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ABSTRACT
The aim of automated program testing is to gain confidence
about a program’s correctness by sampling its input space.
The sampling process can be either systematic or random.
For every systematic testing technique the sampling is in-
formed by the analysis of some program artefacts, like the
specification, the source code (e.g., to achieve coverage), or
even faulty versions of the program (e.g., mutation testing).
This analysis incurs some cost. In contrast, random testing
is unsystematic and does not sustain any analysis cost.

In this paper, we investigate the theoretical efficiency of
systematic versus random testing. First, we mathematically
model the most effective systematic testing technique S0 in
which every sampled test input strictly increases the“degree
of confidence”and is subject to the analysis cost c. Note that
the efficiency of S0 depends on c. Specifically, if we increase
c, we also increase the time it takes S0 to establish the same
degree of confidence. So, there exists a maximum analysis
cost beyond which R is generally more efficient than S0.

Given that we require the confidence that the program
works correctly for x% of its input, we prove an upper bound
on c of S0, beyond which R is more efficient on the average.
We also show that this bound depends asymptotically only
on x. For instance, let R take 10ms time to sample one test
input; to establish that the program works correctly for 90%
of its input, S0 must take less than 41ms to sample one test
input. Otherwise, R is expected to establish the 90%-degree
of confidence earlier. We prove similar bounds on the cost if
the software tester is interested in revealing as many errors
as possible in a given time span.

Categories and Subject Descriptors: D.2.5 [Software
Engineering] Testing and Debugging

General Terms: Theory

Keywords: Partition Testing, Random Testing, Error-based
Partitioning, Efficient Testing, Testing Theory
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1. INTRODUCTION
We can never be sure! Complex software errors exist even

in critical, widely distributed programs for many years [3, 4].
So, developers are looking for an efficient and automated
technique to gain confidence in their programs’ correctness.

Inspiring confidence is the main goal of software testing.
By analyzing the program’s specification, tools can auto-
matically generate test inputs that cover corner-cases [5].
By analyzing the program’s source code, tools can generate
inputs that stress potentially faulty statements, branches,
or paths by increasing the coverage of the code [10, 6, 12].
By generating and analyzing deliberately faulty versions [21],
tools can generate even more effective test input. Generally,
the more comprehensive such analysis, the more effective
can the testing technique be. But, with increasing analysis
time, what about the associated reduction of efficiency?

We model the testing problem as an exploration of error-
based input partitions. Suppose, for a program there exists a
partitioning of its input space into homogeneous subdomains
[30, 28]. For each subdomain, either all inputs reveal an
error or none of the inputs reveal an error. The number
and “size” of such error-based partitions can be arbitrary.
Assuming that it is unknown a-priori1 whether or not a
partition reveals an error, the problem of software testing
is to sample each partition in a systematic fashion to gain
confidence in the correctness of the program.

Weyuker and Jeng [30] observe that a testing technique
that samples from error-based partitions is most effective.
However, realistic techniques can only approximate the error-
based partitions depending on the extent of the analysis [16].
For instance, 100% branch coverage requires that at least
one input is sampled from each “branch-based” subdomain,
where a subdomain may cover many error-based partitions.
So, some error-based partitions may not be sampled at all.

We model the most effective systematic technique S0 that
samples exactly one input from each error-based partition
and investigate its efficiency depending on the analysis cost.
Every sampled input becomes a witness of the error-revealing
property of the sampled partition and strictly increases the
established degree of confidence. For each sampling, we as-
sign a constant analysis cost and observe: with an increased
cost, it takes more time to establish the same degree of con-
fidence and discover the same number of errors. In other
words, efficiency decreases when the analysis cost increases.
We ask: For which analysis cost does systematic testing S0
become less efficient than unsystematic random testing R?

1If it was known whether or not a partition reveals an error,
there would be no need for testing.



In this paper, we study the maximum analysis cost c for
the systematic testing technique S0 to remain more efficient
than random testingR. Not sustaining any analysis cost, we
say that R takes one unit of time to sample one test input.
Thus, we can give the analysis cost c of S0 as a factor of the
time it takes R to sample one test input. We say that S0
takes c units of time to sample one test input. Note that giv-
ing cost as a factor allows us to account for the time spent on
the concrete sampling-related tasks that are common to both
techniques, S0 and R. For instance, if R takes, on average,
5ms to generate, execute, and check against an oracle the
outcome of a test input, then by definition S0 takes (c · 5)ms
which includes the same time spent on test generation, exe-
cution, and oracle checking and the time spent on analysis.
Now, with increasing analysis cost, S0 becomes less efficient
whileR remains just as efficient. So, in order for S0 to main-
tain its efficiency over R, the analysis cost c cannot exceed
a certain value and is thus bounded above!

We explore two notions of testing efficiency that may be
considered as the main goals of automated software testing:
i) to achieve a given degree of confidence in minimal time,
and ii) to expose a maximal number of errors in a given time.
Furthermore, we take the analysis cost c as a constant for
all programs. However, the analysis cost is likely to depend
on the program size – and if analysis cost is bounded above,
then program size is as well. That is, for such systematic
testing techniques there exists a maximum program size
beyond which R is generally more efficient.

The following are the three most important contributions
of the paper.

• Analytical Framework. We provide a mathematical
system to assess the efficiency of any automated testing
technique S relative to that of random testing R. It
accounts for the cost c of S depending on which there
exists a unique point in time where S and R “break
even” towards reaching the testing goal. So, the rel-
ative efficiency of S is always bounded above and for
a concrete instance can be computed similarly as dis-
cussed for S0 in this paper – where S0 generates one
test input for each error-based partition that is chosen
uniformly at random.

• Testing to Achieve Confidence. Given a degree
of confidence x, we show that the time it takes S0 to
sample an input cannot exceed (ex− ex2)−1 times the
time it takes for R to sample an input. Otherwise, R
is more efficient than S0 on the average. For instance,
let R take 10ms to sample one test input randomly;
to establish the confidence that any program works
correctly for 90% of its input, S0 must take less than
41ms to sample one test input systematically.

• Testing to Discover Errors. Given a time bound n̂,
we show that the time taken by S0 to sample an input
cannot exceed n̂

k
· (1− (1− qmin)n̂)−1 times the time

taken by R to sample an input, in order for S0 to re-
main more efficient than R – where k is the number of
partitions and qmin the fractional size of the “smallest”
error-revealing partition in the program’s input space.

These are fundamental insights that hold for all programs
and every systematic testing technique under the realistic
assumptions stated in the following section.

2. PRELIMINARIES

2.1 Background
In this work, we focus on automated testing techniques

that seek to establish a certain degree of confidence in the
correctness of the program or reveal a maximal number of er-
rors. Interestingly, this eliminates inexhaustive, automated
techniques that seek to generate just one failing test input
as evidence of the incorrectness of the program. First, the
search for a failing test input may never terminate due to the
undecidability of the infeasible path problem [14]. Secondly,
the absence of a failing test input throughout the search does
not inspire any degree of confidence in the absence of errors.
Instead, we shall focus on partition testing techniques, such
as coverage, mutation, and specification based testing.

Partition testing [16, 30] comprises of testing techniques
that 1) divide the program’s input domain into classes whose
points share the same property in some respect and then
2) test the program for at least one input from each class.
Thus, the problem of systematic testing is reduced to find-
ing a“good”partition strategy. For example, a specficiation-
based partition strategy might divide the input domain into
subdomains, each of which invokes one of several program
features or satisfies the pre-condition of some predicate [5].
Mutation-based partition strategies may yield subdomains,
each of which strongly kills a certain mutant of the program
[17, 21]. A differential partition strategy yields subdomains,
each of which either homogeneously exposes a semantic dif-
ference or homogeneously shows semantic equivalence [2].
Symbolic execution is a path-based partition strategy [12].
One may also consider strategies that partition the input
space such that classes of input do and others do not violate
an assertion in the program.

However, questioning its effectiveness, Hamlet and Taylor
[16] find that “partition testing does not inspire confidence”.
Varying several parameters, the authors repeated the exper-
iments of Duran and Ntafos [9] who presented a surprising
result: The number of errors found by random and partition
testing is very similar. Hamlet and Taylor came to much the
same conclusion. The results universally favoured partition
testing, but not by much. Weyuker and Jeng [30] found that
the effectiveness of partition testing varies depending on the
fault rate for each subdomain that is systematically sampled
and concluded that a partitioning strategy that yields error-
based (revealing) subdomains is the most effective. Subse-
quently, several authors discussed conditions under which
partition testing is generally more effective than random
testing (e.g., [15, 8]). Only recently, Arcuri et al. [1] pointed
out that “random testing is more effective and predictable
than commonly thought” and that “analytical and empirical
analyses have not shown so far a clear inferiority of random
testing compared with other more sophisticated techniques”.
The authors provide a non-trivial, optimal lower bound on
the number of test inputs that need to be generated to cover
a given set of targets.

Arcuri et al. [1] study the scalability of random testing. In
this work, scalability refers to the ability of exercising many
“targets” in the program as the number of targets increases.
Specifically, the authors show that random testing scales
better than a directed testing technique that focuses on one
target until it is “covered” before proceeding to the next. In-
tuitively, parallel search (here, random testing) scales better
than sequential search (here, directed systematic testing).



We are the first to introduce a theory of testing efficiency
assuming the goal is 1) to achieve a certain degree of con-
fidence in minimal time or 2) to expose a maximal number
of errors in a certain time. Thereby, we assume error-based
partitioning and model a systematic testing technique S0
that samples exactly one test input from each error-based
partition. Hence, S0 is among the most effective [30] and
(disregarding the analysis cost) one of the most efficient test-
ing techniques. Note that realistic techniques with a similar
partition sampling scheme are both, less effective and less
efficient since some error-based partitions are sampled sev-
eral times and others not at all due to the approximation.

Leaving the scope of our analysis are several practical con-
cerns that are common to all automated testing techniques.
i) Firstly, there is the oracle problem [29] which states that
a mechanism deciding for every input whether the program
computes the correct output is pragmatically unattainable
and only approximate. Partial solutions include the auto-
mated encoding of common [18, 7, 27] and the manual en-
coding of custom error conditions as assertions [23, 19, 13].
ii) Secondly, there is the typicality problem which states that
automatically generated test cases may not represent the
“typical” input a user would provide or “valid” input that
satisfies some pre-condition for the program to execute nor-
mally. Technically, both techniques could sample according
to the operational distribution [26] or using symbolic gram-
mars [20]. Then, both techniques receive the same ability to
sample typical, valid inputs. We make no such assumptions.
iii) Finally, we want to stress explicitly that for the purpose
of this paper the achieved code coverage is only secondary.
For instance, suppose a branch somewhere in the program is
exercised only if for some variable i we have i == 780234.
Then this branch may (or may not) have a very low proba-
bility to be exercised randomly. Instead, the technique shall
achieve confidence and expose errors. In our investigations,
we also account for partitions that are relatively small, pos-
sibly containing only one input.

2.2 Definitions and Notations
Given any program P, the number of input variables to

the program determine the dimensionality of the program’s
input space. The values for an input variable determines
the values of the corresponding dimension in the program’s
input space. For instance, a program with two input vari-
ables of type integer has a two dimensional input space that
can take any integer values. Regarding the input space, we
make the following assumptions:

• Bounded Dimensionality. Given any program P,
the space of inputs to P has a bounded dimension.
This assumption is realistic since the length of P is
bounded, it can only manipulate a bounded number of
variables.
• Bounded Input Space. Given any program P, every

input variable P can take only a bounded number of
values from a finite domain. This assumption is also
realistic since in practice the size of the registers where
the variables are stored is bounded.

Given these assumptions, we see that given a program P, its
input space can be taken to be a finite, measurable metric
space D =

∏d
i=1Ai where d is the dimension of the input

space of P and Ai is a finite set for every 1 ≤ i ≤ d. In
what follows, we fix a program P which in turn fixes the
dimension d and the input space D.

Definition 1 (Error-based Partitioning)

The input space D of a program P can be partitioned into
k disjoint non-empty subdomains Di where 1 ≤ i ≤ k with
the following property: Either every input t ∈ Di reveals
an error, or every input t ∈ Di does not reveal an error.
If every input of a partition Di reveals an error then we
call Di an error-revealing partition.

We notice that Def. 1 requires determinism: All executions
of the same test input yield the same output. This is satisfied
also if a model that renders an execution deterministic, like
a specific thread schedule, is constituent of the test input.

Since D is finite, k will be finite, too. Note that |Di| > 0
for all 1 ≤ i ≤ k where | · | denotes the size (cardinality) of
a set and

|D| =
k∑
i=1

|Di| (1)

If we draw an input t uniformly at random from D, for
every partition Di there is a probability that t ∈ Di. We
denote this probability by pi. Note that

pi =
|Di|
|D| , for all i and (2)

k∑
i=1

pi = 1 (3)

If all partitions are of equal size, |D1| = · · · = |Dk|, then
pi = 1/k for all 1 ≤ i ≤ k.

For every i : 1 ≤ i ≤ k, let θi be the indicator random
variable which is 1 if partition Di reveals an error and 0
otherwise. The failure rate θ of program P [9] is given as

θ =

k∑
i=1

piθi (4)

A testing technique samples the input space of the program-
under-test and discovers error-based partitions. We assume
that the information whether a partition does or does not
reveal an error is unknown a-priori. This is a fair assump-
tion because otherwise there was no need for testing. Hence,
each sampled test case becomes a witness of whether or not
the corresponding partition is error-revealing.

Definition 2 (Discovered Partitions)

Given a testing technique F that samples the input space
D, we say that F discovers partition Di in iteration j ≥ 1
if no test case has been sampled from Di in any previous
iteration j′ < j.

While the goal of software verification is to show the cor-
rectness of the program for all inputs, the goal of software
testing is to show the correctness of the program at least
for some x% of the input. Arguably, this more modest goal
may also be more practical and economical.

Definition 3 (Achieving Confidence)

For a testing technique F that samples the input space D
and in j iterations discovers partitions D = {D1, . . . ,Dm},
we say that F achieves the degree of confidence x in j
iterations if the following holds∑m

i=1 |Di|
|D| ≥ x



Now, we define two particular testing techniques, random
testing R and the systematic testing technique S0. For each
technique we assign a sampling cost that corresponds to the
time that is required for sampling a test input. The sampling
of a test input comprises of concrete tasks such as generating
and executing the corresponding test case and checking the
correctness of its outcome. The sampling cost is computed
as the sum of the time it takes each sampling-related task.

Definition 4 (Random Testing R)

Given a program P, random testing R tests P by sampling
at each iteration its input space D uniformly at random.
The cost for each sampling is one unit of time.

Note that random testing R samples with replacement. The
cost for each sampling of one unit of time includes the time to
generate and execute the corresponding test case and verify
the correctness of its output.

Definition 5 (Systematic Testing Technique S0)

Given a program P, the systematic testing technique S0
tests P by sampling at each iteration exactly one undis-
covered error-based partition uniformly at random. The
sampled partition itself is also chosen uniformly at random
from the remaining undiscovered error-based partitions.
The cost for each sampling is c units of time.

Note that S0 samples exactly one input from each error-
based partition. Eventually, S0 will have discovered all par-
titions and is thus most effective. The cost for each sampling
of c unit of time includes the time to generate and execute
the corresponding test case and verify the correctness of its
output and the time it takes for the additional analysis.
Hence, we call c the analysis cost of S0. Since S0 samples
without replacement, it discovers all of k partitions in ck
units of time.

We note, both techniques can sample from a reduced input
subdomain that contains only e.g., valid, readable, or typical
test cases instead of sampling the program’s complete input
space if such are concerns. We make no such assumptions.

We now delve into the technical details. In the following,
we shall formalise relevant concepts of approximation and
exponential decay.

Definition 6 (Asymptotics)

Let f : R→ R and g : R→ R be real functions. We say

1. f ∼ g if f(n)
g(n)
→ 1 as n→∞. Thus, for every ε > 0

there exists n0 ∈ R+ such that for every n > n0,
|f(n)− g(n)| < ε.

2. f . g if there exist constants c, n0 ∈ R+ such that
|f(n)| < c|g(n)| for all n > n0.

3. f & g if there exist constants c, n0 ∈ R+ such that
|f(n)| > c|g(n)| for all n > n0.

Note, if f . g then g & f and conversely.

Definition 7 (Exponential Decay)

A function f : R → R has exponential decay if it is dif-

ferentiable at every x ∈ R and df(x)
dx

= −λf(x) for some

constant λ. In particular note that the function ae−λx

where a is a constant has exponential decay.

3. TESTING TO ACHIEVE CONFIDENCE
While the goal of software verification is to show correct-

ness of a program for all inputs, one goal of software testing
is to show correctness at least for some x% of the input –
that is to say, to establish a certain degree of confidence x.
Given a degree of confidence x, we compare the expected
time it takes to achieve x by random testing R and by the
systematic testing technique S0. After introducing the con-
cepts and insights with an example, we investigate the effi-
ciency of S0 and R. For S0, the expected degree of confi-
dence established grows linearly with time. In contrast, for
R it is subject to exponential decay.

Given a degree of confidence x, we find that the analysis
cost of S0 must be below (ex− ex2)−1 units of time in order
to remain more efficient than R. For example, to establish
that the program works correctly for 90% of its input, sam-
pling one test systematically must take much less than five
times the time it takes to sample one test randomly.

3.1 Efficiency of S0 and R (Confidence)
In this work, we define the confidence that is achieved wrt.

the input space that is discovered (Def. 3). So, we give the
expected input space that is discovered by S0 after n units
of time.

Lemma 1 (Confidence – Systematic S0)

For the systematic testing technique S0, the expected in-
put space discovered after n time units is

fs(n) =
|D|
ck
· n

where c is the number of units of time taken for sampling
one test input.

Proof : By Definition 5, S0 discovers n/c partitions in n units
of time. Since the total number of partitions is k and S0 picks
a partition uniformly at random from the set of undiscovered
partitions, the expected contribution of some partition Di in
any given trial is 1

k
|Di|. Hence the expected contribution of

Di in n time units is n
ck
|Di|. By the linearity of expectation,

we have, the expected input space discovered in n time units

is n
ck

∑k
i=1 |Di| =

n|D|
ck

.

Thus, the expected size of the input space discovered grows
linearly with the number of iterations. As the cost increases,
the slope with the time-axis, |D|/(ck), of fs(n) decreases.

Now, we look at the case for random testing.

Lemma 2 (Confidence – Random R)

For random testingR, the expected size of the input space
discovered after n units of time is

fr(n) = |D|

[
1−

k∑
i=1

pi(1− pi)n
]

∼ |D|

[
1−

k∑
i=1

pie
−npi

]

Proof : By Definition 4, R samples n tests in n units of time.
Let Xi be the indicator random variable denoting the event
that partition Di has been discovered within these n trials.
The probability to discover Di in any given trial is pi. The
probability that Di is not discovered after n trials is (1−pi)n.
Thus, the probability that it will be discovered in n trials



is 1 − (1 − pi)n. Let the expected size of the input space
discovered after n units of time be given by the function
fr : N→ R. We have

fr(n) = E

[
n∑
i=1

Xi|Di|
]

(5)

=

k∑
i=1

|Di|E[Xi] [by linearity of expectation] (6)

=
k∑
i=1

|Di|[1− (1− pi)n] (7)

= |D|
k∑
i=1

pi[1− (1− pi)n] [by Eqn. (2)] (8)

= |D|
[

1−
k∑
i=1

pi(1− pi)n
]

[by Eqn. (3)] (9)

To approximate the above quantity, we cast the problem
of achieving confidence into the problem of finding the bonus
sum in the generalized coupon collectors problem [22]. Given
|D| coupons with k different colours, there are |Di| coupons
of a colour i where 1 ≤ i ≤ k and each coupon has a bonus
value of |Di|. Note that the probability to collect a coupon of
colour i is pi = |Di|/|D|. Then the above quantity is nothing
but the bonus sum of the coupons collected after a person
collected n coupons when counting the bonus value of each
colour only once. From the result of Rósen [22, Theorem 1]
we have

fr(n) ∼ |D|
[

1−
k∑
i=1

pie
−npi

]

3.2 Example for Equal-Sized Partitions
We illustrate the main insights for the simplified case

where the size of each partition is equal, |D1| = · · · = |Dk|
and hence pi = 1

k
for all i : 1 ≤ i ≤ k. In this setting, we

demonstrate that the confidence achieved per unit of time
decays exponentially for random testing R while it grows
linearly for the systematic testing technique S0. Later, this
result is generalized for partitions of arbitrary size.

First, we show a simple corollary of Lemma 2.

Corollary 1

For random testing R where pi = 1
k

for all i : 1 ≤ i ≤ k,
the expected size of input space discovered after n time
units is

f̄r(n) = |D|
[
1−

(
1− 1

k

)n]
= |D| − |D|e−λn

where λ = ln( k
k−1

).

Proof : The proof follows directly from Lemma 2 when setting
pi = 1

k
for every 1 ≤ i ≤ k in fr(n).

Figure 1 shows the expected size of input space discovered
per unit of time for R and S0 when k = 100 and c = 2. So,
it takes S0 twice as long to sample a test input compared
to R. On the average, after 80 units of time, S0 discovered
partitions in 40% of the input space while R discovered par-
titions in 55% of the program’s input space. On the average,
after 160 units of time both techniques break even, having
discovered partitions in 80% of the input space.
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Figure 1: On the average, S0 and R break even after
approximately 80% of the input space was covered
and 160 random test inputs were sampled (when
c = 2, k = 100, pi = 1

k
).

There exists a time n0 where f̄r(n0) = fs(n0) and S0 has
achieved more confidence than R for any n > n0, on the
average. To assess the relative efficiency of S0 we pose the
following question: Given a degree of confidence x, what is
the maximum cost c0 for S0 such that S0 achieves x in time
n ≤ n0? We give the answer by the following lemma

Lemma 3

Given a degree of confidence x, let ns and nr be the time
at which S0 and R are expected to achieve x, respectively.
When pi = 1

k
for every i : 1 ≤ i ≤ k, the maximum cost

c0 of S0, such that ns ≤ nr, is given as

c0 = c̆ ·
[

1

x
ln

(
1

1− x

)]
for a constant c̆.

Proof : Setting fs(n) = |D|x gives

n = xkc0 (10)

Setting f̄r(n) = |D|x yields

x = 1−
(

1−
1

k

)n
(11)

= 1−
(

1−
1

k

)xkc0
[by Eqn. (10)] (12)

Solving for c0 gives

c0 =
ln(1− x)

ln

((
k−1
k

)xk) (13)

= c̆ ·
[

1

x
ln

(
1

1− x

)]
(14)

where

c̆ =
1

k ln
(

k
k−1

) (15)

Figure 2 shows for the segment from x : 0.8 ≤ x ≤ 1 the
exact cost c0 for S0 such that both techniques are expected
to break even at a given degree of confidence. Giving the
degree of confidence x = 0.8, the maximum cost is c0 =
2 and both techniques are expected to break even at x as
shown in Figure 1. For x = 99, we see c0 = 4.65 in Fig. 2
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Figure 2: If the average analysis cost of S0 exceeds c0
for a given degree of confidence x, then R is generally
more efficient than S0 (here for pi = 1
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3.3 Bounds on the Expected Size of the Input
Space Discovered for Random Testing

Under the simplified conditions of the example, where
each partition has the same size, |D1| = · · · = |Dk|, we have
shown that the confidence achieved per unit of time decays
exponentially for random testing. In the following, we prove
that this is the case for partitions of arbitrary sizes. Towards
that, we define two quantities pmin and pmax.

pmax = maxki=1{pi} and pmin = minki=1{pi} (16)

where the functions max and min compute the maximum
and minimum number in a given set, respectively. Note that
pmax ≥ 1/k and pmin ≤ 1/k. We claim

Lemma 4 (Approximate Bounds)

fr(n) is bounded above and below approximately as

|D|[1− kpmine
−npmin ] . fr(n) . |D|[1− kpmaxe

−npmax ]

Proof : Let us denote the quantity
∑k
i=1 pi(1− pi)n by q(n).

Let Imax ⊆ {1, 2, . . . , k} be the set of indices such that
pmax − pi > 0 iff i ∈ Imax. Then, for all i ∈ Imax we

have
ln(pmax)−ln(pi)

pmax−pi
> 0. Let

ni ≥
ln(pmax)− ln(p)

pmax − pi
(17)

Note, pmax 6= pi for i ∈ Imax. This implies

e−nipi

e−nipmax
≥
pmax

pi
(18)

whence we get

pmaxe
−nipmax ≤ pie−nipi (19)

Let nmax = maxi∈Imax{ni} Thus for all n ≥ nmax we have

k∑
i=1

pie
−npi =

∑
i∈Imax

pie
−npi +

∑
i/∈Imax

pie
−npi

=
∑

i∈Imax

pie
−npi +

∑
i/∈Imax

pmaxe
−npmax

[since pi = pmax for i /∈ Imax]

≥
∑

i∈Imax

pmaxe
−npmax +

∑
i/∈Imax

pmaxe
−npmax

[by Eqn. (19)]

= kpmaxe
−npmax

Similarly, let Imin ⊆ {1, 2, . . . , k} be the set of indices of
the error-based partitions such that pi−pmin > 0 iff i ∈ Imin

Let

nmin = maxi∈Imin

{
ln(pi)− ln(pmin)

pi − pmin

}
(20)

We can show for all n ≥ nmin that

k∑
i=1

pie
−npi ≤ kpmine

−npmin (21)

So, for all n ≥ max{nmin, nmax}, we have

kpmaxe
−npmax ≤

k∑
i=1

pie
−npi ≤ kpmine

−npmin (22)

kpmaxe
−npmax . q(n) . kpmine

−npmin [by Rósen [22]]
(23)

Hence

|D|[1− kpmine
−npmin ] . fr(n) . |D|[1− kpmaxe

−npmax ]
(24)

Thus fr(n) being bounded above and below by exponential
functions also behaves like one.

3.4 Relative Efficiency of S0 (Confidence)
We evaluate the efficiency of the systematic testing tech-

nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0
takes c times longer than sampling a test input using R.
Since in general the achieved confidence per unit of time
decays exponentially for R while it grows linearly for S0,
there is a point where S0 and R are expected to break even.
Its coordinates depend on the value of c.

Given a degree of confidence x, we compute the maximum
cost c0 such that the expected time it takes for S0 to achieve
x is at most the same as the expected time it takes R to
achieve x and S0 remains more efficient than R.

Proposition 1

Given a degree of confidence x : 1 − e−1 ≤ x < 1, let ns
and nr be the time at which S0 and R are expected to
achieve x, respectively. For all programs P, the maximum
cost c0 of S0, such that ns ≤ nr, is bounded above as

c0 .
1

ex− ex2

Proof : Fix a program P which in turn fixes the number of
partitions k and also the probabilities pi for all i : 1 ≤ i ≤ k.
Let cP0 be the cost of S0, such that ns = nr for P. Now,
setting fs(n) = |D|x yields

n = xkcP0 (25)

Setting fr(n) = |D|x gives

x ∼ 1−
k∑
i=1

pie
−npi (26)

& 1− kpmine
−npmin [by Lemma 4] (27)

& 1− kpmine
−xkcP0 pmin [by Eqn. (25)] (28)

Solving for cP0 gives,

cP0 .
ln
(
kpmin
1−x

)
kxpmin

(29)



Let us denote
ln

(
kpmin
1−x

)
kxpmin

as h(k, pmin). From (29),

c0 ≤ maxP{cP0 } . maxP{h(k, pmin)} (30)

where maxP denotes the maximum of the quantity h(k, pmin)
over all programs.

To find the value maxP{h(k, pmin)}, we first relax the re-
quirement that k takes integral values and allow k to range
over the reals R. By doing so we notice that h(k, pmin) is a
continuous function over (R × [0, 1]) which is differentiable
everywhere. This allows us to use techniques from differ-
ential calculus to maximize h(k, pmin) wrt pmin and k. [As
we shall see below, h(k, pmin) will have exactly one global
extremum at some non-boundary point. Hence, the value
of maxP{h(k, pmin)}, with the original requirement that k
ranges over the discrete integral domain, will be attained at
one of the two nearest integers.]

We first set the partial derivative of h(k, pmin) wrt pmin

to 0.

∂

∂pmin

ln
(
kpmin
1−x

)
kxpmin

= 0 (31)

This yields a critical point for h(k, pmin) when

pmin =
e− ex
k

(32)

The second partial derivative of h(k, pmin) wrt pmin is given
by

∂2

∂p2min

ln
(
kpmin
1−x

)
kxpmin

=
−3 + 2 ln

(
kpmin
1−x

)
kxp3min

(33)

Hence for h(k, pmin) to be maximal wrt pmin it must hold
that

−3 + 2 ln
(
kpmin
1−x

)
kxp3min

< 0 (34)

which yields

pmin <
e
√
e(1− x)

k
(35)

Since (32) satisfies (35) we have that h(k, pmin) attains a

maximum wrt pmin at pmin = e−ex
k

.

By a similar analysis we can demonstrate that h(k, pmin)

attains a maximum wrt k at k = e−ex
pmin

which is the same

as Eqn. (32), pmin = e−ex
k

. Plugging pmin = e−ex
k

into

h(k, pmin) we get

c0 .
1

ex− ex2
(36)

Finally, to derive the bounds on the degree of confidence x
for which the above inequality holds, note that it must also
hold that 0 < pmin ≤ 1/k whence from Equation (32) we
have

0 <
e− ex
k

≤
1

k
(37)

which gives
1− e−1 ≤ x < 1 (38)

Corollary 2

Given the degree of confidence x ∈ {0.8, 0.9, 0.95, 0.98, 0.99},
the maximum cost cx0 of S0, such that S0 is expected to
achieve x in at most the same time as R is given as

c0.80 . 2.3, c0.90 . 4.1, c0.950 . 7.8,
c0.980 . 19, c0.990 . 38

Proof : The proof follows directly from Proposition 1.

Figure 3: The maximum for the cost c0 in terms of
pmin and k (for the degree of confidence x = 0.99).

Figure 3 provides a graphical interpretation of the Equa-
tion (29) for the x = 0.99 degree of confidence. The figure
shows that the maximum cost c0 for all programs with the
total number of partitions k : 0 < k < 5000 and the prob-
ability for the smallest partition pmin : 0 < pmin < 0.0001
reaches a maximum for some programs at below a c0 of 40.
By Proposition 1, this holds in general for all programs.

4. TESTING TO DISCOVER ERRORS
Besides achieving confidence in the program’s correctness,

another definition of effective software testing is to discover
errors (cf. E-measure [1]). So, given the same time, we
compare the expected number of errors found by random
testing R with the expected number of errors found by the
systematic testing technique S0. After illustrating our main
insights by an example, we investigate the efficiency of S0
and R w.r.t. the expected number of errors discovered. The
expected number of errors discovered per unit of time grows
linearly for S0 while it decays exponentially for R.

First, we slightly strengthen Definition 1 stating that fail-
ing inputs revealing the same error are grouped into one
partition. This is reasonable because in practice several fail-
ing inputs may witness the same error.

Definition 8 (Error-based Partitioning’)

The input space D of a program P can be partitioned into
k disjoint non-empty subdomains Di where 1 ≤ i ≤ k with
the following property: Either every input t ∈ Di reveals
the same error, or no input t ∈ Di reveals an error.

Thus, the number of error-revealing partitions discovered
corresponds to the number of errors found.

Given a time bound n̂, we find that the expected number
of errors discovered by R within n̂ time units is less than or
equals that of S0 only if the analysis cost c incurred by S0
is less than n̂

k
· (1− (1− qmin)n̂)−1, where k is the number of

error-based partitions, and qmin is the fractional size of the
“smallest” error-revealing partition in the program’s input
space.

Duran and Ntafos [9] define a quantity θi for every par-
tition Di which gives the probability of that partition to
reveal an error. In our setting, θi is either 0 or 1 and can be
defined as

θi =

{
1 if Di is error-revealing
0 otherwise

Then the total number of errors in P is given by z =
∑k
i=1 θi.



4.1 Efficiency of S0 and R (Errors Found)
First, we give the expected number of errors found per

unit of time, i.e., the efficiency, for the systematic testing
technique S0.

Lemma 5 (Errors Found – Systematic S0)

For the systematic testing technique S0, the expected num-
ber of errors discovered after n time units is

gs(n) =
z

ck
· n

for n : 0 ≤ n ≤ k, where every trial “costs” c units of time.

Proof : By Definition 5, S0 performs n/c draws in n units
of time. In this classical urn problem of sampling without
replacement we shall call the discovery of an error(-revealing
partition) a “success”. The expected number of successes in
n/c draws without replacement from a finite population k
containing z successes is given by z

ck
· n.

The expected number of errors discovered w.r.t the number
of iterations grows linearly. As the cost c increases, the slope
with the time-axis, z/ck, of the line, gs(n), decreases.

Now, we look at the case for random testing.

Lemma 6 (Errors Found – Random [9])

For random testing R, the expected number of errors dis-
covered after n time units is

gr(n) = k −
k∑
i=1

(1− piθi)n

The proof is due to Duran and Ntafos [9]. By Definition 4,
every iteration occurs in one unit of time.

4.2 Example for Equal-Sized Partitions
We illustrate the main insights for the simplified case

where the size of each partition is equal, |D1| = · · · = |Dk|
and hence pi = 1

k
for all 1 ≤ i ≤ k. In this setting, we

demonstrate that the efficiency decays exponentially for R
while it grows linearly for S0. Later, this result is generalized
for partitions of arbitrary size.

First, we derive the corollary of Lemma 6.

Corollary 3

For random testing R where pi = 1
k

for all 1 ≤ i ≤ k, the
expected number of errors found after n time units is

ḡr(n) = z − z
(

1− 1

k

)n
= z − ze−λn

where λ = ln
([

1− 1
k

]−1
)

.

Proof : There are a total of z number of error-revealing par-
titions. After setting pi = 1

k
in the formula of Lemma 6, we

have for z number of partitions that θi = 1 and for k − z

number of partitions that θi = 0. Thus,

ḡr(n) = k −
k∑
i=1

(
1−

θi

k

)n
(39)

= k −
(

(k − z) + z

(
1−

1

k

)n)
(40)

= z − z
(

1−
1

k

)n
(41)

= z − ze− ln((1− 1
k
)−1)n (42)
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Figure 4: On the average, S0 and R break even after
12 of 15 errors were discovered and 1600 random test
inputs were sampled (when c = 2, z = 15, k = 1000,
pi = 1

k
).

Figure 4 depicts the expected number of discovered errors
per unit of time for random testing and S0 in our example
configuration. As the cost c is 2, it takes S0 twice as long to
sample a test input compared to R. After 800 units of time,
S0 discovered 6 of z = 15 errors on the average, while R
discovered 2.2 errors more, on the average. After 1600 units
of time, both techniques discovered 12 of z = 15 errors,
on the average. This the point of time where both testing
schemes, S0 and R, are expected to break even.

There exists a time n0 where ḡr(n0) = gs(n0) meet and
S0 has discovered more errors than R for any n > n0, on
the average. To assess the relative efficiency of S0 we pose
the following question: Given a time bound n̂, what is the
maximum cost c0 for S0 such that n0 ≤ n̂?

Lemma 7

In the case where pi = 1
k

for every 1 ≤ i ≤ k, the maxi-
mum cost c0 of the systematic testing technique S0 – such
that the expected number of errors discovered by S0 is at
least the same as the expected number of errors discovered
by random testing in n̂ units of time – is given as

c0 =
n̂

k(1− (1− 1
k

)n̂)

∼ n̂

k
as n̂→∞

Proof : The proof follows directly from Lemma 5 and Corr. 3
when fixing n to n̂ and setting ḡr(n̂) = gs(n̂).

Figure 5 depicts the exact cost c0 for S0 such that both
techniques are expected to break even at a given time n̂.
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Figure 5: The maximum cost c0 increases approxi-
mately linearly as the given time bound n̂ increases.
If the average analysis cost of S0 exceeds c0 for a
given time bound n̂, then R is generally more effi-
cient than S0 (here for pi = 1

k
and k = 1000).

Giving a time bound of n̂ = 1600, the maximum cost is
c0 = 2 and both techniques are expected to break even at n̂
as shown in Figure 4. Increasing the time-bound n̂, increases
the maximum cost c0 approximately proportionally.

4.3 Tight Bounds on the Expected Number of
Errors Discovered for Random Testing

Under the simplified conditions of the example, where
each partition has the same size, |D1| = · · · = |Dk|, we see
that the efficiency of random testing decays exponentially. In
the following, we show that this is the case for partitions of
arbitrary sizes. Intuitively, random testing discovers many
(error-revealing) partitions in the beginning and much less
as the number of iterations increases.

Towards that, letQ ⊆ {p1, . . . , pk} be a set of probabilities
such that pi ∈ Q iff θi = 1 for all indices 1 ≤ i ≤ k. Thus,
Q is the set of pi’s corresponding to all the error-revealing
partitions Di.

Let Q = {q1, . . . , qz}, we define two quantities qmax and
qmin as

qmax = max{q | q ∈ Q} and qmin = min{q | q ∈ Q} (43)

where the functions max and min give the maximum and
minimum elements in a given set, respectively. We have

Lemma 8 (Tight bounds)

Given a program P, let k be the total number of partitions
of the input space out of which z are error-revealing. Let

λmin = ln

(
1

1− qmin

)
and λmax = ln

(
1

1− qmax

)
Then we have

z − ze−λminn ≤ gr(n) ≤ z − ze−λmaxn

Proof :

gr(n) = k −
k∑
i=1

(1− θipi)n (44)

= k −

∑
qi∈Q

(1− qi)n +
∑
qi /∈Q

1

 (45)

= k −
∑
qi∈Q

(1− qi)n − (k − z) (46)

≤ z −
z∑
i=1

(1− qmax)n (47)

= z − ze−λmaxn (48)

By similar analysis we can show that

gr(n) ≥ z − ze−λminn (49)

The function gr(n) being bounded above and below by ex-
ponentially decaying functions also behaves like one. Hence
gr(n) also has the nature of an exponential function.

4.4 Relative Efficiency of S0 (Errors Found)
We evaluate the efficiency of the systematic testing tech-

nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0
takes c times longer than sampling a test input using R.
Since in general the efficiency of R, here w.r.t. discovering
errors, decays exponentially while that of S0 grows linearly,
there is a point in time where S0 and R are expected to
break even. The coordinates of this point depend on the
value of c.

Given n̂ units of time, we compute the maximum cost c0
such that S0 remains more efficient than R. Specifically, we
compute c0 such that the expected number of errors discov-
ered by S0 is at least the same as the expected number of
errors discovered by R.

Proposition 2

Given a program P, let k be the total number of parti-
tions of the input space out of which z are error-revealing.
Given n̂ units of time, let dr and ds be the expected num-
ber of error-revealing partitions discovered by the sys-
tematic testing technique S0 and random testing R, re-
spectively. Then, the maximum cost c0 of S0, such that
dr ≤ ds, is given as

c0 ≤
1

k
· n̂

1− (1− qmin)n̂

where qmin is defined as in Eqn. (43).

Proof : Setting gs(n̂) = gr(n̂) yields

zn̂

kc0
= k −

k∑
i=1

(1− piθi)n̂ (50)

zn̂

kc0
≥ z − z(1− qmin)n̂ [By Lemma 8] (51)

Solving for c0 having n̂ > 0, k > 0, and z ≥ 0 gives

c0 ≤
1

k
·

n̂

1− (1− qmin)n̂
(52)



5. PRACTICAL IMPLICATIONS
In this paper we present strong, elementary, theoretical

results about the efficiency of automated software testing.
For thirty years [9], we have struggled to understand how
automated random testing and systematic testing seem to be
almost on par [16, 30, 8, 28, 15, 25, 24]. It seems yesterday
when Arcuri et al. [1] argued that “analytical and empirical
analyses have not shown so far a clear inferiority of random
testing compared with other more sophisticated techniques”.

Today, we have formally proven limits on the efficiency of
automated systematic testing beyond which random testing
is certainly “superior”. We first model an ideal systematic
testing scheme which we call S0. By sampling one test input
from each error-based partition, S0 is not only the most
effective but also a very efficient testing scheme. Next we
assume that S0 incurs a constant analysis cost c for each of
its trials while random testing does not. Then we argue that
there must be a maximum value for c beyond which S0 is
less efficient than random testing.

Now, practical testing schemes are much less than ideal.
In reality, our testing techniques end up sampling some
error-based partitions several times and others not at all.
This is because complete certainty about the “true” error-
based partitioning is unattainable [29]. In fact, the quality
of the approximation depends directly on the analysis cost.
The more comprehensive the analysis, the more effective the
testing technique. It follows that:

In practice, to approach the effectiveness of S0, we
need to increase the analysis cost which in turn
decreases the efficiency of the testing technique!

Moreover, practical testing schemes may be less efficient
for bigger programs. As opposed to S0, the efficiency of real-
istic schemes may not remain constant across all programs.
To maintain effectiveness, the analysis must be more com-
prehensive as the number of program artifacts increases that
are analyzed. Since there is an upper bound on the analysis
cost which itself is a function of program size, it follows that:

In practice, there exists a maximum program size
beyond which R is generally more efficient!

Testing schemes may become less efficient during testing.
As opposed to S0, the analysis cost may not remain constant
but increase during testing. Take coverage-based testing for
example. It requires almost no analysis to sample an initial
set of inputs that cover much of the source code. However,
it becomes increasingly difficult to cover the remaining few
uncovered code elements [32, 31]. Besides, the order in which
the error-based partitions are sampled may not be random
(Def. 5). If so, the expected confidence achieved and errors
discovered may reduce over time rather than grow linearly.

A practical result of Proposition 1: The “class of nines” for
a given degree of confidence x is directly proportional to the
magnitude of the maximum analysis cost. The class of nines
for degree of confidence x is computed as b− log10(1 − x)c,
where b.c is the floor function:

confidence x class of nines bound on c
90% 1 nine c < 4.1 ∗ 100

99% 2 nines c < 4 ∗ 101

99.99% 4 nines c < 4 ∗ 103

99.9999% 6 nines c < 4 ∗ 105

A generalization of Proposition 2: It is trivial to show how
the proposition holds for disjoint input subdomains that are
homogeneous w.r.t. other properties. As fixed in Def. 8,
we investigate the efficiency w.r.t. error-based partitioning.
However, there is no reason why the partitioning should
not be target-based, path-based, or differential, for example.
Target-based partitioning yields subdomains for which all in-
puts either do or do not reach a certain target in the source.
Differential partitions [2] are difference- and equivalence-
revealing subdomains in the context of regression testing.
Path-based partitioning [12, 11] groups inputs that exercise
a certain path. To illustrate this generalization of Prop. 2:

Question: We have a program with k = z = 106 paths
where the path with the least probability to be exercised
is of fractional size qmin = 10−8. We have two testing
tools: a symbolic execution tool S ′ that exercises each
path – one at a time, chosen uniformly at random from
paths not exercised – and a random testing tool R that
takes 10ms to generate and execute a test case. Finally,
we only have one hour (n̂ = 1h) to exercise as many paths
as possible. Which technique should we choose, R or S ′?
Answer: We choose S ′ only if generating and executing
one test case takes, on the average, less than about 1s!

To determine qmin, we note that Geldenhuys et al. [11]
introduced a tool that can measure the probability of a path
to be exercised using model counting on the path condition.

6. CONCLUSION
In this paper, we explore two notions of testing efficiency

that may be the main goals of automated software testing:
1) to show in minimal time the correctness of a program for a
given percentage of the program’s input domain (Sec. 3) and
2) to discover a maximal number of errors within a given
time bound (Sec. 4).

We define a systematic testing technique S0 that is most
effective in terms of both the above notions. Subsequently,
we explore the efficiency of S0 again in terms of both the
above notions. However, we believe that our work can also
provide the formal framework to explore the efficiency of
systematic testing techniques other than S0.

If the goal is to discover a maximal number of errors
within a given time bound, we prove an upper bound on
the cost of S0 and show that it depends on the number of
error-based partitions and the fractional size of the “small-
est” error-revealing partition. We discuss how this result
generalizes to other homogeneous partitionings.

If the goal is to show in minimal time the correctness of a
program for a given percentage of the program’s input space,
we prove an upper bound on the cost of S0 that depends
asymptotically only on the given degree of confidence and
holds for all programs-under-test. The existence of an upper
bound has great implications on the scalability of systematic
testing if we consider the analysis cost not as a constant but
rather a function on the program size.

7. ACKNOWLEDGMENTS
We would like to thank our colleagues, Abhijeet Banerjee

and Dr. Konstantin Rubinov, for the engaging discussions
about the content and potential impact of this paper. This
work was partially supported by Singapore’s Ministry of Ed-
ucation research grant MOE2010-T2-2-073. The first author
is funded by an ERC advanced grant ’SPECMATE’.



8. REFERENCES
[1] A. Arcuri, M. Iqbal, and L. Briand. Random testing:

Theoretical results and practical implications. IEEE
Transactions on Software Engineering, 38(2):258–277,
March 2012.
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