Simplifying Problems

Andreas Zeller

Simplifying

® Once one has reproduced a problem, one
must find out what’s relevant:

® Does the problem really depend on
10,000 lines of input!?

® Does the failure really require this exact
schedule!?

® Do we need this sequence of calls!?

Why simplify?

i o U

>

implifying

® For every circumstance of the problem,
check whether it is relevant for the
problem to occur.

® |f it is not, remove it from the problem
report or the test case in question.

Circumstances

® Any aspect that may influence a problem is
a circumstance:

® Aspects of the problem environment

® Individual steps of the problem history

Experimentation

® By experimentation, one finds out whether a
circumstance is relevant or not:

® Omit the circumstance and try to
reproduce the problem.

® [he circumstance is relevant iff the
problem no longer occurs.

Mozilla Bug #24735

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to .50
(I use the file /var/tmp/netscape.ps)

-> Once it's done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

<OELCUCI NANME= Op_SYyYS MULILFLE O1/ZE=(~>

<OPTION VALUE="ALL">A1l1<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION
VALUE="Windows 95">Windows 95<OPTION VALUE="Windows 98">Windows

98<0PTION =" %i’\r "SWin <%i1 == Bd
2000">W1ind . N
VALUE="Mac System 7/">Mac System 7<OPTION VALUE="Mac System /.5">Mac

System 7.5<0OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1<OPTION
VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System
8.5">Mac System 8.5<0OPTION VALUE="Mac System 8.6">Mac System
8.6<0OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS
X">MacOS X<OPTION VALUE="Linux">L1nux<OPTION VALUE="BSDI">BSDI<OPTION
VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="0penBSD">0
VALUE="Be0S">Be0S
VALUE="IRIX">IRIX ION
VALUE="0penVMS">0 — N VALUE="OSF/
1">0SF/1<0OPTION VALUE="Solaris">Solaris<OPTION
VALUE="Sun0S">SunOS<OPTION VALUE="other">other</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT>

Why simplify?

o A simplified test
case IS easier to communicate.

_ Smaller test cases result
in smaller states and shorter executions.

° Simplified test cases
subsume several duplicates.

The Gecko BugAThon

® Download the Web page to your machine.

® Using a text editor, start removing HTML
from the page. Every few minutes, make
sure it still reproduces the bug.

® Code not required to reproduce the bug
can be safely removed.

® When you've cut away as much as you can,
you're done.

Rewards

5 bugs - invitation to the Gecko launch party

10 bugs - the invitation, plus an attractive Gecko
stuffed animal

12 bugs - the invitation, plus an attractive Gecko
stuffed animal autographed by Rick Gessner, the
Father of Gecko

15 bugs - the invitation, plus a Gecko T-shirt

20 bugs - the invitation, plus a Gecko T-shirt signed by
the whole raptor team

Binary Search

® Proceed by binary search. Throw away half
the input and see if the output is still wrong.

® |f not, go back to the previous state and
discard the other half of the input.

HTML input

v

Simplified Input

® Simplified from 896 lines to one single line

® Required |12 tests only

Benefits

° All one needs is
“Printing <SELECT> crashes”.

° We can directly focus on
the piece of code that prints <SELECT>.

_ Check other test cases
whether they’re <SELECT>-related, too.

Why automate?

® Manual simplification is tedious.
® Manual simplification is boring.

® We have machines for tedious and boring
tasks.

Basic Idea

® Ve set up an automated test that checks
whether the failure occurs or not
(= Mozilla crashes when printing or not)

® VWe implement a strategy that realizes the
binary search.

Automated Test

|. Launch Mozilla

2. Replay (previously recorded) steps from
problem report

3. Wait to see whether
® Mozilla crashes (= the test fails)
® Mozilla still runs (= the test passes)

4. If neither happens, the test is unresolved

Bmary Search

|18

Configuration

Circumstance

All circumstances
i 0y O s

Configuration ¢ = C
¢ =101,02,...0n}

Tests

Testing function

test(c) € {vV/, X, ?}

Binary Strategy

Split input
Cx =C1 U C
If removing first half fails...
lestlcaliagi=idaaila=stiliai
If removing second half fails...

lesliiGEte ji—ai——tc =t e

Otherwise, increase granularity:

Cypi—i Ci @ UlCas\ i C

Cy O SRCosC R @G R@NE AR C R Wi

General Strateqgy

Split input into n parts (initially 2)
Gii=ic e R e

If some removal fails...
Gusi—icalEc:

i € {1,...,n} - test(cy \ ¢i) = X = n' =max(n-—1,2)

Otherwise, increase granularity

/4

c'=c n =2n

ddmin in a Nutshell

c. = ddmin(c,) is a relevant configuration

ddmin(c.) = ddmin' (c’,2) with ddmin (¢, n) =

(! 1 A e |
ddmin (¢’ \ ¢;,max(n —1,2)) elseif 3i € {1..n} - test(c’ \ ¢;) =
! (“some removal fails”)
ddmin’ (c/,min(2n, |c’|)) else if n < |¢’| (“increase granularity”)
i otherwise
where ¢’ =c1Uc2U---Ucy

Vei,cj-cincj = Alcil| = \CJ'\

def _ddmin(circumstances, n):
while len(circumstances) >= 2:
subsets = split(circumstances, n)

some_complement_is_failing = 0
for subset 1n subsets:
complement = listminus(circumstances, subset)
1f test(complement) == FAIL:
circumstances = complement
n =max(n - 1, 2)
some_complement_1is_failing = 1
break

1f not some_complement_is_failing:
1f n == len(circumstances):
break
n = min(n * 2, len(circumstances))

return circumstances

ddmin at Work

Input: <SELECT NAME="priority" MULTIPLE SIZE=7> (40 characters) X
<SELECT NAME="priority" MULTIPLE SIZE=7> (O characters) v

N e)
QOO NDOUTERE WO OOONOUTER WN -

N DO DN
W N =

No
e~

<SELECT NAME="priority" MULTIPLE SIZE=7> (20) v 25 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (20) v 26 <SELECT NAME="priority" MULTIPLE SIZE=7> (8)
<SELECT NAME="priority" MULTIPLE SIZE=7> (30) v 27 <SELECT NAME="priority" MULTIPLE SIZE=7> (9)
<SELECT NAME="priority" MULTIPLE SIZE=7> (30) X 28 <SELECT NAME="priority" MULTIPLE SIZE=7> (9)
<SELECT NAME="priority" MULTIPLE SIZE=7> (20) v 29 <SELECT NAME="priority" MULTIPLE SIZE=7> (9)
<SELECT NAME="priority" MULTIPLE SIZE=7> (20) X 30 <SELECT NAME="priority" MULTIPLE SIZE=7> (9)
<SELECT NAME="priority" MULTIPLE SIZE=7> (10) v 31 <SELECT NAME="priority" MULTIPLE SIZE=7> (8)
<SELECT NAME="priority" MULTIPLE SIZE=7> (10) v 32 <SELECT NAME="priority" MULTIPLE SIZE=7> (9)
<SELECT NAME="priority" MULTIPLE SIZE=7> (15) v 33 <SELECT NAME="priority" MULTIPLE SIZE=7> (8)
<SELECT NAME="priority" MULTIPLE SIZE=7> (15) v 34 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (15) X 35 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (10) v 36 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (10) v 37 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (10) v 38 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (12) v 39 <SELECT NAME="priority" MULTIPLE SIZE=7> (6)
<SELECT NAME="priority" MULTIPLE SIZE=7> (13) v 40 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (12) v 41 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (13) X 42 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (10) v 43 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (10) v 44 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (11) v 45 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (10) x 46 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (7) v 47 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)
<SELECT NAME="priority" MULTIPLE SIZE=7> (8) v 48 <SELECT NAME="priority" MULTIPLE SIZE=7> (7)

Result: <SELECT>

SRR N NSNS S S XSS KKKX

Complexity

2. LhS mad gl DLmRet Sl cdnun tests 5

. i I B f i & -k L B e E E B e - h R, - % S e o i Bt . b LT
. =1 ’ F R ..-\. : I I.. N o AL r,dr. "I:'"-_..—f",_'h-":- _:-‘lr_ LI '4.-':":#"1 :' 3 - » H {0 » L L <

B

b
.I

Worst Case Detalils

First phase: every test is unresolved

t=2+4+8+---+2|c.|
Gl

— A el o e e o

2

4

Second phase: testing last set always fails
t'=(c|-1)+(lc.| =2)+---+1

=1 + 2

3

(Icx| — 1)

sde ek)i doels = e

2

2

4|c. |

Binary Search

If

® there is only one failure-inducing
circumstance, and

® all configurations that include this
circumstance fail,

the number of tests is t < log,(|c |)

More Simplification

Simplified failure-inducing fuzz input:

® FLEX crashes on 2,121 or more non-
newline characters

® NROFF crashes on “\D?|%0F” or “\302\n”
® CRTPLOT crashes on ‘“t”

Minimal Interaction

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to .50
(T use the file /var/tmp/netscape.ps)

-> Once it's done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

Minimal Interaction

Basic idea:
Apply ddmin to recorded user interaction

® Jo reproduce the Mozilla printing crash:
® Press P while holding Alt
® Press mouse button |

® Release mouse button |

Optimization

Caching
Stop Early
Syntactic Simplification

Isolate Differences, not Circumstances

Caching

Stop Early

One may stop simplification when
® a certain granularity has been reached
® no progress has been made

® a certain amount of time has elapsed

Syntactic Simplification

SELECT

Differences

<SELECT NAME="priority" MULTIPLE SIZE=7/>

More Circumstances

Randomness Operating System

N

Communication\ v

User Interaction —

L

Data Debugging Tools

More Automation

Failure-Inducing Input
Failure-Inducing Code Changes
Failure-Inducing Schedules

Failure-Inducing Program States

Concepts

* The aim of simplification is to create a
simple test case from a problem report.

* Simplified test cases...
® are easier to communicate
® facilitate debugging

® identify duplicate problem reports

Concepts (2)

* To simplify a test case, remove all irrelevant
circumstances.

* A circumstance is irrelevant if the problem
occurs regardless of whether the
circumstance Is present or not.

Concepts (3)

* To automate simplification, set up
® an automated test

® 3 strategy to determine the relevant
circumstances

* One such strategy is the ddmin delta
debugging algorithm

42

