

c′∈C′ reach(c′, π′).

Every input satisfying the same propagation condition does
not propagate the effects of the exercised changes for the same
reason. Hence, Definition 4 is a conjunction of five conditions.
The necessary conditions 1) and 2) leverage the property of
relevant slices. Note, rsc(ni, π) is the path condition computed
over the relevant slice of statement instance ni in trace
π. Every input exercising the same relevant slice w.r.t. ni,
compute the same symbolic value for ni. The negation of a
constituent branch condition may change the computation of
ni and thus enable propagation. The necessary condition 3)
captures that the symbolic values for the alignable instances
in Ni are the same. The negation of such an equivalence
condition may enable propagation. The necessary condition
4) and 5) captures that those changes (not) exercised by the
test case t are also (not) exercised by other input satisfying
the same propagation condition. The negation of a constituent
branch condition may enable the reachability of other changes.

D. Computing Difference Conditions

Intuitively, input t computes different output because it exer-
cises a certain set of statement instances in P that contribute
to computing the symbolic output of P and another set of
statement instances in P ′ that contribute to computing the
symbolic output of P ′.

Definition 5 (Difference Condition)
Let statements C be changed to C ′. Given instances oi of

output statement o in trace π and o′i of o in trace π′, the
difference condition is defined as diff(o, π, π′, C, C ′)

def
=

rsc(oi, π) ∧ rsc(o′i, π
′) ∧ value(oi) 6= value(o′i) ∧∧

c∈C reach(c, π) ∧∧
c′∈C′ reach(c′, π′).

Every input satisfying the same difference condition propa-
gates the semantic effect of the exercised changes for the same
reason. To achieve this property, Definition 5 is a conjunc-
tion of five necessary conditions. The necessary conditions
1) and 2) leverage the property of relevant slices. Every
input exercising the same relevant slice w.r.t. oi, compute the
same symbolic value for oi. The negation of a constituent
branch condition may change the computation of oi and thus
disable propagation. The necessary condition 3) captures that
the symbolic output values are different in both versions.
The negation of this condition may disable propagation. The
necessary conditions 4) and 5) capture that those changes (not)
in π or π′ are also (not) exercised by other input satisfying
the same difference condition. The negation of a constituent
branch condition may enable the reachability of other changes.

A set of changed statements Ct semantically interferes for
the execution of input t on both program versions, if t yields
different output in P and P ′ and every c ∈ Ct contributes to
computing the output. Thione et al. [16] approximate semantic
interference based on static data- and control-dependence. It
can be used to understand the origin of regression.

Interestingly, every changed statement in the relevant slice
of o′i contributes in computing o′i and therefore semantically
interferes. This allows the developer to inspect the set of
changes responsible for an observed semantic difference.

E. Generating Adjacent Test Cases

Algorithm 4 generates “adjacent” test cases from the pro-
vided symbolic condition and adds those to the queue. It
implements generateAdjacentTestcases called in Algorithm 1.

Algorithm 4 - GENERATEADJACENTTESTCASES

Input: Condition cond, Queue queue
1: let cond = (ψ′0∧. . .∧ψ′m)∧(ψ0∧. . .∧ψn)∧(υ0∧. . .∧υk)
2: for all υi in [υ0, .., υk] do
3: constr ← (ψ′0 ∧ . . . ∧ ψ′m) ∧ (ψ0 ∧ . . . ∧ ψn) ∧ ¬υi
4: if exists t+ that satisfies constr then
5: add t+ to queue
6: end if
7: end for
8: let (ϕ0 ∧ . . . ∧ ϕn)← reorder(ψ0 ∧ . . . ∧ ψn)
9: for all i from n to 0 do

10: constr ← (ψ′0 ∧ . . . ∧ ψ′m) ∧ (ϕ0 ∧ . . . ∧ ϕi−1 ∧ ¬ϕi)
11: if exists t+ that satisfies constr then
12: add t+ to queue
13: end if
14: end for
15: let (ϕ′0 ∧ . . . ∧ ϕ′m)← reorder(ψ′0 ∧ . . . ∧ ψ′m)
16: for all i from m to 0 do
17: constr ← ϕ′0 ∧ . . . ∧ ϕ′i−1 ∧ ¬ϕ′i
18: if exists t+ that satisfies constr then
19: add t+ to queue
20: end if
21: end for
Output: Queue queue

The symbolic condition is composed of branch conditions
(ψ′0 ∧ . . . ∧ ψ′m) in P ′, branch conditions (ψ0 ∧ . . . ∧ ψn)
in P , and equivalence conditions υ of the form value(si) =
value(s′i) or value(si) 6= value(s′i) (cf. line 1). First, the
constituent equivalence conditions υ0 to υk are negated one-
by-one (lines 2-7). If there exists a solution to the com-
puted constraint, it is added to the queue. Second, if some
branch conditions are removed from a path condition, the
remaining branch conditions have to be reordered before
negation (lines 8-9). Otherwise, the exploration algorithm
ceases to be exhaustive (cf. [7]). Hence, the branch conditions
(ψ0 ∧ . . . ∧ ψm) in P are reordered as follows: If a branch
instance b is in the relevant slice of branch instance bk,
then the branch condition of b is placed before the branch
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condition of bk. Otherwise, the branch condition of b is
placed after the branch condition of bk. The reordered branch
conditions in P are negated one-by-one and conjoined with
(ψ′0∧ . . .∧ψ′m) in P ′ (line 10-15). If there exists a solution to
the computed constraint, it is added to the queue. Lastly, the
branch conditions in P ′ are reordered and negated one-by-one
(lines 16-23). Again, if there exists a solution to the computed
constraint, it is added to the queue.

F. Theorems

In the following, we postulate the soundness of Algorithm 2
that computes the differential partition for a given test case and
the exhaustiveness of Algorithm 1 that explores differential
partitions. For the lack of space, the detailed proof has been
moved to the corresponding technical report [17]. In practice,
the absence of regression errors can be guaranteed for all
inputs to the same extent as symbolic execution can guarantee
the absence of program errors (see e.g., [18]). Specifically, we
assume deterministic program execution.
Theorem 1 (Sound Generalization)

Given statementsC in program P are changed toC ′ yielding
P ′, every input satisfying the condition computed by Algo-
rithm 2 for input t is in the same differential partition as t.

Informally, the differential behavior of a point in the com-
mon input space is soundly generalized to the set of points in
the same differential partition. In particular, let Algorithm 2
compute the symbolic condition Φ for a test case t. If t
is equivalence-revealing, then every input satisfying Φ is
equivalence-revealing. Similarly, if t is difference-revealing,
then every input satisfying Φ is difference-revealing.
Theorem 2 (Exhaustive Exploration)

If there exists an input t0 that computes different values for
the output o in versions P and P ′ and Algorithm 1 terminates
with regression test suite T , then there exists a test case t ∈ T
so that t0 satisfies diff(o, π(t, P ), π(t, P ′), C, C ′).

Informally, if the verification procedure terminates then all
differential partitions have been explored. The respective proof
leverages the exhaustiveness of the exploration based on
relevant slices as shown in [7].

III. EMPIRICAL STUDY

Our experiments evaluate the relative efficiency of PRV and
discuss practicability based on our experience. The experi-
ments do not prove the scalability of PRV. In fact, PRV suffers
from the same limitations as symbolic execution. Similarly,
it can benefit from relevant optimizations such as domain
reduction [19], [20], parallelization [21], and better search
strategies [22], [23].

A. Setup and Infrastructure

PRV has been implemented into our dynamic backward
slicing tool JSlice [24]. The differential partitions are explored
in a breadth-first manner starting from the same initial input
within the time bound of five minutes, unless stated otherwise.

Every version of the same subject uses the same test driver
to construct necessary input objects, strings, or arrays from
the input integers that come as solution to a first-order logic
formula from the Z3-constraint solver [25]. The subject pro-
grams are analyzed on a desktop computer with an Intel 3GHz
quad-core processor and 4GB of memory.

B. Subject Programs

The subjects summarized in Figure 6 are chosen according
to two criteria: 1) they represent a variety of evolving programs
and 2) are discussed in related work (which allows the
comparison with our own experimental results). There are 83
versions of programs ranging from 20 to almost 5000 lines
of code (LoC). Some versions are derived by seeding faults,
called mutants, of the original versions. Some are real versions
that were committed to a version control system.

Subject Reference Classes Functions LoC Versions
Min [26] 1 1 20 5
Tcas [1], [13], [27], [28] 1 8 166 21

Replace [12], [27] 1 21 564 33
Siena [12] 6 107 1529 7+11

Apache CLI 22 183 4966 6
Total 30 320 7245 83

Fig. 6. Subject Programs

We compare the empirical results of the references dis-
cussing regression verification [1] and regression test genera-
tion [12], [13], [27], [28]. Note, there are no empirical results
available for the regression test generation techniques [10],
[11], [29] and differential symbolic execution [30].

Min [26] is a short function introduced to discuss the
problem of equivalent mutants. An equivalent mutant is a
simple syntactic change to a program that yields no semantic
difference. Tcas is the traffic collision avoidance system. This
well-studied program is available in the SIR [31] with several
versions that contain seeded faults. We chose the first 20
changed versions. Replace performs pattern matching and
substitution and is available in the SIR with 32 versions that
contain seeded faults. Siena is an event notification architec-
ture. Note, there are 7 versions available in the SIR and for
every version there exist between one and four faulty versions
(in total 11 mutants).

Revision Submission Developer’s Submission Comment
129800 15.08.2002 bug. no 11680 resolved
129803 18.08.2002 bug #11457: implemented fix [..]
129843 14.11.2002 added fix for Rob’s problem [..]
129849 19.11.2002 some bug fixes submitted by Rob [..]
538031 15.05.2007 Applying Brian Egge’s fix from CLI-13
667565 13.06.2008 Restored CLI 1.0 behavior (CLI-137)

Fig. 7. Apache CLI Revisions (http://commons.apache.org/cli/)

Apache CLI is an open source command line interpreter.
We retrieved the six revisions from the version control system
(branches/cli-1.x/src) that are presented in Figure 7 along with
the submission date and comments and the unique identifiers.
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All programs are tested as whole programs, except for
Apache CLI. In this case, the the command line component
was tested for regression. The first three programs all have a
main method. For Siena, encode and decode in the class
SENP serve as main methods. For Apache CLI, addOption
and getOptionValue in the class CommandLine serve as
testing hooks.

C. Research Questions

RQ1: How efficiently does PRV find the first input that exposes
semantic difference?
Empirical studies in the discussed related work are concerned
with finding the first difference-revealing input as witness of
semantic difference. We compare the efficiency of PRV to the
efficiency reported in related work.

RQ2: How efficiently does PRV find the first input that exposes
software regression?
Not every difference-revealing input exposes software regres-
sion. In fact, after syntactic changes to the program, semantic
changes may be anticipated in the form of progression. For
instance, when a buggy program is fixed input failing in the
buggy version is supposed to pass in the fixed version. To
classify a semantic change as regression, we have to define
correctness. As often in reality, we assume the absence of
formal specifications. In this scenario, the developer checks
the generated difference-revealing test cases informally against
her expectation. If she observes regression, the developer can
relate the regression-revealing test cases to the changes that
semantically interfere.

RQ3: How practical is PRV in an example usage scenario?
The subject Apache CLI shall be used to evaluate PRV in a
practical usage scenario. PRV generates difference-revealing
test cases within the bound of 20 minutes for every version
pair. We classify the generated test cases (e.g. regression-
revealing) and compare the (informal) measure of regression
and progression to the submission comments in Figure 7.

IV. RESULTS AND ANALYSIS

RQ1: Efficiency - Semantic Difference

We measure two aspects when searching for the first
difference-revealing input as shown in Table I. The first seven
rows show the average time to find a difference-revealing input
per subject. If for a version pair none of the approaches finds
a difference-revealing test case within five minutes, then it
does not contribute to the calculation of the average time. The
mutation score depicts the fraction of versions for which a
difference-revealing input can be found within five minutes.
To gather results for the symbolic execution of the changed
version P ′, we implemented a DART-like [6] and eXpress-
like [12] path-exploration technique (Columns 3-4) into JSlice.
The DART-like technique explores all paths in P ′ while the
eXpress-like technique prunes all paths that do not exercise a
changed statement in P ′. The results for the exploration of the
differential behavior of both versions, P and P ′, are gathered
using PRV (Column 2).

TABLE I
FIRST WITNESS OF SEMANTIC DIFFERENCE

P, P ′ only P ′

PRV DART-like eXpress-like
Average Time in sec

Min (4 Mutants) 0.4 0.3 (-25%) 0.3 (-25%)
Tcas (20 Mutants) 5.6 20.9 (+273%) 20.7 (+270%)

Replace (32 Mutants) 22.8 130.5 (+472%) 60.1 (+164%)
Siena (11 Mutants) 30.7 66.2 (+116%) 40.4 (+32%)
Siena (7 Versions) 14.0 18.3 (+31%) 12.7 (-9%)

Apache CLI (6 Versions) 57.8 38.9 (-33%) 45.1 (-22%)
Mutation Score - fraction of versions shown semantically different

Min (4 Mutants) 0.75 0.50 (-33%) 0.50 (-33%)
Tcas (20 Mutants) 1.00 0.56 (-44%) 0.56 (-44%)

Replace (32 Mutants) 0.76 0.56 (-26%) 0.63 (-17%)
Siena (11 Mutants) 0.82 0.73 (-11%) 0.73 (-11%)
Siena (7 Versions) 0.67 0.67 (±0%) 0.67 (±0%)

Apache CLI (6 Versions) 1.00 1.00 (±0%) 1.00 (±0%)

Answer to RQ1. For the analyzed subjects, PRV generates
a difference-revealing test case on average for 21% more
version pairs in 41% less time, than the eXpress-like approach
that analyzes only the changed version P ′. For the subtle,
seeded faults PRV can find a difference-revealing test case
more efficiently. In particular, Tcas is fully analyzed within
the time bound by all approaches but only PRV can find a
difference-revealing test case for every mutant supporting the
motivation illustrated in Figure 2. In general, PRV’s relative
efficiency is better for the first four subjects containing subtle,
seeded faults. This efficiency reduces as the changes become
more complex in the latter two subjects. This can be attributed
to the increased number of changed statements correlating with
an increased probability to reveal a difference (for random
input). However, not every difference-revealing test case is
also regression-revealing as analyzed in RQ2.

Compared to DART, our eXpress-like implementation has
a similar relative efficiency than eXpress in [28] and [12].
The authors compare full path exploration (Pex) to pruning
paths that do not execute a changed statement (Pex-eXpress).
For Siena, Replace, and the chosen mutants of Tcas, the
authors report an improvement in terms of time of 29%, 57%,
and 13%, respectively. For these subjects, we see a similar
improvement of 37%, 54%, and 16% of the eXpress-like
approach over the DART-like approach, respectively.

Mutation Score Matrix [13] SHOM [27] PRV [this]
Tcas 62.7% 62% 100%

Replace - 72% 76%

Fig. 8. PRV mutation scores vs SHOM and Matrix

Santelices et al. [13] and Harman et al. [27] report the
mutation score for the test generation tools Matrix and SHOM,
respectively. Note that many of the subjects used by these au-
thors and us are different. However, Tcas was used to evaluate
Matrix and SHOM, while Replace was also used to evaluate
SHOM. As shown in Figure 8, PRV compares favourably
for the commonly evaluated subjects, Tcas and Replace. The
last row shows the average mutation score for the subjects
evaluated in the respective references. In contrast to these
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search-based techniques, PRV avoids searching for difference-
revealing test cases within the already explored input space.
This may help explaining the observed improvements.

Godlin et al. [1] evaluate the implementation of regression
verification using randomly generated programs and Tcas. It
takes many hours or the system runs out of memory when
analyzing non-equivalent programs. Offutt et al. [26] discuss
the problem of equivalent mutants using subject Min. PRV
guarantees equivalence for Mutant 3 and provides a witness
for the other non-equivalent mutants in less than a second.

RQ2: Efficiency - Software Regression

In practice, not every difference-revealing test case reveals
software regression. A difference-revealing test case can be
checked formally or informally against the programmer’s
expectation. In the latter case the programmer looks at the
output of difference-revealing test cases in both programs and
may know whether the test case reveals regression. Table II
presents the two aspects measured to find the first regression-
revealing input. The first seven rows show the average time to
find a regression-revealing input per subject. If for a version
pair none of the approaches finds a regression-revealing test
case within the time bound, then it does not contribute to the
calculation of the average time. The mutation score depicts the
fraction of versions for which a regression-revealing input can
be found within 20 minutes for Apache CLI and five minutes
for the other subjects.

Expected

v1 vnv0

Actual Change

(b) Apache CLI

Expected

Actual Change

(a) Siena

v0 v1

v1_Mut1

Fig. 9. How to Measure Regression?

How do we measure regression? For Siena, we simulate
an incomplete bug fix [32] from one version to the next.
An example is shown in Figure 9.a). The programmer fixes
Siena.v0 which is expected to behave like Siena.v1. Instead,
he introduces another bug yielding Siena.v1 Mut1 – a version
of Siena.v1 that also contains seeded faults. For Apache CLI,
there are no seeded faults available. But we can capture the
programmer’s idea of the expected behavior to be in the last
revision 667565 which remains unchanged for the last four
years. This allows us to measure the regression of intermediate
revisions w.r.t. the last revision. For Min, Tcas, and Replace
every difference-revealing test case also reveals a regression.

Answer to RQ2: For the analyzed subjects, PRV generates
a regression-revealing test case on average for 48% more
version pairs in 63% less time than the eXpress-like approach
that analyzes only the changed version P ′. The improvement
of efficiency over finding a single difference-revealing input
(cf. Table I) may be attributed to the subtleness of regression
faults. As an instance of this subtleness, consider the program
versions in Figure 2. The programmer expects that the new

TABLE II
FIRST WITNESS OF SOFTWARE REGRESSION

P, P ′ only P ′

PRV DART-like eXpress-like
Average Time in sec

Min (4 Mutants) 0.4 0.3 (-25%) 0.4 (-25%)
Tcas (20 Mutants) 5.6 20.9 (+273%) 20.7 (+270%)

Replace (32 Mutants) 22.8 130.5 (+472%) 60.1 (+164%)
Siena (11 Faulty Versions) 17.6 50.4 (+186%) 44.1 (+151%)

Apache CLI (6 Versions) 141.3 259.6 (+84%) 263.9 (+87%)
Mutation Score - fraction of versions exposed as regression

Min (4 Mutants) 0.75 0.50 (-33%) 0.50 (-33%)
Tcas (20 Mutants) 1.00 0.56 (-44%) 0.56 (-44%)

Replace (32 Mutants) 0.76 0.56 (-26%) 0.63 (-17%)
Siena (11 Faulty Versions) 0.55 0.45 (-17%) 0.45 (-17%)

Apache CLI (6 Versions) 0.40 0.20 (-50%) 0.20 (-50%)

version computes output o = i+ 1 instead of o = i for input
i > 0. Otherwise, the behavior shall remain unchanged. Thus,
a regression test generation tool may determine progression
for almost 50% of the input (i > 0) but because a branch
is evaluated in different directions for i = 0, there exists
regression only for one input. Unintendedly, this input com-
putes different output in the changed version, too. Even the
generation of an input for every path in the changed program,
like for eXpress, may not produce this test case. In contrast,
differential partitions can capture such subtle differences.

RQ3: Practicability - Usage Scenario: Apache CLI

Apache CLI is used to evaluate PRV in a practical usage sce-
nario. PRV generates difference-revealing test cases within the
bound of 20 minutes for every version pair. A developer checks
these test cases for regression and relates the regression-
revealing test cases to the changes that semantically interfere.
The check is automated in our experiment as illustrated in
Figure 9.b). The expected behavior of CLI is captured by the
last revision (667565) which has not changed in the last four
years and is released in CLI1.1. This allows us to measure
progression and regression w.r.t. to the expected behavior.

The first column in Table III shows the revision pairs, the
earlier versus the later revision. The second column presents
the total number of tests generated by PRV followed by the
number of equivalence- and difference-revealing test cases,
respectively. The percentage of difference-revealing test cases
(Column 4) witnessing progression (%Progr), regression
(%Regr), and the computation of output that has changed
but still does not behave as expected (%Chan) are shown in
columns 5, 6, and 7, respectively.

TABLE III
EXPLORATION OF DIFFERENTIAL BEHAVIOR IN LIMITED TIME

Subject and Versions #Test #Equ Difference Revealing
#Diff %Progr %Regr %Chan

C
L

I
(2

0m
in

) r129800-r129803 788 748 40 0% 0% 100%
r129803-r129843 835 809 26 65% 0% 35%
r129843-r129849 721 639 82 82% 1% 17%
r129849-r538031 509 485 24 0% 88% 13%
r538031-r667565 536 455 81 100% 0% 0%

Average 49% 18% 33%

307



Answer to RQ3: For the evolution of Apache CLI over
six years, tests generated as witnesses of differential behavior
of two successive versions suggest an average progression of
49%, regression of 18% and intermediate semantic changes
of 33% towards the latest revision. The interested reader may
compare the results in Table III to the developer’s notes in Fig-
ure 7. The behavior of CLI generally experiences progression
from version r129800 to r129849 when suddenly the behavior
regresses with the change to r538031. In fact, while trying to
fix bug CLI-132, the developer introduces bug CLI-1373. This
is a clear regression bug which is witnessed by 88% of the
difference-revealing test cases generated by PRV. However, it
takes two months to report and twelve to fix bug CLI-137 and
commit it as revision r667565. In contrast, PRV generates the
first regression-revealing test case for r538031 in 88 seconds
among the first five generated difference-revealing test cases.

V. THREATS TO VALIDITY

The main threat to internal validity is the correctness of
our implementation of PRV into JSlice. We tried to mitigate
this threat by using the same implementation to gather results
for the DART-like and eXpress-like approaches. In practice,
any implementation of PRV can guarantee the absence of
regression errors to the same extent as symbolic execution
can guarantee the absence of program errors (see e.g., [18]).
Our particular implementation could be faulty, so that it may
not report a witness of behavioral difference if one exists. On
the other hand, a reported witness of behavioral difference is
indeed a witness of behavioral difference. This is inherent to
the approach, as the generated test cases are concretely (and
symbolically) executed on both programs.

The main threat to external validity is the generalization of
our results. The limited choice and number of subjects does not
suggest generalizability and serve mainly as comparison to re-
lated work and give an idea about the practicability of PRV.

VI. RELATED WORK

Regression Verification (RV) is the problem of deciding
whether a changed program is at least as correct as a previous
version. One line of work takes an earlier version as a
program specification of the new version [1], [2], [33]. The
authors argue if both versions are semantically equivalent,
then there is no software regression. Yet, not every difference
is a regression. For instance, a bug-fix yields anticipated
behavioral difference. Another line of work requires an explicit
specification, and builds on the full verification of an earlier
version. Subsequently, only the changed behavior of the fol-
lowing versions need to be checked incrementally [34], [35]. In
general, RV can take a long time to terminate. When the search
is interrupted, no intermediate guarantees can be reported. In
contrast, the interruption of PRV can guarantee the absence
of regression at least for the explored equivalence-revealing
partitions. Moreover, the difference-revealing test cases can
be “informally” checked for further regression by developers.

2https://issues.apache.org/jira/browse/CLI-13
3https://issues.apache.org/jira/browse/CLI-137

Differential Symbolic Execution (DSE) [30] is a general
approach to compute program differences while PRV is a spe-
cialized approach tailored to RV. Specifically, DSE computes
the differences based on two types of program summaries.
The symbolic summaries in Figure 2 on the right (P and P ′)
precisely characterize the behavior of the program versions
on the left. The abstract summaries in Figure 10 over-
approximate the behavior for the same versions. Exploiting the
syntactic similarity of both versions, the behavior of common
code blocks can be represented by uninterpreted functions.

Input Output Regression Test Case t
P (= ∆〈P,P ′〉) true o = o(0, i) Value for i satisfying
P ′ (= ∆〈P ′,P 〉) true o′ = o(0, i + 1) o(0, i) 6= o(0, i + 1)

Fig. 10. Program Deltas (∆) and Abstract Summaries (cp. Fig.2)

RV based on program summaries is either less scalable or
infeasible. While symbolic summaries may be used for RV,
the differences are computed as an expensive cross-product of
(incomplete) summaries. On the other hand, PRV is based on
differential partitions that account for the common input space
of both versions. Furthermore, PRV yields coarser partitions.
For instance, if input does not reach a change already implies
both programs compute the same output. Abstract summaries,
on the other hand, remove information required for RV. The
interested reader may verify in Figure 10 that, if the delta con-
tains uninterpreted functions, a concrete difference-revealing
test case cannot be generated. In this example, each delta
accounts for a single partition (true), while PRV distinguishes
two difference-revealing and one equivalence-revealing parti-
tion. For each partition, PRV generates a witnessing test case.

Regression Test Generation (RTG) is the problem of con-
structing sample input that can expose software regression.
Classically, test cases are generated towards the coverage of
the program’s behavior [4], [6]. The hope, when the program
is changed and behavior regresses, is that at least one test
case fails in the new version. Further, when the program is
changed, test cases are generated towards the coverage of
program elements that are affected by the syntactic changes
[11], [12], [36]. These test cases augment an existing test suite
that was coverage-adequate for the earlier version. However,
the analysis of a single program may be insufficient to generate
a regression-revealing test case (cf. Fig. 2). Instead, some
research directly aims at generating difference-revealing test
cases. Syntactic approaches seek to reach a change, infect
the program state, and propagate it to the output [9], [10],
[13], [27]. However, the number of possibly semantically
interfering sets of changes is exponential to the number of
overall syntactic changes. Harman et al. [27] note the testing
of every subset would be prohibitively expensive. Even for
a single subset, the search for a difference-revealing input
may not terminate. In contrast, the number of changes is
unimportant to PRV, à priori. It groups input, depending on
whether it reaches and propagates the same set of changes,
on demand during exploration. More importantly, PRV can
guarantee the absence of regression not only for a singular
point in the common input space, but for an entire partition.

308



VII. CONCLUSION

Regression testing is probably the most widely used testing
technique. In theory, an adequate regression test suite covers
many semantic elements in a program, that is, different func-
tionalities. The hope is, when the program is changed and
existing functionality stops working as expected, at least one
test case fails. In practice, the adequacy of a regression test
suite is measured in terms of covered syntactic elements in a
program, that is, code coverage. For instance, a test suite is
100% branch coverage-adequate if it exercises every branch.

However, code-coverage may not properly quantify the
capability of a test suite to reveal regression errors, as Böhme
motivates in [37]. While syntactic coverage is a practical ap-
proximation of semantic coverage, it remains unclear whether
a Coverage-adequate Test Suite (CaTS) performs significantly
better in terms of revealing errors than the execution of random
input [38], [39]. Weyuker et al. [4] argue that any (failing) test
case in a CaTS may not be representative of (the observed)
errors. Moreover, even if all CaTS tests execute successfully,
that shall not inspire confidence in correctness [5].

We propose the exploration of differential partitions to
group input with the same “differential behavior”. As such,
each generated test case becomes significant and representative
of a larger set of inputs. Once a test case is executed on both
versions and exposes a difference, PRV can soundly generalize
to those inputs that are also difference-revealing. This allows to
assess the adequacy of a test suite not in terms of the covered
code elements but the covered input space. PRV shall inspire
confidence in the absence of regression at least for input in the
covered input space - establishing a form of “comfort zone”.
Experiments show that PRV exposes regression errors that
are not detected by other regression test generation methods.

In summary, differential partitions enable a gradual and
partial form of regression verification. Differential partitions
exist as a unit of verification in the common input space of
two program versions and are checked one after another. When
the verification process is interrupted, PRV retains regression
guarantees for the explored input space. This is crucial as
verifying the complete input space is prohibitively expensive.
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