

The First Task

® Once a problem is reported (or exposed
by a test), some programmer must fix it.

® The first task is to reproduce the problem.

Why reproduce?

° Without being able
to reproduce the problem, one cannot
observe it or find any new facts.

° How do you know that
the problem is actually fixed!?

A Tough Problem

® Reproducing is one of the toughest
problems in debugging.

® One must

® recreate the environment in which the
problem occurred

® recreate the problem history — the steps
that lead to the problem

Reproducing the
Environment

Where to Chances of
Costs
reproduce! Success
User + Ay,
Developer O -+

Iterative Reproduction

® Start with your environment

® While the problem is not reproduced,
adapt more and more circumstances from
the user’s environment

® |teration ends when problem is reproduced

® Side effect: Learn about failure-inducing
circumstances

'lill o
i E}}% .
it |

S S s 1]

o [y v

|3 fill: | =
esting on oze‘ ot different machineg 1

to find m duce roble

I

Virtual Machines

/E gsHwinZk3: ¥Mware Management Interface - Microsoft Internek Ex
File Edit Wiew Favorites Tools Help

() Back - x| |; - Se Favorites %' Media
Addres:

@ ¥Mware GSX Server e.H.p build-7357 | administrator@gsxwinzks

S5tatus Monitor ~

Last updated Thu Feb 19 15:47:32 PST 2004
System Summary

Processors (2] Memory (1.5 G)
Yirtual Machines 9 = NIN0 Yirtual Machines
Other zo % 1000 Other
Systern Total aa = [ONN0REA Svstern Tatal

¥irtual Machines (8)

HB Display Name
iindows ®P Professional

iindows 2000 Cluster Mode 2

WinMT IIS Web Server

Mowvell MetWare 6.5

i rdo vier 2003

Fed Hat Enterprise Linux 3

SuSE Linux Enterpris

&

Downlaad WMware Wirtual Machine Consaole:

go4.0 11 DNODDONEARCD
g4z.0 1 NNN00000E

1.5 G INNORRORAROOEOOONNNE

Up % CPU RAM

& hours 7 11 301.0 M

22 hours 3 11 157.0 M
35 hours g 176.0 M

35 hours 1 01

& Add ¥irtual Machine

2} 4 Internet

Reproducing
Execution

® After reproducing the environment, we must
reproduce the execution

® Basic idea: Any execution is determined by
the input (in a general sense)

® Reproducing input = reproducing
execution!

Program Inputs

Randomness Operating System

N

Communication\ v

User Interaction —

L

Data Debugging Tools

Program Inputs

Data

Easy to transfer and replicate
Caveat #1: Get all the data you need
Caveat #2: Ger only the data you need

Caveat #3: Privacy issues

Program Inputs

User Interaction —

Data

User Interaction

Input Sources

Record

Recorded Interaction

send_xevents key H @400,100
send_xevents wait 376

send_xevents key T @400,100
send_xevents wait 178

send_xevents key T @400,100
send_xevents wait 214

send_xevents key P @400,101
send_xevents wait 537

send_xevents keydn Shift_L @400,101
send_xevents wait 218

send_xevents key “;” @400,101
send_xevents wait 167

send_xevents keyup Shift_L @400,101
send_xevents wait 1556

send_xevents click 1 @428,287
send_xevents wait 3765

Program Inputs

Communlcatlon\ N\

User Interaction —

Data

Communication

® General idea: Record and replay
like user interaction

® Bad impact on performance

® Alternative #1: Only record since last
checkpoint (= reproducible state)

® Alternative #2: Only record “last”
transaction

Program Inputs

Randomness

Communication\ \ 4

User Interaction —

Data

Randomness

® Program behaves different in every run
® Based on random number generator

® Pseudo-random: save seed
(and make it configurable)

® Same applies to time of day

® Jrue random: record + replay sequence

Program Inputs

Randomness Operating System

Communication\ _ 4

User Interaction — |

Data

Operating System

® [he OS handles entire interaction between
program and environment

® Recording and replaying OS interaction
thus makes entire program run
reproducible

A Password Program

#tinclude <string> $ c++ -o password password.C

#include <iostream> $./password

using namespace std; Enter your password: secret
Access granted.

string secret_password = "secret"; $

int main()
i
string given_password;
cout << "Please enter your password: ";
cln >> given_password;
1f (given_password == secret_password)
cout << "Access granted." << endl;
else
cout << "Access denied." << endl;

Traced Interaction

$ c++ -0 password password.C
$ strace ./password 2> LOG
Enter your password: secret

Access granted.
$ cat LOG

write(l, "Please enter your password: ", 28) = 28
read(@, "secret\n", 1024) = .f
write(l, "Access granted.\n", 16) 16
ex1t_group(0) = 7

How Tracing works

Rep|aying Traces

S EU [[

® Tracing creates lots of data

® Example:Web server with 10 requests/sec
A trace of |10 k/request means 8GB/day

® All of this must be replayed to reproduce
the failure (alternative: checkpoints)

® Huge performance penalty!

Program Inputs

Randomness Operating System
Communication—__ R4)Yl — Schedules

User Interaction —

Data

Accessing Passwords

open(’.htpasswd”)
read(...)

Thread A modify(...)
\Write(.)
Hepadswd file

open(”.htpasswd”)
read(...)

Thread B modify(...)
write(...)
close(...)

Lost Update

open(’.htpasswd”)

open(”’.htpasswd”)
Thread A read(...)

read(...)

modify(...) | A’s updates

write(...) get lost!

close(...)
Thread B modify(...)

write(...)
close(...)

Reproducing Schedules

® Thread changes are induced by a scheduler

® |t suffices to record the schedule (i.e. the
moments in time at which thread switches

occur) and to replay it

® Requires deterministic input replay

Constructive Solutions

® | ock resource before writing
® Check resource update time before writing

® ... or any other synchronization mechanism

Program Inputs

Randomness Operating System

N\

Communication\ A& 4

User Interaction —

Data

Physical Influences

Static electricity

Alpha particles (not cosmic rays) | r..a and

Quantum effects hard to

reproduce
Humidity

Mechanical failures + real bugs

Program Inputs

Randomness Operating System

N\

Communication\ A& 4

User Interaction —

L

Data Debugging Tools

A Heisenbug

® Code fails outside debugger only

int O {
int 1;
return 1i;
}/ \
In program: In debugger:
returns random value returns O

More Bugs

Heisenbug

Bohr Bug

Mandelbug

Schrodinbug

Isolating Units

® Capture + replay unit instead of program

® Needs an unit control layer to monitor input

Isolated Units

o Replay only the interaction with
the database.

° Record + replay intermediate

data structures rather than the entire front-
end.

° Record + replay
communication calls.

A Control Example

class Map {

public:
virtual void add(string key, int value);
virtual void del(string key);
virtual int lookup(string key);

%

® How do we control this?

A Log as a Program

#include "Map.h"
#1nclude <assert>

snEenatntdiet
Map map;
map .add("onions", 4);
map.del("truffels");
assert(map.lookup("onions") == 4);
return 0;

® This is a log file (and also a program)

® How do we get this?

Controlled Map

class ControlledMap: public Map {
public:
typedef Map super;

virtual void add(string key, int value);
virtual void del(string key);
virtual int lookup(string key);

ControlledMap(); // Constructor
~ControlledMap(); // Destructor

i

Logging

void ControlledMap: :add(string key, int value) {
clog << "map.add(\"" << key << "\", "
<< value << ");" << endl;
Map: :add(key, value);
} map.add("onions", 4);

vold ControlledMap: :del(string key) {
clog << "map.del(\"" << key << "\");" << endl;
Map: :del(key);
} map.del("truffels");

virtual int ControlledMap: :lookup(string key) {
clog << "assert(map.lookup(\"" << key << "\") ==
int ret = Map: :lookup(key);
clog << ret << ");" << endl;
return ret;

1 assert(map.lookup("onions") == 4);

",
)

Logging Fixture

ControlledMap: :ControlledMap()

{
clog << "#include \"Map.h\"" << endl
<< "#include <assert>" << endl
<< "" << endl
<< "int main() {" << endl
2 Map map;" << endl;
3

ControlledMap: :~ControlledMap()
{

clog << return 0;" << endl;
<< "}" << endl;

More Interaction

® Variables (hard to detect)
® Other units (break dependency if needed)

® Time (record + replay, too)

Concepts

* Once a problem is tracked, one must
reproduce it in the own environment

* To reproduce a problem...

® reproduce the environment (by adopting
one circumstance after the other)

® reproduce the execution (by controlling
the input of the program or a unit)

Program Inputs

Randomness Operating System

N

Communication\ v

User Interaction —

L

Data Debugging Tools

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/ 1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

