
Andreas Zeller

Locating Failure Causes

2

Sane stateInfected state

Finding Causes

The difference
causes the failure

3

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

argc = 3

4

Passing runFailing run

Search in Time

t

argc = 3

argc = 3

a[2] = 0

Transition from argc to a[2]

Transitions

A cause transition occurs when a new variable
begins to be a failure cause:

• argc no longer causes the failure…

• …but a[2] does!

Can be narrowed down by binary search

5

6

int main(int argc, char *argv[])
{
 int *a;

 // Input array
 a = (int *)malloc((argc - 1) * sizeof(int));
 for (int i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 // Sort array
 shell_sort(a, argc);

 // Output array
 printf("Output: ");
 for (int i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);
 return 0;
}

Should be argc - 1

7

Why Transitions?

• Each failure cause in the program state is
caused by some statement

• These statements are executed
at cause transitions

• Cause transitions thus are
statements that cause the failure!

Potential Fixes

• Each cause transition implies a fix to make
the failure no longer occur – just prohibit
the transition

• A cause transition is more than a potential
fix – it may be “the” defect itself

8

9

Sane stateInfected state

Searching GCC State

Mixed state

✔✘

Test ?

<PLUS node>

10

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

11

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

link→fld[0].rtx→fld[0].rtx == link

Passing runFailing run

t

<PLUS node>

<Tree cycle>

Transition from PLUS to cycle

<PLUS node>

Search in Time

12

All GCC Transitions

13

Location Cause transition to variable

0 〈Start〉 argv[3]
1 toplev.c:4755 name
2 toplev.c:2909 dump base name
3 c-lex.c:187 finput→ IO buf base
4 c-lex.c:1213 nextchar
5 c-lex.c:1213 yyssa[41]
6 c-typeck.c:3615 yyssa[42]
7 c-lex.c:1213 last insn→fld[1].rtx

→fld[1].rtx→fld[3].rtx
→fld[1].rtx.code

8 c-decl.c:1213 sequence result[2]
→fld[0].rtvec
→elem[0].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[3].rtx→fld[1].rtx.code

9 combine.c:4271 x→fld[0].rtx→fld[0].rtx

Table 3: Cause transitions in GCC

hold an additional node (fld[1].rtx.code is PLUS) in
the failing run (Transitions 7–8). Thus, the + in the input has
caused a PLUS node, created at Transition 8.

4. In Transition 9, the failure cause moves from the additional

PLUS node to a cycle in the abstract syntax tree. We have

x→fld[0].rtx→fld[0].rtx = x

meaning that the node at *x is its own grandchild! This cy-
cle ultimately causes an endless recursion and thus the GCC

crash.

In our earlier work [15], we had also identified the cycle as the ulti-

mate failure cause, and assumed that an experienced GCC program-

mer would be able to distinguish infections from non-infections.

Therefore, an experienced programmer would have immediately

focused on the GCC cycle.

Under the assumption that cause transitions indicate defects, though,

a less experienced programmer could start his investigation at the

listed cause transitions. At combine.c:4271, the location of the last

transition, we find a single statement

return x;

This line is not likely to be a defect. Let us take a look at the

direct origin of x, in combine.c:4013–4019, listed in Figure ?? on
page ??.

This place is where the infection originates: The call to the func-

tion apply distributive law() is wrong. This function

transforms code using the rule

(MULT (PLUS a b) c) ⇒ (PLUS (MULT a c1)(MULT b c2))

Unfortunately, in the apply distributive law() call in Fig-
ure ??, c1 and c2 share a common grandchild (the macro XEXP(x, 1)
translates into x→fld[1].rtx), which leads to the cycle in the
abstract syntax tree. To fix the problem, one should call the func-

tion with a copy of the grandchild—and this is how the error was

fixed in GCC 2.95.3.

At this point, one may wonder why cause transitions did not sin-

gle out the call to apply distributive law() as a cause
transition. The answer is simple: This piece of code is executed

only during the failing run. Therefore, we have no state to compare

case MULT:
/* If we have (mult (plus A B) C), apply the distributive

law and then the inverse distributive law to see if
things simplify. This occurs mostly in addresses,
often when unrolling loops. */

if (GET_CODE (XEXP (x, 0)) == PLUS)
{
x = apply_distributive_law
(gen_binary (PLUS, mode,

gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0),

XEXP (x, 1)),
gen_binary (MULT, mode,

XEXP (XEXP (x, 0), 1),
XEXP (x, 1))));

if (GET_CODE (x) != MULT)
return x;

}
break;

Figure 6: The GCC defect

against, and therefore, we cannot narrow down the cause transition

any further. Line 4271, however, has been executed in both runs,

and thus we are able to isolate the failure-inducing state at this lo-

cation.

Overall, to locate the defect, the programmer had to follow just

one backwards dependency from the last isolated cause transition.

In numbers, this translates into just 2 lines out of 338,000 lines

of GCC code. Even if we assume the programmer examines all

9 transitions and all direct dependencies, the effort to locate the

GCC defect is minimal.

6. COMPLEXITY AND OTHER ISSUES
Finding causes and cause transitions by automated experimentation

can require a large number of test runs:

Searching in space. In the best case, Delta Debugging needs 2s log k

test runs to isolate s failure-inducing variables from k state

differences. The (pathological) worst case is k2 + 3k; In

practice, though, Delta Debugging is much more logarithmic

than linear.

Searching in time. This is a simple binary search over n program

steps, repeated for each cause transition. For m cause transi-

tions, we thus need m log n runs of Delta Debugging.2

Since applications can have a large number of fine-grained cause

transitions, a practical implementation would simply limit the num-

ber of cause transitions to be sought, or just run as long as the avail-

able execution time permits.

Other practical issues we faced in our implementation, in partic-

ular for the GCC case study, included:

Accessing state. We currently instrument the GNU debugger (GDB)

to access the state, which is painfully slow: The entire GCC

2Unfortunately, a pure binary search does not always suffice. In a
cause-effect chain, all reported causes must cause all later causes as
well as the failure. This can lead to tricky situations: Assume we
have isolated a cause c1 and a later cause c2, and these two form a
cause-effect chain, meaning that c1 causes c2 as well as the failure.
Now, cts isolates a new cause c between c1 and c2; again, c causes
all later causes (c2) as well as the failure. But does c1 cause c, too?
In case c1 has no effect on c, we have to re-isolate c1 such that the
new c1 causes c as well as c2.

if (GET_CODE (XEXP (x, 0)) == PLUS {
 x = apply_distributive_law

 (gen_binary (PLUS, mode,
 gen_binary (MULT, mode,
 XEXP (XEXP (x, 0), 0),
 XEXP (x, 1)),

 gen_binary (MULT, mode,

 XEXP (XEXP (x, 0), 1),
 XEXP (x, 1))));

 if (GET_CODE (x) != MULT)

 return x;
}

14

combine.c:4279

Should be copy_rtx()

15

How good are we?

Evaluation using the Siemens Testsuite:

• 7 programs – most text processors

• 132 variations, each with 1 seeded defect

• Challenge: Using test runs, locate defect

• All proposed defect locators fail
(Comparing coverage, slicing, dynamic invariants)

16

Close to the Defect

Predicted
location

✘

0

20

40

60

80

0% <10% <20% <30%

10,0

57,0

77,0 79,0

10,0

42,0

64,0
70,0

5,0

35,0
41,0

48,0

0.0

16,0

25,0

37,0

17

Locating Defects
%

 o
f f

ai
lin

g
te

st
s

source code to examine

R
es

ul
ts

 o
bt

ai
ne

d
fr

om
 S

ie
m

en
s

te
st

 s
ui

te
; c

an
 n

ot
 b

e
ge

ne
ra

liz
ed

NN (Renieris + Reiss, ASE 2003) CT (Cleve + Zeller, ICSE 2005)
SD (Liblit et al., PLDI 2005) SOBER (Liu et al, TR 2005)

2 runs

5,542 runs

18

Open Issues

• Hierarchical search

• Ranking transitions

• User-side diagnosis

• Combination with statistical causality

19

Concepts

Cause transitions pinpoint failure causes in
the program code

Failure-causing statements are potential fixes
(and frequently defects, too)

Even more demanding, yet effective
technique

20

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

