Isolating Faj /\

Ang

Isolating Causes

Alternate world

Test

Mixed world

Isolating Causes

How can we automate this?

Test Q

Simplifying Input

<SELECT NAME="priority" MULTIPLE SIZE=7> X
<SELECT NAME="priority" MULTIPLE SIZE=7> ¢/

<SELECT NAME="priority" MULTIPLE SIZE=7> @

o ‘ " SeALG R LSSt el Y . — g i
AV e i B b .t b N AL L R ot e L gl s Aty Dt L p NI R] AR ekl) s e et o S B 6 LA I s

Simplifying

Input

Failure Cause

a1

v

Isolating Input

<SELECT NAME="priority" MULTIPLE SIZE=7>

Difference narrowed down

ty" MULTIPLE SIZE=7> @/

v

Isolating Input

<SELECT NAME="priority" MULTIPLE

LECT NA
LECT NA

#giﬂ ré\l ACause
CT NA

ty" MULTIPLE
ty" MULTIPLE
ty" MULTIPLE
ty" MULTIPLE
ty" MULTIPLE

SIZE=7>
SIZE=7>
SIZE=7>
STZE=—1
SIZE=7>
SIZE=7>

Isolating

Input

L1

N\ \

Failure Cause

Finding Causes

Simplifying Isolating

L]
.
AT A
SRERS IR RS RN TR I e L
ﬂ:_-_a_'___\l_‘-.-‘-_:;:-.-z e feieme> @ "‘v s i

Input

Fallure

Configuration

Circumstance

All circumstances
i 0y O s

Configuration ¢ = C
¢ =101,02,...0n}

Tests

Testing function

test(c) € {V/,X,?}

Minimal Difference

Goal: Subsets ¢, and c,

(Di—icpaCig i@ie scicy

Difference
Ay=sclnc

Difference is |-minimal

Véi € A-test(c, U{di}) #V Atest(c,\ {6i}) # X

Algorithm Sketch

® Extend ddmin such that it works on two sets
at a time — c, and c,

® Compute subsets
A R R e N = At
® For each subset, test
® the addition ¢ U A;

® the removal c, \ A;

Test Outcomes

test(c, \ A;)

test(c, U Aj)

otherwise

acrease %/anularity

e

most valuable outcomes

dd in a Nu

ddicsac,) sloalc Nis pihe
dd(C,,Cx) = dd,(C‘,,Cx, 2)

dd (c/,c.,n) =

tshell

is |-minimal

.n} - test(c, \ A;) =V

.} - test(c, UA;) =X

c {l.n} - test(c, U A;) =V
c {l.n} - test(c, \ A;) = X

< |A] ("increase granularity”)

Eleftaas) g AN =Sl
dd(elin s el) if 3i € {
Adeliciic s a2y if 3i e {1

1dd (¢, U Aj,c,max(n —1,2)) elseif 3i
dd (c/,c.\ Aj,max(n —1,2)) elseif 3i
dd (c/,c., min(2n, |A])) else if n
e esy otherwise

def dd(c_pass, c_fail):
=z
while 1:
delta = listminus(c_fail, c_pass)
deltas = split(delta, n); offset = 0; j =0
while j < n:
1 = (] + offset) % n
next_c_pass = listunion(c_pass, deltas[1])
next_c_fail = listminus(c_fail, deltas[1])
1f test(next_c_fail) == FAIL and n ==

c_fail = next_c_fail; n = 2; offset = 0; break
elif test(next_c_fail) == PASS:

c_pass = next_c_fail; n = 2; offset = 0; break
elif test(next_c_pass) == FAIL:

c_fall = next_c_pass; n = 2; offset = 0; break

elif test(next_c_fail) == FAIL:
c_fail = next_c_fail; n = max(n - 1, 2); offset = 1; break
elif test(next_c_pass) == PASS:
c_pass = next_c_pass; n = max(n - 1, 2); offset = 1; break
else:
Ry [P P
1f J >= n:
1f n >= len(delta):
return (delta, c_pass, c_fail)
else:
n = min(len(delta), n * 2)

Properties

number of tests t — worst case:

A el Al viceie A e e

number of tests t — best case
(no unresolved outcomes):

t <log,(A)

size of difference — no unresolved outcomes

(astiian el

Applications

Input

Code
Changes

Yel g T=Ya [FI =

Isolating Input

<SELECT NAME="priority" MULTIPLE SIZE=7>
LECT NA s MU PLE ST ZE = if>

LEC TN

Isolation: 5 tests

ECT N
Failure Simplification: 48 tests
CT N

ty" MULTIPLE SIZE=7>

Code Changes

From: Brian Kahne <bkahne@ibmoto.com>
To: DDD Bug Report Address <bug-ddd@gnu.org>
Subject: Problem with DDD and GDB 4.17

When using DDD with GDB 4.16, the run command
correctly uses any prior command-line arguments, or
the value of "set args". However, when I switched to
GDB 4.17, this no longer worked: If I entered arun
command in the console window, the prior command-
line options would be lost. [...]

Version Differences

New version
\ Program works

Program fails Old version

Causes

What was Changed

$ diff -r gdb-4.16 gdb-4.17
diff -r gdb-4.16/COPYING gdb-4.17/COPYING

5¢5
< 675 Mass Ave, Cambridge, MA 02139, USA

> 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

282c282
< Appendix: How to Apply These Terms to Your New Programs

> How to Apply These Terms to Your New Programs

...and so on for 178,200 lines (8,721 locations)

S EU [[

® Granularity — within some large change,
only a few lines may be relevant

® Interference — some (later) changes rely on
other (earlier) changes

® Inconsistency — some changes may have to
be combined to produce testable code

Delta debugging handles all this

General Plan

® Decompose diff into changes per location
(= 8,721 individual changes)

® Apply subset of changes, using PATCH

® Reconstruct GDB; build errors mean
unresolved test outcome

® Jest GDB and return outcome

Isolating Changes

Delta Debugging Log

100000 . . . | |
P A W ey Tt B SRS RS s ... with dd algorithm =s=s=ssss 7
= 1 s } ? ? __ plus scope information st
E | llll'll-lll-lill-l:lllllllllllilll'lllllllll“ll_llllllll.. e
@ 1000 Foo S e, e P — e B .
) & : - : : - 3 | .
c - :
Sl 00 s e A PRk e A e b -
O s = s s = s s
B : miEAE, ; : C] ; : 7
1 QRS e e e 4 B, T (e r:nn ”””””””””””” = R L AR R Rl b g, S i T - g) £
- a = a o s a -
1 L | i | = 2ES |
0 50 100 150 200 250 10[0)

Tests executed

® Result after 98 tests (= | hour)

The Failure Cause

diff -r gdb-4.16/gdb/1infcmd.c gdb-4.17/gdb/1infcmd.c
1239¢c1278

< "Set arguments to give program being debugged when 1t 1s
started.\n

> "Set argument list to give program being debugged when
1t 1s started.\n

® Documentation becomes GDB output

® DDD expects Arguments,
but GDB outputs Argument list

The file C
= FJ Stringltilzs,

es WEFE .ﬂljle"j-r

One line was added, One line was deld

Optimizations

History — group changes by creation time
Reconstruction — cache several builds
Grouping — according to scope

Failure Resolution — scan error messages
for possibly missing changes

Thread Schedules

Schedule Thread A Thread B Schedule Thread A Thread B

open(".htpasswd")

read(...)

open(" .htpasswd")

Thread

modify(...)
write(...)

close(...)

v

A’s updates get lost!

Record + Replay

recorded

schedule
record replay
> >
45
39
67

DEJAVU

Schedules as Input

The schedule difference causes the failure!

Finding Differences

e We start with runs ¢ and X

e We determine the differences
A; between thread switches t;:

- t1 occurs in ¢ at “time” 254
- t1 occurs in X at “time” 278

- The difference
A1 =278 — 254 induces a
statement interval: the code

executed between “time”
254 and 278

- Same applies to to, t3, etc.

Isolating Differences

- || «

Isolating Differences

Example: Raytracer

Raytracer program from Spec [VM98 suite
Injected a simple race condition

Set up automated test + random schedules
Obtained passing and failing schedule

3,842,577,240 differences, each moving a
thread switch by £1 yield point (time unit)

Deltas

Isolating Schedules

Delta Debugging Log

1e+14

1e+13 =

no unresolved outcomes:

complexity is O(logz n)

le+12

1e+11 |
0 5 10 15 20 25 30 35 40 45

Tests executed

50

The Failure Cause

25 public class Scene { ..
44 private static int SceneslLoaded = 0;
45 (more methods...)
81 private
1int LoadScene(String filename) {
1int OldSceneslLoaded = Scenesloaded;
(more initializations...)
infile = new DataInputStream(..);
(more code...)
SceneslLoaded = OldSceneslLoaded + 1;

System.out.printin(+
SceneslLoaded + " scenes loaded.

General Issues

How do we choose the alternate world?
How do we decompose the configuration?
How do we know a failure is the failure!
How do we disambiguate multiple causes?

How do | get to the defect!?

Concepts

* To isolate failure causes automatically, use
® an automated test case
® a means to narrow down the difference
® 3 strategy for proceding.

* One possible strategy is Delta Debugging.

Concepts (2)

* Delta Debugging can isolate failure causes
® in the (general) input
® in the version history
® in thread schedules

* Every such cause implies a fix — but not
necessarily a correction.

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/ 1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

