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Abstract
Template languages are widely used within generative program-
ming, because they provide intuitive means to generate software
artefacts expressed in a specific object language. However, most
template languages perform template instantiation on the level of
string literals, which allows neither syntax checks nor semantics
analysis. To make sure that generated artefacts always conform to
the object language, we propose to perform static analysis at tem-
plate design time. In addition, the increasing popularity of domain-
specific languages (DSLs) demands an approach that allows to
reuse both the concepts of template languages and the correspond-
ing tools.

In this paper we address the issues mentioned above by pre-
senting how existing languages can be automatically extended with
generic template concepts (e.g., placeholders, loops, conditions) to
obtain safe template languages. These languages provide means for
syntax checking and static semantic analysis w.r.t. the object lan-
guage at template design time. We discuss the prerequisites for this
extension, analyse the types of correctness properties that can be
assured at template design time, and exemplify the key benefits of
this approach on a textual DSL and Java.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages

Keywords generative programming, template language, safe au-
thoring, language extension

1. Introduction
Generating programs and other artefacts (e.g., documentation or
web pages) is considered a viable approach to reuse recurring text
fragments in variable settings. By using a parametrisable generator,
the time consuming manual creation of boilerplate can be avoided.
Among the various ways to built such a generator, template lan-
guages have become very popular. Based on the concrete syntax of
the object language (i.e., the language to be generated) and a basic
set of imperative operators (e.g., loops and conditions), templates
can be used to perform arbitrary generation tasks. In comparison
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to other approaches, such as generating artefacts based on their ab-
stract syntax, templates are easier to read and maintain.

However, a closer look reveals some serious problems faced by
template developers. First, template languages can be either spe-
cific to a particular language or language agnostic. In the former
case reusing the template language and tools is sacrificed for the
benefit of language specific support (e.g., syntax and semantics
checks, highlighting etc.). In contrast, the latter type of languages
can be reused for arbitrary object languages, but often at the cost of
sacrificing sophisticated development support. Second, both kinds
of template languages described before are often executed by trans-
lating them to meta programs with string literals. Template instan-
tiation is thus based on plain string concatenation. Tracing the im-
pact of input parameters to a particular template instance is conse-
quently only possible at a very low level. A type safe composition
of the template contents and the parameters, as available when ab-
stract syntax is used for generation, is not possible.

Previous works [Arnoldus et al. 2007] indicate that the advan-
tages of meta programs based on abstract syntax (i.e., syntax safety)
and the readability of templates using concrete syntax can be com-
bined. We carry this idea on by presenting an approach for auto-
matic derivation of template languages from object language spec-
ifications and exemplify this using concrete applications.

Based on a metamodel that describes the abstract structure of a
language and a syntax specification which maps the abstract struc-
ture to a textual representation, we show how to add the concepts
of template languages to arbitrary object languages. To do so, we
first discuss design principles for languages to allow extensibility
without invasive modification. Then we show how both tool sup-
port and language-specific checks (syntactical and semantical) can
be transferred to a template language that is an extension of an ob-
ject language. The interaction between the template concepts and
the object language is studied to allow type checking of templates.

The contributions of this paper are as follows. We extend previ-
ous work on syntactically safe template languages [Arnoldus et al.
2007] to textual modelling languages. A detailed study of meta-
model design enables language developers to arrange for extensi-
bility. Our representation of templates, template instances and pa-
rameters as models allows to perform more checks at template de-
sign time. We discuss how to enhance static semantic analysis at
template design time by incorporating the impact of template con-
cepts on name and type analysis in a modular fashion. Additionally,
the queries on the parameter model are checked statically to ensure
their correctness. To automatically extend arbitrary model-based
languages, we present an algorithm which allows the generation
of template languages for any textual metamodel-based language.
Finally, we show the benefits of reusing the template interpreter.

The remainder of this paper is structured as follows. We intro-
duce a simple toy language in Sect. 2 that will be used to explain our
approach. In Sect. 3 we discuss how languages can be designed or
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Figure 1. Metamodel for sandwich recipes

refactored to enable unforeseen extensions. Based on this knowl-
edge, we explain in Sect. 4 how a concrete extension (i.e., intro-
ducing template concepts) can be performed. Sect. 5 contains de-
tails about the application to a more complex language, i.e., Java.
There we discuss how a language that was not explicitly designed
for extensibility can still benefit from our approach. We compare
our work to related approaches in Sect. 6 and conclude with Sect. 7.

2. Introductory Example
To illustrate our approach, we will use a simple example language
from the fast food domain. The language was designed to incorpo-
rate all aspects that are important to the language extension mech-
anism which will be explored in this paper. Later on, we will apply
the same procedure to Java as an example of a more complex lan-
guage.

According to the metamodel shown in Fig. 1 our language pro-
vides concepts to specify recipes for sandwiches. A recipe consists
of several ingredients where each one has a name. The ingredi-
ents can then be used in the recipe to give instructions what to do
with the ingredients. For the sake of simplicity we only allow to
Add, Clean and Toast ingredients. The language contains references
with different cardinalities (ingredients and using). The latter is
a cross reference, which will serve to illustrate the static semantic
analysis for templates later on.

The textual syntax for the sandwich language was defined using
EMFText [Heidenreich et al. 2009]. The text syntax specification
is shown in Listing 1. For each concrete metaclass, a textual syntax
representation is specified using an EBNF-like rule. An example
instance in textual syntax is given in Fig. 2.

Suppose we own a sandwich shop and our customers have indi-
vidual requests which we want to take into account when making
sandwiches. That is, we use customer profiles to produce differ-
ent kinds of sandwich recipes. Our customers might be vegetarians
or request additional ingredients, for example, extra cheese. To pro-
duce these different kinds of sandwiches, a custom template version
of the sandwich language would be nice to have.

Figure 2. An example sandwich in textual syntax

1 Recipe ::= "RECIPE" ingredients*
2 instructions ("," instructions )*;
3 Ingredient ::= name [];
4 Clean ::= "CLEAN" using []?;
5 Add ::= "ADD" using []?;
6 Toast ::= "TOAST" using []?;

Listing 1. Text syntax for sandwich recipes

3. Designing Languages for Extensibility
To turn the sandwich object language into a sandwich template lan-
guage, we require the language to be extensible for this purpose.
Since we aim for an object-language-independent approach, this
section defines the extensibility properties in general but exempli-
fies them on the sandwich language. More precisely, the extensi-
bility properties are defined on the basis of the artefacts that de-
scribe the language to make the extensibility applicable in practice.
These artefacts are (according to [Kleppe 2009]): a metamodel to
describe the language’s abstract syntax, a concrete syntax specifi-
cation to describe the language’s (in our case textual) syntax and
a description of the language semantics that operates on sentences
of the language (i.e., instances of the metamodel). In the follow-
ing, we introduce, for each of the three artefacts, rules that have
to be fulfilled to support the required extensibility. Furthermore,
we introduce an algorithm that can automatically refactor existing
artefacts to adhere to the rules where possible.

3.1 Extensible Metamodels
We assume the metamodels defined according to the EMOF [OMG
2006] standard. EMOF is an object-oriented metamodelling lan-
guage that supports multiple inheritance. Our results can be trans-
ferred to any metamodelling language with the same properties.

Since EMOF is object-oriented, the main reuse mechanism of
the language is subclassing. Since the advent of object-oriented
programming, subclassing (or object inheritance) has been dis-
cussed controversially in literature—for example, in [Bracha and
Lindstrom 1992, Taivalsaari 1996]. Subclassing combines the con-
cepts of subtyping and inheritance, which makes it easier to im-
plement and to use in certain cases, but has drawbacks in partic-
ular when it comes to unforeseen extensibility. While subtyping
expresses that subtypes of the same supertype are exchangeable
in references defined between the types, inheritance describes that
concrete features (i.e., attributes, references and operations) defined
by an (abstract) superclass have to be implemented by all concrete
subclasses.

In the following, we argue that it is necessary to separate subtyp-
ing and inheritance to ensure metamodel extensibility. The subclass
concept, as present in EMOF, is however still applicable when used
according to restrictions we define below.

Consider the metaclass Instruction in Fig. 1. It defines both
a type (for the instructions reference of Recipe) and a feature
(the using reference to Ingredient). Any potential subclass that
one introduces as a metamodel extension will subtype Ingredient

but also inherit the using reference. Assume that we want to
extend the metamodel with the additional Instruction subtype
WrapSandwich. WrapSandwich should be an Instruction (subtyp-
ing), but should not inherit the using reference (feature inheritance)
because it does not require an Ingredient. Such an extension is not
possible with the subclassing currently used in our metamodel.

The separation of subtyping and inheritance however can be
emulated by a pattern we call reference abstraction. The pattern
can be described in an algorithm which can either be followed
at language design time or automatically applied on an existing
metamodel. The algorithm is a generalisation of the algorithm we
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Figure 3. Refactored metamodel for sandwich recipes

presented in [Heidenreich et al. 2008]. Its application is harmless in
the sense that it does not change the language itself—it only refines
the metamodel to enable extensibility by introducing additional
superclasses—and thus does not break existing instances of the
metamodel. Consequently, the algorithm can safely be applied on
existing metamodels. A general overview of the algorithm is given
below:

For each feature’s type that has at least one superclass or defines at
least one feature itself do:

1. introduce a new abstract metaclass with the name
Feature<ClassName><FeatureName>

1

2. change the type of the feature to the new metaclass

3. make the former type of the feature a subclass of the new
metaclass

Since subclassing of primitive types (e.g., String) is not pos-
sible, features with a primitive type require an additional prepro-
cessing step that replaces the primitive type with a metaclass. We
call this primitive type wrapping. For this, a library of metaclasses
that contains wrappers for all primitive types (e.g., StringObject
with an attribute value of type String) is provided. Figure 3 shows
the complete refactored metamodel for the sandwich language.
The new classes introduced by the refactoring are depicted in grey
shade.

The refactoring effectively separates the typing of each feature
from the feature inheritance hierarchy. That is, each feature obtains
an individual pure type since the metaclass through which the
type is defined does not define any features itself (step 1 in the
algorithm). The type is still connected to the original type hierarchy
through the newly introduced inheritance relation (step 3 in the
algorithm). This way, the change does not affect the language
defined by the metamodel, but opens it for extension since any new
metaclass can be plugged in as an additional type for an arbitrary
reference by subtyping without feature inheritance.

3.2 Extensible Text Syntax
We assume the language’s text syntax to be defined based on the
metamodel in a grammar-like fashion as defined in [Kleppe 2009]
and implemented in EMFText [Heidenreich et al. 2009]. Such a
text syntax is already modularised with respect to the metamodel.
It defines one grammar rule for each concrete metaclass—that is for
each metaclass that can be instantiated using the syntax. Thus, text
syntax extensions can be performed by adding new rules for new
concrete metaclasses. The restriction for this new syntax is that it
must not introduce ambiguities w.r.t. the existing syntax.

Since a text syntax does not directly refer to any abstract
metaclass and the metamodel refactoring only introduces new ab-

1 Note: This basic version of the algorithm does not handle name clashes.

1 Recipe ::= "RECIPE" ingredients*
2 instructions ("," instructions )*;
3 Ingredient ::= name;
4 IngredientName ::= value [];
5 Clean ::= "CLEAN" using []?;
6 Add ::= "ADD" using []?;
7 Toast ::= "TOAST" using []?;

Listing 2. Refactored text syntax for sandwich recipes

stract metaclasses, the impact of the refactoring on the text syn-
tax is minimal. The only issue is the primitive type wrapping
that requires adjustments to the syntax specification which can
however be performed automatically together with the wrapping
in the metamodel. This is illustrated on the syntax specification
for Ingredient.name (respectively IngredientName) in Listings 1
(Line 3) and 2 (Lines 3–4).

Note that it is never necessary or possible to split a syntax rule
to achieve the desired extensibility. In contrast to purely grammar-
based languages, the syntax rules here are defined on top of a
metamodel. The metamodel defines the concepts of the language,
their granularity and how they are composed. Thus, each syntax
rule defines the syntax for exactly one language concept (i.e., one
metaclass) which can not be further decomposed.

3.3 Modular Static Semantics
So far we only considered syntactic language extension. However,
the correctness of the context-sensitive properties of generated code
is also of great importance. This demands a modular and extensi-
ble representation of language semantics in correspondence to the
modularised syntax. Name and type analysis is of particular im-
portance since it is the prerequisite of more sophisticated semantic
checks to find duplicate declarations, not initialised variables, or
unreachable statements. A modular way to describe name and type
analysis for Java using attribute grammars is presented for JastAddJ
[Ekman and Hedin 2006]. Attributes are used to specify the prop-
agation of information in abstract syntax trees. EMFText emulates
this behaviour for EMOF metamodels in semantic resolvers mod-
ularly implemented for each cross-reference between metaclasses.
The standard resolvers provide a generic implementation for name
and type analysis, that works for simple languages which come
without specific scopes—such as the sandwich language. To ad-
dress the sophisticated scoping rules of a language like Java the
generic analysis can be refined accordingly by working with nested
namespaces.

During language extension one needs to specify the influence of
the extension on the name and type analysis of the object language.
This can be done by providing specific resolvers for the new con-
crete classes introduced that reflect their semantic impact on name
and type analysis.

While the semantic analysis is implemented in Java for the
examples used in this paper, it could also be defined in other
formalisms which are interpretable. Such semantics can be used
by connecting the corresponding interpreters to the Eclipse/EMF
platform as shown, for example, in [Sadilek and Wachsmuth 2009].

4. Adding Template Concepts to Languages
Having examined the generic principles for language extensibility,
we now consider the specific addition of concepts found in tem-
plate languages. To do so, we shortly recapitulate the elements of
template languages and then discuss how the textual syntax and the
static semantics can be extended along with a metamodel.
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Figure 4. Metamodel for template concepts

4.1 Template Concepts
Conceptually, a template defines an artefact that provides built-in
support for variability. In other words, the template can be instan-
tiated to produce different variants. These variants are typically
called template instances. The selection of a variant is controlled
by template parameters. These parameters are evaluated when a
template is instantiated and based on concrete values the variant is
selected.

Among the various template languages that were developed
over the last decades, the ones providing simple imperative con-
structs are very popular especially among practitioners. The com-
mon concepts that can be found in such imperative template lan-
guages are placeholders, conditions and loops.

Placeholders (PH construct) can be used to insert elements orig-
inating from parameters upon template instantiation. These ele-
ments can be either primitive ones (e.g., strings or numbers) or
complex ones (e.g., structures passed as parameters). The latter is
obviously only possible if the object and the parameter language
share common concepts.

Conditions allow template designers to embed parts of the tem-
plate only if certain boolean constraints on the parameters are met.
Conditions can either consist of one branch (IF construct) or two
branches (IFELSE construct). In the former case, the branch is em-
bedded if the specified condition is true. The latter has a second
branch that is embedded if the opposite is true.

Loops (FOR construct) can be used to iterate over collections
in the parameter model. The body of the loop is then repeatedly
inserted into the template instance. Usually, the current element of
the iteration is available inside the loop, for example, by accessing
a variable.

To extend a language with template functionality the template
concepts need to be introduced into the language. Figure 4 shows
all concepts as EMOF metamodel. All types are abstract, because
they will always be subclassed. In the following two sections, we
describe how such an extension by subclassing can be performed.

4.2 Extending the Metamodel
After refactoring existing metamodels as described in Sect. 3.1,
one can start to add the concepts of template languages. Here,
the question is how the different concepts (PH, IF, IFELSE, FOR)
can be added in a meaningful way to a metamodel. To answer
this question, one must consider the semantics of the template
constructs. Upon template instantiation, the different constructs are
replaced by elements of the parameter model or static elements
of the template itself. To obtain a valid instance of the object
language, both the types and the cardinalities of inserted elements
must be correct. Thus, the metamodel should be extended such that
expansion of template constructs always inserts correct types and a
valid number of them.

Preserving Types For each reference (with a corresponding
type) we introduce specific subtypes of the template constructs.
These subtypes inherit both from the original type of the reference
and the abstract template construct. The inheritance relation to the
original type establishes the exchangeability of the new template

Cardinality IF (0..1) PH, IFELSE (1..1) FOR (0..∗)
0..1 x x
1..1 x
0..∗ x x x

Table 1. Compatible template concepts for reference cardinalities

construct with the original (static) element. The inheritance relation
to the abstract template construct allows to check and interpret the
template later on.

Each new subtype of If and ForEach is equipped with a
reference body. The subtypes of IfElse contain two references
(thenBody and elseBody). All these new references have the orig-
inal type. This construction allows exactly the elements that were
valid for the original reference inside of conditions and loops.

For placeholders, preserving the type is slightly different, be-
cause these are replaced with elements from the input model. The
obvious consequence is that only types that are shared by both the
object and the input language can be used here. Usually the inter-
section of the types of the two languages encloses only primitive
types. However, inserting complex types with a placeholder is also
possible as long as its type is available in both the object and the
input language.

Preserving Cardinalities To decide which concept is appro-
priate for which reference we consider the cardinality of the ref-
erence. Only constructs that are compatible (i.e., that produce the
same number of elements) are used. For example, loops can only be
introduced for references that have an unlimited upper bound. The
conditional IF statement can be introduced for references having
a lower bound of 0, because the condition of the IF might not be
fulfilled upon template instantiation potentially leading to no inser-
tion of an element. Conditionals with two branches (IFELSE) can
be used for references where the cardinality range encloses 1, be-
cause they produce an element in each branch. The same applies
to the PH concept, because placeholders are always replaced by a
single value, i.e., they can only be inserted where one element is
permitted by the cardinality of the reference.

A special case is the introduction of conditional statements
(both IF and IFELSE) for unlimited references (0..∗). As both
constructs add either zero or one elements, which is permitted by
the cardinality, they can be used here too. Table 1 summarises
the relation between cardinalities of references and valid template
concepts.

In this paper we will restrict ourselves to the kinds of cardinali-
ties shown in Table 1. References with cardinalities having a lower
bound greater than one or an upper bound other than one or infin-
ity will simply not be extended with template concepts. This keeps
the template language safe, but restricts the metamodel design. In
Sect. 5.2.4 we will sketch possible solutions to handle references
having other cardinalities as well.

The result of this extension for our example language is shown
in Fig. 5. For each type of reference the appropriate template con-
cepts were introduced. By multiple inheritance the concrete con-
cept extends both the abstract concept (defined in the template con-
cept metamodel—Fig. 4) and the type of the respective reference.
For example, the class IfFeatureRecipeIngredients extends If

and FeatureRecipeIngredients.

4.3 Extending the Concrete Syntax
As discussed in Sect. 3.2, an EMFText text syntax specification
can be extended along with the metamodel. For this a new syntax
rule has to be introduced for each new concrete metaclass. As dis-
cussed above, the extended language contains different subclasses
of the four metaclasses representing the template concepts PH, IF,
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Figure 5. Metamodel for sandwich templates

IFELSE and FOR. The syntax, however, can look similar for all con-
crete subclasses of each concept.

Listing 3 shows a reusable template syntax specification. It con-
tains one prototypical rule for each template concept. The left-hand
side of each rule should identify the metaclass for which the syn-
tax is defined. Thus, a rule can be repeatedly used for all meta-
classes that inherit the same template concept (e.g., IF rule for If-
FeatureRecipeIngredients and IfFeatureRecipeInstructions)
by replacing the left-hand side of the rule with the corresponding
concrete metaclass. Figure 6 shows a template defined in the ex-
tended syntax.

The rules specified in Listing 3 can be used as prototypes for
arbitrary languages extended with template constructs, as long as
the new syntax (escape symbols <% and %>) does not interfere with
the syntax of the extended language. If it does, a different syntax
can be used for that particular case. Another solution for such
conflicts is to use a stateful lexer that switches between the object
language and the expression language if a delimiter is detected
or to use a scannerless parser. Both are, however, currently not
provided by EMFText. Nonetheless, the configuration of the escape
characters allows to perform the syntax extension for any language.
It is important to note here that different escape symbols might be
needed for different metaclasses, because the syntax extension can
potentially introduce ambiguities.

An interesting thing to point out is that multiple usage of a
reference (with multiplicity ∗) on the right-hand side of a rule is
handled well by our approach. An example of such a reference is
instructions in Listing 1 (Line 2) where it is expressed that all
elements except the first one from the instructions list should be
prepended with a comma. Such lists, where the first element is to
be handled differently than the others, impose problems when tem-
plates are written to produce concrete syntax—or instances of a
context-free grammar—directly; the first element always requires
special treatment. In our approach, where the concrete syntax is dis-

1 PH ::= "<%=" expression [] "%>"
2 IF ::= "<%IF" expression [] "%>" body "<%ENDIF%>"
3 IFELSE ::= "<%IFELSE" expression [] "%>" thenBody
4 "<%ELSE%>" elseBody "<%ENDIFELSE %>"
5 FOR ::= "<%FOR" (variable [] ":")? expression [] "%>"
6 body "<%ENDFOR%>"

Listing 3. Reusable template syntax

Figure 6. A template for sandwiches

carded after the model is parsed, this is not a problem. A FOR loop
can be inserted at any place in the ingredients list to produce addi-
tional elements, without caring about the commas in the concrete
syntax. When the FOR loop is executed during template instantia-
tion, the concrete syntax was already dropped. It is then correctly
created, when the instantiated model is printed into text.2

4.4 Extending the Static Semantic Analysis
To reflect the impact of extending a language with template con-
cepts on its static semantics the existing static semantics need
to be enriched in correspondence to the classes introduced dur-
ing extension. As described in Sect. 3.3 this semantics extension
can be realised in a modular way. Therefore we generate seman-
tic resolvers for every metaclass reference introduced during lan-
guage extension. To avoid invalid results during semantics analysis,
these resolvers implement a conservative strategy for propagating
context-sensitive properties. For metaclasses that extend the tem-
plate concepts IF, IFELSE and FOR new scope blocks are intro-
duced. Since semantics analysis walks up the containment hierar-
chy of the parsed model it still behaves as originally defined within
each body block of a template construct that inherits the visible
names and types of the surrounding block. All name and type def-
initions made within a template body block are hidden to the out-
side. They can not be assumed to be addressable from outside the
template block, since depending on the template parameters they
may not be included in the generation result.

The described strategy can lead to false negatives, that is fail-
ing name or type resolutions that should succeed. An example is an
IFELSE template which declares an identifier with the same name
in both branches. In this case the identifier is definitely included in
the generation result and can thus be assumed visible in the sur-
rounding block. It is also challenging to check more complex se-
mantic properties like duplicate declarations or unreachable state-
ments, since such problems are highly language specific and many
other constellations need to be considered. Currently, we address
such issues by refining the generated semantics resolvers manually
and specific for every language extension. Future work will have

2 EMFText does not only generate a parser, but also a printer based on
the (extended) text syntax specification which is utilised to print template
instances after instantiation on the model level (cf. Sect. 4.7).
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to investigate how techniques used, for example, in attribute gram-
mars can be transferred to generalise the idea of modular static se-
mantic analysis.

4.5 Restricting the Extension
While we discussed the whole set of possible extensions that can
be performed to obtain a template language in the previous sec-
tions, there are reasons to restrict this extension process. First, the
variability that is introduced by the template concepts might not
match the expectations of the template designer. Too much variabil-
ity, which might be caused by the amount of introduced concepts,
can confuse developers. A restricted set of constructs for parts of
the language where variability is actually needed might be better
suited. Second, the option to insert loops, conditions, and place-
holders wherever theoretically possible, allows template designers
to write deeply nested and complex templates, which are hard to
maintain.

To avoid these problems, a selection process can be employed
that allows to tailor the language extension. By manually selecting
the references for which variability must be provided, a custom
template language can be obtained. The general extension process
mentioned before is thus executed identically, but only for a subset
of the metamodel, the syntax specification, and the static semantics
analysis.

4.6 Extending the Tool Support
When a language is extended with new concepts, the impact on
tools that operate on the language must be carefully analysed.
Ideally, existing tools should continue to work. In the case of
textual languages important objectives of such tools are parsing,
editing and analysing. When it comes to extending these tools,
metamodelling and generative approaches come in handy.

In our particular case of introducing template constructs to lan-
guages, we can generate an extended parser, an enhanced editor and
a default name resolving mechanism for the new language concepts
with EMFText. Thus, typical aspects of editing (e.g., syntax high-
lighting and code completion) are generated from the extended lan-
guage specification (see Fig. 6 for an example of syntax highlight-
ing derived from the base language). Furthermore, code generated
from the metamodel extensions is based on the existing metamodel
code through which semantic analysis continues to work to the de-
gree discussed in Sect. 4.4.

In addition to the above, EMFText also generates a printer for
the extended language. This printer converts model representa-
tions of templates into their textual representations. Although not
in focus of this paper, this enables the creation of templates by
model transformation or step wise instantiation of templates—thus
a deeper integration of templates into model-driven development
processes.

4.7 Instantiating the Templates
Since each template metaclass in an extended language inher-
its from one template-concept metaclass (cf. Fig. 4), an object-
language independent template interpreter can be provided. This
interpreter takes a template model—that is, the model presenta-
tion of the template obtained using the extended parser—and an
input model. The interpreter then walks the containment hierarchy
of the template model. It ignores all elements whose types do not
inherit one of the template concepts. When it encounters a template
element—that is, an element whose metaclass extends a template
concept—it interprets it following the semantics of the correspond-
ing template concept as sketched in Sect. 4.1.

The instantiation for each template element is performed by
replacing the element itself with elements from the input model
(in the case of PH) or elements from a body reference of the

template element (in the case of IF or IFELSE). These ele-
ments are determined by the value of the expression attribute
(cf. TemplateConcept.expression in Fig. 4). This value is inter-
preted as an Object Constraint Language (OCL) expression. We
decided to use OCL as query language over the input models, be-
cause these models are (as the templates themselves) EMOF mod-
els that can naturally be queried by OCL. The queries are passed
to the MDT OCL Interpreter3 together with the input model. The
interpreter returns the element or value addressed by the query. Our
template engine then replaces the template element it currently in-
terprets according to the query result. Note that an OCL expression
always operates in the context of one model element. In the global
context of a template instantiation it is the root element of the in-
put model. In the context of a FOR it is the current element of the
iteration.

In the end, the template model itself was turned into an instan-
tiation of the template. All template elements were removed or re-
placed with their body or with input model elements. This model
can be printed into text by the printer that was also generated from
the object language’s syntax specification by EMFText.

5. Safe Templates for Java
To evaluate our language extension mechanism on a real world
example, we chose Java as it is widely used and well known.
Based on EMFText, JaMoPP4 provides both a metamodel and a
text syntax specification for Java. In addition, JaMoPP contains a
set of reference resolvers that implement name and type resolution
rules similar to attribute grammars. These artefacts served as a basis
for our template extension. In this section we will first discuss the
problems that emerged from the extension and then explain the
key benefits of generating a safe template language for Java. In
particular, the types of properties that can be guaranteed (i.e., the
level of safety) are discussed along with application domains that
particularly benefit from these guarantees.

5.1 Extending Java with Template Concepts
In Sect. 4 the general approach to extend languages to obtain a
template language was presented. Using the sandwich language the
basic steps were explained. In principle, the same procedure is also
applicable for larger languages. However, the Java language (and
its concrete implementation JaMoPP) raised some issues, which we
will discuss in this section.

5.1.1 Dealing with Existing Metamodels
Since the JaMoPP metamodel was not explicitly designed for ex-
tensibility, the refactorings described in Sect. 3 needed to be ap-
plied to obtain a more extensible version of the metamodel. The set
of refactorings can be split into two groups—reference abstraction
and primitive type wrapping.

The first type of refactoring is harmless from the perspective
of model-based tools. For example, loading model instances that
were created before the refactoring is unproblematic. Even EMF-
based tools, such as editors or viewers continue to work. Other
tools, that directly rely on the code that was generated from the
metamodel may break after the refactoring. Consider, for example,
the introduction of an abstract type for a reference that used a
concrete type beforehand. Code that accesses the reference must
cast to the concrete type after the refactoring even though there
might only be one valid subtype. As JaMoPP is accompanied by
a set of classes that use the generated metamodel code, we had to
adapt these according to the type changes. In theory however, the

3 http://www.eclipse.org/modeling/mdt/ocl
4 http://jamopp.inf.tu-dresden.de
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Figure 7. Extract from the syntax specification for Java templates

refactoring of the code—that is the introduction of type checks and
casts—can be automated similar to the metamodel refactoring.

The second step towards a more extensible Java metamodel
is wrapping primitive types. This change is more invasive since
it introduces an additional forward which may invalidate existing
model instances that were serialized using a standard syntax based
on the metamodel (such as XMI). However, this is not a problem
when models are serialized in their text syntax, as it is the case for
Java where model instances are saved as Java source code. It was
sufficient to refactor JaMoPPs concrete syntax definition according
to Sect. 4.3 to parse Java code into instances of the refactored
metamodel. Nonetheless, the existing code that works on instances
of the metamodel had to be adapted to work with the refactored
metamodel. To give an example, the class NamedElement contained
an attribute name of type String. This attribute was replaced by a
reference to a wrapper class called NamedElementName. The code
that accessed the attribute name directly had to be modified to use
the wrapper object instead. This code refactoring—changing each
access to a primitive type to use the corresponding wrapper—can
be automated as well.

5.1.2 Extending Syntax and Semantics
To introduce the text syntax for the new classes representing tem-
plate concepts, we imported the original Java syntax provided by
JaMoPP and generated one concrete syntax rule for each new class.
Each template concept uses the same syntax (cf. Listing 3). How-
ever, since each concept is instantiated once for each compatible
reference, the same syntax must be added multiple times. A frag-
ment of the syntax for Java templates is shown in Fig. 7.

After refactoring the metamodel to be extensible, the syntax
extension was straightforward and executed fully automatically.
This was partially due to the choice of the new syntax, that did
not interfere with Java’s original syntax. To extend other languages
without difficulty as well, we pass the choice of the syntax to the
template language designer. Thus, one always obtains a parseable
template language. If the initially chosen syntax interferes with the
original language, the generator informs the language developer
about that such that he can modify the template syntax until all
ambiguities are removed. After generating the syntax extension
for the reformed metamodel, we used EMFText to regenerate tool

support for the Java template language. Thus, a parser and an editor
(including syntax highlighting) were instantly available.

To preserve the static semantic analysis for name and type
resolving, no additional analysis module for template concepts
was required. This is because the name and type resolution walks
up the parse tree to search for declarations of the element to be
resolved and skips nodes of unknown type during this process.
Instances of the new template constructs are therefore ignored and
the search is continued further up the tree. Consequently, the name
and type resolution does not search for declarations inside of IF,
IFELSE and FOR elements. This is correct, because the values of the
conditions and collections that control the existence of the elements
in the body in the template instance is not known at template
design time. Elements that are declared inside of these elements can
therefore not be assumed to be present in every possible template
instance.

Other static semantic properties (e.g., detection of duplicate
declarations) must be extended with custom logic to take the
template concepts into account. For example, an element that is
declared inside a FOR loop—without using placeholders in the
declaration—will most likely be declared several times in many
template instances; even though the original analysis does not de-
tect this in the template. Here, language-specific extensions of the
static semantics are inevitable. In the future we will explore this
further on the example of Java.

5.2 Using Java Templates
Now that an extended version of Java with template concepts was
obtained, the pros and cons of using such a language can be dis-
cussed. The checks that can be performed both on the semantical
and syntactical level are highlighted in this section.

5.2.1 Static Syntax Checks
In contrast to template languages that are agnostic of the object lan-
guage, building a custom template language has several advantages.
One of which is the possibility to check the syntax of templates. By
doing so, one can make sure that all instances of a template conform
to the syntax of the object language. This approach was shown ear-
lier [Arnoldus et al. 2007] and extended in this paper to treat textual
modelling languages. The specific construction of an extended syn-
tax (shown in Sect. 4.3) carefully extended the Java language such
that template instantiation must yield a valid object sentence.

The advantages of this procedure are especially important in
application domains where either the syntactical correctness of the
instantiation result can not be easily checked or wherever the tem-
plate cannot be modified if an error is found. Both situations occur
when Java templates shall be reused or supplied for reuse. Both
the supplier and the consumer of third-party templates depend on
guarantees about the syntactical correctness of template instances.
With the Java template language based on JaMoPP, templates can
be safely distributed with a guarantee about syntactical correctness.
As this basic syntactic correctness was shown in [Arnoldus et al.
2007], we will explore which additional checks can be performed
on Java templates, that exceed the syntactical level.

5.2.2 Static Semantic Checks
In Sect. 4.4 we discussed how the modular specification of static se-
mantics can be integrated with the language extension on the syn-
tactical level. As static semantics is concerned with non context-
free aspects of a language, it is most important for languages that
intensively make use of such aspects. Java, being an object-oriented
language, has lots of constraints that involve context. One typical
example for an analysis that must consider context is name res-
olution. Method calls, variable accesses and type references must
be resolved to their respective declarations with the correct name

105



Figure 8. Errors detected in a Java template

or identifier. As programming languages heavily rely on such re-
lations between declarations and usage of elements, checking that
these references are valid for all instances of a template substan-
tially decreases the number of errors found upon template instan-
tiation time. In Fig. 8 an example for an error that is detectable by
static analysis of Java templates is shown. In Line 22 the variable
success that was declared inside of an IF is referenced. As this
variable may not be available in all template instances—namely
not the ones where the condition is false—an error is reported.

As argued for the syntactic checks, the reuse of templates can
particularly benefit from early semantic checks. However, the ex-
tension of the semantics can not be automated as much as its syn-
tactical counterpart. This is basically due to the nature of semantics,
which are highly language specific. Only common semantical con-
cepts, such as name resolution, can be automatically extended.

5.2.3 Static Input Model Checks
As stated in Sect. 4.7, we use OCL as query language over the input
models. To ensure the correctness of all queries contained in a tem-
plate (i.e., placeholder expressions, collection selectors and con-
ditions), a reference to the metamodel of the input must be given.
As all queries refer to this metamodel—one cannot evaluate queries
over unknown models—an explicit declaration seems feasible. This
specification is done at the very beginning of a template by declar-
ing a special element. Using this declaration, we can check the OCL
queries statically against the metamodel.

For example, accessing types or references that are not present
in the metamodel is not possible, as shown in Fig. 8. In Line 12
an expression contains a typo which is correctly reported as an
error, because the input model does not contain a feature called
engredients. A second error is reported for Line 6 where the
type of the expression (OrderedSet) is not compatible with the
position of the placeholder. Instead of a set, a primitive string or

a StringObject is expected. These checks allow to safely port
templates from one input metamodel to another. After changing the
declared input metamodel the queries are checked and developers
can correct erroneous expressions.

5.2.4 Template Language Restrictions
The previous sections showed the application of language exten-
sion to introduce template concepts for arbitrary languages, ex-
plained the realisation of a generic interpreter to generate tem-
plate instances and discussed different advantages of that approach.
However, the drawbacks and limitations also need be recapitulated.
A first restriction is that the interpreter interprets each construct lo-
cally and no environment to define global variables during instanti-
ation is available. This could be helpful for more convenient access
to the input model in particular in nested loops, where currently
only the innermost element is directly accessible. Adding this is
straightforward since the OCL environment allows the declaration
of variables.

A second limitation is that our template languages do not of-
fer possibilities to define functions for computations on the input
models inside a template. This limitation is however desired as dis-
cussed in [Parr 2004] to separate logic and template code. It im-
plies that the input model must explicitly contain all information
that needs to be embedded in the template instance. This does also
apply to simple generation tasks such as creating names for get-
ters and setters. Adding the prefixes get and set can not be done
in the template, but needs to be performed externally. The Eclipse
Modeling Framework, for example, uses dedicated generator mod-
els to provide derived names. Another solution for this problem is
to use external OCL def expressions for input model metaclasses
to perform such small localised computations.

A third limitation can be observed when metamodels use cardi-
nalities other than the ones mentioned in Sect. 4.2. For example, a
reference having a minimum cardinality of 2 can not be extended
with a template concept yet. None of the four concepts is strictly
compatible with such a reference. However, checking that every
template contains at least two static elements (or placeholders and
IFELSE elements) can solve this problem and allows to use tem-
plate concepts for such a reference. The same applies to fixed max-
imum cardinalities. Extending the FOR concept with a maximum
loop count can ensure that the maximum number of elements cre-
ated by the loop is not exceeded.

A similar restriction is caused by the need for type safety. Cur-
rently, placeholders can be replaced with elements of the same type
only. While this type might even be a complex one, type conver-
sions of complex types are not investigated yet—only primitive
types and primitive type wrappers can be converted by the engine.
Extending the template engine with information about compatible
types and conversions between them could certainly ease using the
templates. String-based engines do not face this problem since all
elements basically have the same type.

6. Related Work
There exists a number of language-specific extensions that add
template (or template-like) mechanisms for specific programming
languages. For example, MorphJ [Huang and Smaragdakis 2008] or
ConceptC++ [Gregor et al. 2006]. While these approaches go much
further regarding language specific semantic analysis, they always
have a fixed object and input model language and miss a common
base. Our approach could serve as a common base for similar
approaches in the future. This can ease development, prototyping
and implementation. It can also help to find commonalities or port
language-specific solutions to other languages.

Text-based template engines like StringTemplate [Parr 2004]
or XVCL [Jarzabek et al. 2003] provide template languages that
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are object-language-agnostic in the sense that they solely process
strings. They are not aware of the type system and syntax of the
object language. StringTemplate inspired our work with regard to
restricting the available constructs in the template language so that
logic cannot be mixed with template code (e.g., changing the input
model from the template or compute values within the template).
In contrast to text-based template engines, we do not operate on
strings but on typed models conforming to metamodels.

Repleo [Arnoldus et al. 2007] is a syntax-safe template engine
that is based on the Syntax Definition Formalism (SDF) [Heer-
ing et al. 1989] and the term rewriting system ASF+SDF [van den
Brand et al. 2001]. Repleo uses SDF’s module mechanism to ex-
plicitly define extensions of the object language with template-
language specific constructs and the SGLR parser [Visser 1997a]
to parse the combined language. Based on the strongly typed equa-
tions of ASF, the syntactic correctness of the expanded templates
can be ensured. In contrast to our work, Repleo does not cover
static analysis of templates and cannot guarantee type correctness
of the constructs used within templates. Since we use OCL for
querying in templates, ill-formed references to concepts of the in-
put metamodel are detected at template definition time, whereas
Repleo’s XPath-like queries are not checked against any meta-
model. Furthermore, our metamodel-based approach and the algo-
rithm presented in Sect. 4 enables us to automatically extend exist-
ing languages with template concepts and generate tooling for the
extended language (e.g., editors with syntax highlighting).

In his article on Language Oriented Programming from 2004
[Dmitriev 2004], Dmitriev describes that an automatic template
language generator that copies the object language and adds tem-
plate concepts to it. This generator is included in JetBrains MPS
[JetBrains 2009]. MPS was however just released during the writ-
ing of this paper. So far, only the MPS base language, which is
a base for building languages in MPS that is very close to Java,
comes with build-in template constructs. It is not clear how easy it
is to integrate a completely new base language into MPS, nor what
the conditions for this language are to allow the template language
generator to work with them.

SafeGen [Huang et al. 2005] is another approach to create
safe generators for Java programs based on a theorem prover that
proves the well-formedness of the generated code for all possible
inputs. Similar to our approach both syntax and type correctness are
ensured. But in contrast to our work—which intrinsically works for
all existing languages with the properties described in Sect. 3.1—
SafeGen is designed to require Java programs as input and produces
Java programs as output.

The XML Template Language (XTL) [Hartmann 2006, 2007]
is a template engine that enables safe template authoring with
XML languages that are described by XML Schema. The available
constructs in the template language are similarly restricted based
on [Parr 2004] to ensure safety properties of templates. Unlike our
approach, XTL is limited to languages with XML syntax and does
not generate any tooling for the extended object language.

MetaBorg [Bravenboer and Visser 2004, Bravenboer et al.
2006] is a system for embedding domain specific languages in
arbitrary host languages. It is not a template engine per se but the
concepts embodied by MetaBorg can be used to embed a domain-
specific language (DSL) featuring template constructs into a host
language. In MetaBorg, the DSL constructs and their embedding in
the host language are described with SDF2 [Visser 1997b, Heering
et al. 1989]. Syntactic errors in the program using the combined
language are detected during parsing. Semantic errors in programs
written in the combined language are detected by a manually ex-
tended type checker of the host language which supports the seman-
tics of the embedded language and the bindings between the host
language and the embedded language. In an assimilation phase—

which is implemented with the program transformation language
and toolset Stratego/XT [Bravenboer et al. 2008]—the embedded
fragments are translated to the host language. It is not guaranteed
that the assimilation phase always produces well-formed code.

All previous mentioned approaches are not based on a common
implementation platform but used specific and diverse support-
ing technologies for implementation. As we base our work on the
Eclipse/EMF platform, we also want to discuss existing template
approaches that work based on Eclipse technologies. Prominent ex-
amples of tools for model-to-text transformations are the Epsilon
Generation Language (EGL) [Rose et al. 2008], MOFScript [Old-
evik 2006] and Xpand [oAW Project Team 2009]. These tools take
EMF models as input models and produce text based on the pa-
rameterised templates. The templates are again basic mixtures of
escaped template constructs and text where neither syntactic nor se-
mantic errors can be detected during template definition. In contrast
to these approaches, we use model-based syntax and the underlying
metamodels to create templates which produce well-formed output
in the object language.

7. Conclusion
The contribution of this paper is threefold. First, we investigated
the fundamental requirements to prepare languages for extensibil-
ity. We introduced general design principles to prepare metamodels
for syntactic and semantic extensibility and a technique to automat-
ically incorporate these design principles into existing metamodels.
Second, we applied the extension technique to introduce template
concepts for an exemplary language while preserving compatibil-
ity with existing tools (e.g., parsers and editors). The result is a
template language that is safe w.r.t. syntax and properties of static
semantics (e.g., name and type analysis). Finally, we evaluated the
extension mechanism and its limits by applying it to generate a
template language for the general-purpose programming language
Java.

The generic interpreter that performs template instantiation op-
erates on typed models. Replacing placeholders, inserting bodies
of loops or conditions is performed on the respective models (i.e.,
input model, template model, and template instance model). This
supplies features that can not be accomplished with engines that
use basic string concatenation. Future work will explore how de-
velopment processes, where traceability is of utter importance, can
employ our template interpreter to track the connections between
elements of the input model, the template, and the template in-
stance. Another application, which strongly depends on correct and
up-to-date tracing information, is certification where verified sys-
tem properties are propagated along the tracing chains. Finally, to
overcome the limitations of traditional forward oriented code gen-
eration approaches Round-trip Engineering can also benefit from
tracing changes made to generated code back to templates and the
corresponding elements in the input models.

The design principles for language extensibility are not only rel-
evant for building safe template languages. However, it is hard to
force language designers to conform to the design principles for
language extensibility. To give language designers more control
where and how to apply language extensions we plan to adapt our
automatic extension technique to be more configurable. We argue,
that the extension technique strongly depends on the language ex-
tension to realise. Future work in this direction has therefore two
objectives. First, language extension scenarios need to be classified
to construct a language extension framework that provides means to
address the specific requirements of each extension scenario. Sec-
ond, extensions for existing metamodelling languages to provide
built-in support to design extensible languages need to be explored.
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