
Andreas Zeller

Isolating Failure Causes

2

Alternate worldActual world

Isolating Causes

Mixed world

✔✘

Test ?

3

Alternate worldActual world

Isolating Causes

Mixed world

✔✘

Test ?

“+ 1.0”

How can we automate this?

4

Simplifying Input

✔
✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

✔
<SELECT NAME="priority" MULTIPLE SIZE=7> ✔

✘

✔
✘

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

5

Simplifying

✔

✘
Input

✘
✘

✘
…

Failure Cause

6

Isolating Input
✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7> ✔
✔<SELECT NAME="priority" MULTIPLE SIZE=7>

Difference narrowed down

7

Isolating Input

✔

✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

✔

✔

✘

✔<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7> ✔
Failure Cause

8

Isolating

✔

✘
Input

✘

✔

✘
✔

…
…
Failure Cause

Finding Causes

9

5

Simplifying

…

7

Isolating
…

…

• minimal input • minimal difference
• minimal context • common context

10

Configuration

All circumstances
C = {δ1, δ2, . . . }

Configuration

c = {δ1, δ2, . . . δn}

c ⊆ C

Circumstance
δ

11

Tests
Testing function

Initial configurations

test(c✔) = ✔

test(c✘) = ✘

test(c) ∈ {✔,✘, ?}

Minimal Difference

12

Goal: Subsets

∅ = c✔ ⊆ c
′
✔ ⊂ c

′
✘ ⊆ c✘

c
′

✘ and c
′

✔

∆ = c′✘ \ c
′
✔

Difference

Difference is 1-minimal

∀δi ∈ ∆ · test(c′✔ ∪ {δi}) %= ✔∧ test(c′✘ \ {δi}) %= ✘

• Extend ddmin such that it works on two sets
at a time – and

• Compute subsets

• For each subset, test

• the addition

• the removal

Algorithm Sketch

13

c
′

✘ c
′

✔

c
′
✘ \∆i

c
′

✔ ∪∆i

∆1 ∪∆2 ∪ · · · ∪∆n = ∆ = c
′
✘ \ c

′
✔

✘ ✔
test(c′✘ \∆i) c

′
✘ := c′✘ \∆i c

′
✔ := c′✘ \∆i

test(c′✔ ∪∆i) c
′

✘ := c
′

✔ ∪∆i c
′

✔ := c
′

✔ ∪∆i

otherwise increase granularity

Test Outcomes

14

most valuable outcomes

dd in a Nutshell

15




(c′✔, c
′
✘) if |∆| = 1

dd
′(c′✘ \∆i, c

′
✘,2) if ∃i ∈ {1..n} · test(c′✘ \∆i) = ✔

dd
′(c′✔, c

′
✔ ∪∆i,2) if ∃i ∈ {1..n} · test(c′✔ ∪∆i) = ✘

dd
′(c′✔ ∪∆i, c′✘,max(n− 1,2)

)
else if ∃i ∈ {1..n} · test(c′✔ ∪∆i) = ✔

dd
′(c′✔, c′✘ \∆i,max(n− 1,2)

)
else if ∃i ∈ {1..n} · test(c′✘ \∆i) = ✘

dd
′(c′✔, c′✘,min(2n, |∆|)

)
else if n < |∆| (“increase granularity”)

(c′✔, c
′
✘) otherwise

dd(c✔, c✘) = dd
′(c✔, c✘,2)

dd
′(c′✔, c

′

✘, n) =

dd(c✔, c✘) = (c
′

✔, c
′

✘) ∆ = c′✘ \ c
′
✔ is 1-minimal

16

 def dd(c_pass, c_fail):
 n = 2
 while 1:
 delta = listminus(c_fail, c_pass)
 deltas = split(delta, n); offset = 0; j = 0
 while j < n:
 i = (j + offset) % n
 next_c_pass = listunion(c_pass, deltas[i])
 next_c_fail = listminus(c_fail, deltas[i])
 if test(next_c_fail) == FAIL and n == 2:
 c_fail = next_c_fail; n = 2; offset = 0; break
 elif test(next_c_fail) == PASS:
 c_pass = next_c_fail; n = 2; offset = 0; break
 elif test(next_c_pass) == FAIL:
 c_fail = next_c_pass; n = 2; offset = 0; break
 elif test(next_c_fail) == FAIL:
 c_fail = next_c_fail; n = max(n - 1, 2); offset = i; break
 elif test(next_c_pass) == PASS:
 c_pass = next_c_pass; n = max(n - 1, 2); offset = i; break
 else:
 j = j + 1
 if j >= n:
 if n >= len(delta):
 return (delta, c_pass, c_fail)
 else:
 n = min(len(delta), n * 2)

number of tests t – worst case:

Properties

17

number of tests t – best case
(no unresolved outcomes):

t ≤ log2(∆)

size of difference – no unresolved outcomes

|c′✘ \ c
′
✔| = 1

t = |∆|2 + 7|∆| where ∆ = c✘ \ c✔

18

Applications

Input Code
Changes

Schedules

19

Isolating Input

✔

✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

✔

✔

✘

✔<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7> ✔
Failure Cause

Isolation: 5 tests
Simplification: 48 tests

20

Code Changes
From: Brian Kahne <bkahne@ibmoto.com>
To: DDD Bug Report Address <bug-ddd@gnu.org>
Subject: Problem with DDD and GDB 4.17

When using DDD with GDB 4.16, the run command
correctly uses any prior command-line arguments, or
the value of "set args". However, when I switched to
GDB 4.17, this no longer worked: If I entered a run
command in the console window, the prior command-
line options would be lost. [...]

21

Wie finden wir
die alternative Welt?

Version Differences

Old version

Program works
New version

Program fails

Causes

22

What was Changed
$ diff -r gdb-4.16 gdb-4.17
diff -r gdb-4.16/COPYING gdb-4.17/COPYING
5c5
< 675 Mass Ave, Cambridge, MA 02139, USA

> 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
282c282
< Appendix: How to Apply These Terms to Your New Programs

> How to Apply These Terms to Your New Programs

…and so on for 178,200 lines (8,721 locations)

Challenges

23

• Granularity – within some large change,
only a few lines may be relevant

• Interference – some (later) changes rely on
other (earlier) changes

• Inconsistency – some changes may have to
be combined to produce testable code

Delta debugging handles all this

General Plan

• Decompose diff into changes per location
(= 8,721 individual changes)

• Apply subset of changes, using PATCH

• Reconstruct GDB; build errors mean
unresolved test outcome

• Test GDB and return outcome

24

25

Isolating Changes

1

10

100

1000

10000

100000

0 50 100 150 200 250 300

Ch
an

ge
s

le
ft

Tests executed

Delta Debugging Log

GDB with ddmin algorithm
... with dd algorithm

... plus scope information

• Result after 98 tests (= 1 hour)

26

The Failure Cause
diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infcmd.c
1239c1278
< "Set arguments to give program being debugged when it is
started.\n

> "Set argument list to give program being debugged when
it is started.\n

• Documentation becomes GDB output

• DDD expects Arguments,
but GDB outputs Argument list

27

DDChange

28

• History – group changes by creation time

• Reconstruction – cache several builds

• Grouping – according to scope

• Failure Resolution – scan error messages
for possibly missing changes

Optimizations

29

Thread Schedules 32/45

!

"

#

$

%

&

'

Application: Thread Schedules

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

!

Thread

Switch

open(".htpasswd")

open(".htpasswd")

read(...)

modify(...)

read(...)

write(...)

close(...)

modify(...)

write(...)

close(...)

Thread A Thread BSchedule

"

32/45

!

"

#

$

%

&

'

Application: Thread Schedules

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

!

Thread

Switch

open(".htpasswd")

open(".htpasswd")

read(...)

modify(...)

read(...)

write(...)

close(...)

modify(...)

write(...)

close(...)

Thread A Thread BSchedule

"

A’s updates get lost!

Record + Replay

30

33/45

!

"

#

$

%

&

'

Recording and Replaying Runs

DEJAVU captures and replays program runs deterministically:

DEJAVU

recorded

schedule

record replay
x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

Allows simple reproduction of schedules and induced failures

Schedules as Input

31

34/45

!

"

#

$

%

&

'

Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

! "

34/45

!

"

#

$

%

&

'

Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

! "

The schedule difference causes the failure!

Finding Differences

32

35/45

!

"

#

$

%

&

'

Finding Differences

!"

t1

t2

t3

• We start with runs ! and "

• We determine the differences
∆i between thread switches ti:

– t1 occurs in ! at “time” 254

– t1 occurs in " at “time” 278

– The difference
∆1 = |278− 254| induces a
statement interval: the code
executed between “time”
254 and 278

– Same applies to t2, t3, etc.

Our goal: Narrow down the difference such that only a small
relevant difference remains, pinpointing the root cause

Isolating Differences

33

36/45

!

"

#

$

%

&

'

Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to !:

!" ?

• The entire difference
∆1 is applied

• Half of the difference
∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated schedule;
an automated test checks if the failure occurs

36/45

!

"

#

$

%

&

'

Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to !:

!" ?

• The entire difference
∆1 is applied

• Half of the difference
∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated schedule;
an automated test checks if the failure occurs

36/45

!

"

#

$

%

&

'

Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to !:

!" ?

• The entire difference
∆1 is applied

• Half of the difference
∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated schedule;
an automated test checks if the failure occurs

Isolating Differences

34

37/45

!

"

#

$

%

&

'

The Isolation Process

Delta Debugging systematically narrows down the difference

!" ?

" !

Dejavu replays
the generated
schedule

Test outcome

Example: Raytracer

35

• Raytracer program from Spec JVM98 suite

• Injected a simple race condition

• Set up automated test + random schedules

• Obtained passing and failing schedule

• 3,842,577,240 differences, each moving a
thread switch by ±1 yield point (time unit)

Isolating Schedules

36

1e+11

1e+12

1e+13

1e+14

0 5 10 15 20 25 30 35 40 45 50

De
lta

s

Tests executed

Delta Debugging Log

cpass
cfail

no unresolved outcomes:
complexity is O(log2 n)

The Failure Cause

37

41/45

!

"

#

$

%

&

'

The Root Cause of the Failure

25 public class Scene { …
44 private static int ScenesLoaded = 0;
45 (more methods…)
81 private
82 int LoadScene(String filename) {
84 int OldScenesLoaded = ScenesLoaded;
85 (more initializations…)
91 infile = new DataInputStream(…);
92 (more code…)

130 ScenesLoaded = OldScenesLoaded + 1;
131 System.out.println("" +

ScenesLoaded + " scenes loaded.");
132 …
134 }
135 …
733 }

General Issues

38

• How do we choose the alternate world?

• How do we decompose the configuration?

• How do we know a failure is the failure?

• How do we disambiguate multiple causes?

• How do I get to the defect?

39

Concepts

To isolate failure causes automatically, use

• an automated test case

• a means to narrow down the difference

• a strategy for proceding.

One possible strategy is Delta Debugging.

40

Concepts (2)
Delta Debugging can isolate failure causes

• in the (general) input

• in the version history

• in thread schedules

Every such cause implies a fix – but not
necessarily a correction.

41

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

