Mining Version Archives for Co-changed Lines
—Extended Version—

Thomas Zimmermann'! Sunghun Kim? Andreas Zeller* E. James Whitehead Jr.?

! Department of Computer Science 2 Department of Computer Science
Saarland University University of California
Saarbriicken, Germany Santa Cruz, CA, USA
{tz, zellery@acm.org {hunkim, ejw}@cs.ucsc.edu
ABSTRACT Today, many SCM systems such as CVS and Subversion come

Files, classes, or methods have frequently been investigated in rewith an annotation feature that returns for each line the last mod-

cent research on co-change. In this paper, we present a first stud)jﬁcf""tion' Such informa_tion is not enoqgh to track lines across re-
at the level of lines. To identify line changes across several ver- visions. In contr_ast, using the annotation graph we pan_buﬂc_i more
sions, we define the annotation graph which captures how lines general a.nnotatlon algorithms th.at retadhpast mod|f|cqt|ons n-
evolve over time. The annotation graph provides more fine-grained _stead Of_JUSt the last one (Sectiph 3)' Such :_:mnotatlons pr_owde
software evolution information such as life cycles of each line, fix- information abogt.the life cycle of "!Tes- AdFjlt!onaIIy, they in-
inducing changes in the line level, and related changes: “WheneverCré@se the precision for the recognition of fix-inducing changes

a developer changed line 1 of version.txt she also changed line 25(Sect|otﬂl). - . .
of Library.java.” In recent research, data mining on co-change information was

used to recommend related locations such as filels [14] and meth-
ods [17] after one initial change. In Sectioh 5 we show that this

Categories and Subject Descriptors is also possible for lines: “Whenever a developer changed line 1

D.2.7 [Software Engineering: Distribution, Maintenance, of version.txt she also changed line 25 of Library.java.” In Sec-

and Enhancementeerrections, version contrpl D.2.9 tion[g we discuss related work and Secf{i¢n 7 closes the paper with

[Managemeni: Software configuration management an outlook on future work.

General Terms 2. TRACKING LINES

Management, Measurement Tracking how lines evolve over time requires the identification of
lines across several versiors a file. Within one single version,

1. INTRODUCTION lines are typically identified by line numbers or in some cases by

their contents. However both cases do not work when applied to
several versions: line numbers may change when other lines are
deleted or inserted, and the content of lines may be modified.
Y" The translation of line numbers is one solution to this problem.
"When applied to two versions andrz, we can use standard text
differencing algorithms, likesNU diff. As sketched in Figurg]1, a
possible result might be that lines 1-9 were not changed, then lines
"10-12 were inserted iny, thus lines 10-15 of; correspond to
lines 13-18 ofr, etc. This also works for modified parts, where
the differencing algorithm outputs the lines that are related: lines
16-20 ofr; were changed into the lines 19-23ef

When analyzing more than two versions, we can compose these
line number translations: As a results we get chains of lines (see
Figure[]): line 15 in-; corresponds to line 18 iry, which remains
Yine 18 inrs where it was changed.

One of the most frequently used techniques for mining version
archives ixo-change The basic idea is that items that are changed
together, are related to each other. These items can be of an
granularity; in the past co-change has been applied to changes i
modules|[6], files[[2], classes|[7], and methads [15]. All these ap-
proaches stopped at the granularity of methods. Applying them to
more fine-grained items such as blocks or lines seemed infeasible
in particular since they are difficult to identify across versions.
Typically lines are identified by their line number. However,

since lines may be moved within files, e.g., when other lines are
inserted or deleted before, line numbers are not fixed across ver-
sions and thus not suitable as identifiers for co-change analysis.
We abstract line evolution from line numbers by representing each
line as several nodes in a graph (one node for each revision); edge
connect lines (nodes) that evolved from each other. We call this

graph arannotation grapt(Sectior[2). 2.1 What are Annotation Graphs?

To capture how lines evolve over time, we introduce the annotation
graph. The annotation graph is a multipartite graph where each part
corresponds to one version of a file. Within each part/version every
line is represented by a single node; edges between node indicate
that a line originates from another: either by modification or by
movement. Whether a line was changed in a revision is captured

. .) . by labels, e.g., bold nodes indicate changes lines.
This paper is an extended version of a papel [16] that appeared in the A | ider Fi 2 5 which ts the ch
proceedings of the Mining Software Repositories workshop that was held S an example consiaer Ig which represents the changes

on May, 22—23, 2006 in Shanghai, China. Please cite the workshop version.Of Figure[1 in an annotation graph. Edges connect lines that relate

r))
1-9 unchanged 1-9 unchanged 1-9
10-12 unchanged 10-12
10-15
unchanged
13-17 unchanged 13-17
16-20 18 changed 18
changed
19-23 unchanged 19-23

Figure 1: Tracking lines across several versions.

-
w

Figure 2: Tracking lines with the annotation graph.

to each other across revisions, e.g., line 1 in revisians-, and
r3. Modifications such as from lines 16—20n to lines 19-23
in 2 result in a complete bipartite subgraph for that area. In other
words, every node from 16 to 20in is connected with every node
from 19 to 23 inr,.

Formally, an annotation graghl = (V, E) for a file withn revi-
sionsry, . .., r, (sorted by their creation time) consists of nodes

n

U {(ri;m) [m € {1,..., numberof lines(r:)} }

i=1

v

and edges = ((rq,la), (1s,1)) € E for which
1. r, is a direct successor of, and

2. 1, originates from/,—either by modification (contents dif-
fer) or by movement (contents and relative position are
equal)

Additionally, when lines were changed, we label the correspond-

ing nodes with a description of the change such as the author
who changed the lines, or the transaction in which the lines were

changed. To access this information, we define two functians
thor(v) andtransaction(v)wherev = (r,l) represents linéin re-
visionr.

2.2 How to Read GNU'’s diff

In order to construct an annotation graph, we need to compare all
subsequent revisions of a file. For computing textual differences,
we use thesNU diff tool. Figurd 3 shows a sample output for com-
paring two revisions 1.11 and 1.12 of the file AntUIPlugin.java.
The diff tool returns a list of regions that differ in the two files;
each region is called launk. A hunk starts with a so-callechange
commandwhich describes the kind and the regions of the change
(e.0.,8¢8,9). Next come the affected lines of both files (separated
by ---), however, for computing annotation graphs, we only need
change commands.

A change commanttonsists of a line number or comma-sep-
arated range of lines in the first file, a single character indicating
the kind of change to make, and a line number or comma-separated
range of lines in the second filétaken from[10]). Basically, there
are three different kinds of changes, each of them results in a dif-
ferent change command.

Modifications fct — The lines in rangef of the first revision
were replaced with the lines in rangef the second revision.
For example, in Figurg]3 the change comm&c8,9 tells
us that line 8 of revision 1.11 was replaced by lines 8 and 9
in revision 1.12.

In an annotation graph, modifications result in a complete
bipartite subgraph. In the above example this means, that for
(1.11, 8) there are two outgoing edges, ong1012, 8) and

the other t0(1.12,9).

Additions lar — The lines in range of the second revision were
inserted after liné of the first revision. For example, in Fig-
ure[3 the change commarghll means that line 11 was
inserted in revision 1.12 after line 9 of revision 1.11.

For the annotation graph, additions of lines do not result in
any edges, only the positions of following lines have to be
updated.

Deletions rdl — The lines in range- from the first revision
were deleted; lind is the position where they would have
appeared. For example, in Figyre 3 the change command
17d18 means that line 17 was deleted from revision 1.11.

For the annotation graph, deletion of lines do not result in
any edges, only the positions of following lines have to be
updated.

When comparing two text files witBNuU diff, we have to specify
several options that are discussed in Se¢fioh 2.4.

2.3 How to Compute Annotation Graphs

Once we have computed the change commands for all subsequent
revisions, we can use this information to build an annotation graph
for a file.

When computing an annotation graph, one can either start from
the first revision computing forward (to the last revision), or start
from the last revision computing backward. Figlile 4 shows an
forward-directedalgorithm that starts with the first revision.

First the algorithm creates nodes for each revision and each line
with the methodatreateNodésee Comment 1). Next, it iterates over
all pairs(revL, revR) of subsequent revisions (Comment 2).

For each pair it computes the differences (hunks) between
and revR (Comment 3) which then are sorted by their position
R_from in the later revisiorrevR (Comment 4). These hunks are
then processed to create edges between nodes (Comment 5):

— for unchanged lines exactly one edge between the matching
linesposLandposR(see Comments 6 and 10);

— for modified lines all possible edges, which means $ diff AntUIPlugin.java::1.11 AntUIPlugin.java::1.12

posL € {L_from...,L_to} andposRe {Rfrom..., Rto} 8¢8.9

(see Comment 7); < import java.net.*;
— for inserted and deleted lines no edges are created. > import java.net MalformedURLException;
> import java.net.URL;
9all

For modifications and additions, we label the nodes of the later |-
revision revR with information about the change, such as author |17d18

and transaction (see Comment 8). These labels are later used t)§4icf;‘§°3'; org.eclipse.swt.graphics.Font;
compute annotations that are more general than the ones provided™ ™"

by existing SCM systems (see Secfign 3). 51c61,68

2.4 How to Use GNU's diff

Most SCM systems can compute textual differences between two
revisions. However, when we constructed the annotation graph us-

Figure 3: Sample output of GNU diff

ing hunks computed by thdiff andrdiff command ofCvs, we /I 1: Create nodes

observed several problems: (1) the computation of differences wasgfor (int i = 0; i < revisions.length; i++) {

rather slow, (2) the differences were not minimal, thus adding un- forcregt‘:N; | eli (’:gvi;;)ngﬁlr”blfc:;?f“”es('e"'s'o“s[']) {

necessary edges to the annotation graph, (3) in some cases, lie T

feeds were not handled correctly. 1
To avoid the above problems, we decided to compute the textual

differences with th&NuU diff tool. This means, first we checked out Il 2: Create edges

T . - : for (int i = 1; i < revisions.length; i++) {
all revisions, and then called thiff command with the following Revision revL = revisions[i-1];
options: Revision revR = revisions]i],

/I 3: Compute difference between revisions

—text “Treat all files as text” Hunk[] hunks = computeDifferences(revL, revR);

In the presence of special charactgif§ treats files as binary
and just returns whether they differ or not. With this option, | // 4: Sort hunks ascending by R_from.
we forcediff to treat all files as text files. (Of course, we | Afays-sort(hunks);

do not compare any binary files; the annotation graph makes // s: iterate over all hunks

only sense for text files.) int posL = posR = 1; _

for (int j = 0; j < hunks.length; j++) {

.. . Hunk hunk = hunks[j];

—minimal “Try hard to find a smaller set of changes” bl
The diff tool uses optimizations; as a result, the differences /I 6: Create edges for unchanged lines

are not always minimal. With this option we disable these WTr'gate(tngS; ?re*:/{“k;'évgonr‘)%sf&pg:%{ < hunk.R_from()) {
optimization in order to always get the minimal set of differ- pOSL++: POSR++ ’ ' '

ences.

/I 7: Create edges for modified lines

—strip-trailing-cr “Strip trailing carriage return on input” if (hunk isChange() {

On Windows, lines end with both tHime feedandcarriage for (int | = hunk.L_from(); | < hunk.L_to(); I++) {
returncharacters, but on Unix only with thime feedcharac- for (int r = hunk.R_from(); r < hunk.R_to(); r++) {
ter. With this option, trailingcarriage returncharacters are createkdge (revl, revR, I n);
ignored. }

}

The—strip-trailing-cr option turned out to be very effective to ad-

dress thecarriage returnproblem thatdiff and Cvs suffer from. /I8 Set labels for changed and inserted lines

if (hunk.isChange() || hunk.isDeletion()) {

For 7,131 out of the 334,518 revision pairs we investigated for for (int r = hunk.R_from(); r < hunk.R_to(); r++) {
ECLIPSE the differences stored in thevs archive were solely labelNode (revR, 1, ...);
caused by changes in line termination. In other words, although
there was no actual change by the user, there was a change stored }
in theCVSrepository. /I 9: Update positions
if (hunk.isChange() || hunk.isDeletion()) {
2.5 How to Recognize Large Modifications , Post = funiebte0 =
One problem for annotation graphs are changesriuatify large if (hunk.isChange() || hunk.isAddition()) {

posR = hunk.R_to() + 1;

parts of a file, since they results in a large number of edges. As a)

example consider the left part of Figlife 5. When we investigate the
evolution of line 42 and go back in time, we come across a large
H i i {4 i i H /I 10: Copy edges for unchanged lines
mc_)o_llﬂcatlon. If we take t_h_ls modlflcatlon into a<_:count, line 42 while (posL < hunkL_from() && posR < hunk.R_from0) {
originates from every modified line. Such a result is not reasonabl createEdge (posL, posR);
for evolution analysis. posL++; posR++
In order to reduce noise, we treat large modifications not as }

modifications but as combined deletions and additions. This mean

that for large modifications, we do not create any edges in the an-))))
notation graph (see the sketch in the right part of Figlre 5). Figure 4: Algorithm for computing an annotation graph

42

;

large modification ignore large modifications

Figure 5: Ignoring huge modifications for annotation graphs.
$ cvs annotate -r 1.17 Foo.java

19:1.11
20:1.11

(john 12-Feb-03): public int a() {
(john 12-Feb-03): return i/0;

39:1.10
40:1.14

(mary 12-Jan-03): public int b() {
(kate 23-May-03): return 42;

59:1.10
60:1.16

(mary 17-Jan-03): public void c() {
(mary 10-Jun-03): int i=0;

Figure 6: CVS annotations for Foo.java

For recognizing large modifications we use a heuristic. Let
length, andlength, be the lengths of the left (L) and right (R) re-
gion of a hunkKct , andfile_length, andfile_lengthy be the lengths
of the corresponding files. A hunk is a large modification if one of
the following conditions hold:

— Region lengths exceed a threshold

length, > max« - file_length, ; 3)
V length, > max« - file_lengthg; 3)
— Ratio of region lengths exceeds a threshold

length, 1 length,
length, ~ v length,,

v <

or modified). We then annotate the lihewith information
from revisionr,, such as the revision identifier, the author, or
the time of the change. Note that for a lihghe last change
is unique, thug, andr, are unique too. It may also hold that
rs = 75 in case(rs, ls) is already labeled as a change.

Annotating with all changes. When annotating a revision with
all changes, we also perform for each lihea backward-
directed breadth-first search in the annotation graph, starting
from node(rs, Is). However, we do not stop when visiting a
changed node; instead we collect for every visited node that
is labeled as a change, its information in (multi)sets. Once
the breadth-first search is completed, we annotate thédJine
with these sets.

4. FIRST APPLICATIONS

In this section, we present first applications for the annotation
graph. We show how to investigate tlife cycles of lines&nd how
to improve the localization of fix-inducing changes

4.1 Life Cycle of Lines

In order to investigate the life cycle of lines for the complete
ECLIPSEproject (snapshot 2005-11-23) we annotated all text files
with information abougtll past changes. In particular, we collected
the revision identifiers and the authors. Additionally, we ignored
lines containing whitespace or single curly braces. Computing the
annotations took approximately 10 hours for 31,950 ﬂesing
these annotations we are able to provide answers to the following
guestions.

How frequently are lines changed®e computed for each
line thechange countthat is the number of distinct revisions in its
annotation. Note that we also counted the addition of a line as a
change. Figurig]7 shows the distribution of the change count broken
down to different file extensions. We observe that most lines are
changed only one time, in other words, they are inserted to a file
and never touched again. This is the case for almost every line in
.dtd and.txt files. In contrast, lines irproperties files are
more frequently modified (44% at least once). Such files are used
to separate properties (e.g., text messages) from the &2uSE

The first condition recognizes changes that affect large parts of asource code.
file, in contrast, the second one recognizes changes that insert or

delete large portions to or from a region. For our experiments, we How many developers change a linefe repeated the

useda = 0.10 andg = v = 4.

3. ANNOTATING LINES

above experiment, but instead of counting lines, we counted how
many different developers change a line. Figire 8 shows the results,
once again broken down to file extensions. For most file extensions,

Most SCM systems come with an annotation feature that returns W€ observe that more than 90% of all lines are changed by only one

for each line when it was inserted and by whom. For instance, the

CVS annotations in Figur] 6 for revision 1.17 of file Foo.java, tell
us that line 39 was inserted by Mary in revision 1.10 and line 40

author. The only exceptions afetm (85%), .java
.properties (67%).

(86%), and

was inserted by Kate in revision 1.14. In this section, we briefly What are the most frequen_tly changed linesigure[9
show how to compute such annotations using the annotation graph Shows most frequently changed liness@fLIPSE We observe that

While SCM systems typically return only information about the most of these lines store version numbers. The line at the third
last change, the annotation graph can provide more general anno-Position (that contains the copyright notice) has obviously been
tations that collect information aboall past changes. counted too often. This is because it was once changed together
with the line containing the version (see position 1 of the list) in
the same hunk. We will address such problems by implementing
origin analysis for lines (see our future work in Secfipn 7).

Annotating with the last change. When computing annotations
for a revisionrs, we perform for each liné, a backward-
directed breadth-first search in the annotation graph, starting

from node(rs,ls). The search stops when we visit a node *All experiments were run on an Opteron cluster using eight pro-
(rz, 1) thatis labeled as a change (either the line was added cessors, each with 2 Mhz and 2 GB memory.

file revision line count line contents

... ljdt/internal/compiler/batch/messages.properties 1.474 17 347 compiler.version = 0.624, pre-3.2.0 milestone-4
org.eclipse.swt/Eclipse SWT/common/version.txt 1.199 1 196 version 3.215
... ljdt/internal/compiler/batch/messages.properties 1.474 18 188 compiler.copyright = Copyright IBM Corp 2000,

2005. All rights reserved.
...lcommonj2me/org/eclipse/swt/internal/Library.java 1.188 25 180 static int MINURRSION = 215;
...Ilcommonj2seorg/eclipse/swt/internal/Library.java 1.192 25 180 static int MINWRRSION = 215;

org.eclipse.jdt.doc.isv/jdtOptions.txt 1.57 4 29 -classpath @rt@;../org.apache.ant/lib/ant.jar;../org.
eclipse.debug.core/@ddt; . many other classpath
entries follow]

Figure 9: Most frequently changed lines inECLIPSE.

I I I I I I I I I I I I I I I I I
.dtd 100% .dtd 100%
T T T T T T T T T T T T T T T T T
I I I I I I I I I I I I I I I I I
.exsd 90% 7%] .exsd 95% [T
T T T T T T T T T T T T T T T T T
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
.htm 75% 15% .htm 85% 9%
1 1 1 1 1 1 1 l 1 1 - 1 1 1 1 1 1 1 1 l 1 l '
.html 92% | |‘ .html 96% | |i
I I I I I I I I I I I I I I I I I I
I I I I I I I [[I I I I [I I I I
.ini 78% [15% | ‘ .ini 96% [
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
java 77% [13% | ‘ Jjava 86% [1% |
T T T T T T T T I T T T T T T T T T
I I I I I [[I I I I I I I [I I
.properties 56% [19% [1% .properties 67% 22% (7%l
T T T T T T T I T T T T T T T T I
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
xt 100% Axt 99%
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xml 88% xml 92%
T T T T T T T T | I | - T T T T T T T T T | |'
-t -
[1change [2changes [3changes [>3changes | | 1 1 author [0 2 authors O 3 authors B >3 authors |
Figure 7: How frequently are lines changed? Figure 8: How many developers change a line?
4.2 Fix-Inducing Changes bar rev author foo{
. 3 hunkim Deletion
Fix-inducing changes indicate potential bug introductigdns [13]. } 3 hunkim :
. .ge . . . " ejw
While modification requests can give only fbeationof a bug, fix- — — Vodifcation

inducing changes provide thienewhen a bug was introduced. Fix-
inducing changes can be used to compute bug occurrence statistics
classify buggy changes, and mine bug introduction patterns.

Addition

_
File at revision 20 File at revision 21

Locating fix-inducing changeswe locate fix-inducing
changes by mining change histories in SCM systems. First, we Figure 10: Finding fix-inducing changes in the file level using
identify bug-fixes based on the change log messages that are suptextual differences and annotations.
plied with a change. For example, we can identify bug-fix changes
by looking for keywordslike “Fixed” or “Bug” as introduced by
Mockus and Votta [111]. Once we know that a revision is a bug-fix, these lines were initially added. The first two lines were added in
we annotate each line of the preceding revision with the most recentrevision 3, and the third line was added in the revision 9. Thus
author and revision that changed this line to identify fix-inducing we identify the file changes between revision 2 and 3 and between
changes. revision 8 and 9 as fix-inducing changes|[13].
For example, suppose the change log at revision 21 states “Fixed
bug #355", which indicates that it is a bug-fix. One file was Problems for fine-grained fix-inducing changes..
changed in revision 21 (between revision 20 to revision 21) as problem occurs when we try to locate fix-inducing changes on en-
shown in Figurg T0. There are three kinds of changes: deletion, tity level (such as function or methods). Suppose the deleted source
modification, and addition. To locate fix-inducing changes we need code in revision 20 was part of the *foo’ function (see Figurg 10).
the lines of revision 20, since by deleting or modifying those lines Note thatannotationsof SCM systems such as CVS or Subver-
a problem was fixed. sion includes only revision and author information. This means, we
Assume a bug was fixed by deleting three lines in revision 20 know the first two lines in Figurg 10 were added in revision 3 by
(see Figurg 70). Since they were deleted, the lines likely have intro- 'hunkim’, but we do not know the actual line numbers in revision 3.
duced the bug. Using SClhnotate we get the revisions in which ~ So in past research, it was assumed that the lines in revision 3 are

Fix-inducing changes Fix-inducing changes — combine lines with exactly the same change history to blocks
without annotation graph with annotation graph and use blocks instead of lines as input for mining

Using the above optimizations, we could reduce the size of the in-
put for data mining from 4,493,244 changes on lines to 255,778
changes on blocks and the calculation time to 19 seconds. On the
new input we mined for all patterns that had a minimum support
count of 23. The support count tells us how frequently lines that
are part of a pattern have been changed together in the past. For
lower support thresholds the computation did either not finish or
ran out of memory (more than 16G). Improving the mining perfor-
False positive (8.3%) Common False negative (6.5%) mance will remain future work.

Because of the high support count threshold we found only 29

patterns and only two them were interesting. The first pattern was

Figure 11: Fix-inducing changes identified in the method level found in file plugin.xml where several lines defining icons. These
with and without annotation graphs. We used 5,000 revisions lines were changed together 23 times.

(from 06/2001 to 07/2004) of th&eCLIPSE (org.eclipse.jdt.core) . o i . N
project. Without the annotation graph, identified fix-inducing line g?g: :ggrr]\;;r:llgll:gggzgaIlllllglkglllgllg?actlfgg;gjfglf
changes have 8.3% false positive and 6.5% false negatives (total 686: icon:n$n|$/icon3/fu||/e|c|16/consta}mgifn
14.8% errors). 717: icon="nl/icons/full/obj16/packagebj.gif’
727: icon="nl/icons/full/elcl16/statico.qgif’
737: icon="nl/icons/full/elcl16/constamD.gif’

art of the *foo’ function which was mark fix-in ing, al- 750: hpverlcon="$n|$/icons/fuII/eIcI16/exmtch.gif”
b ctio ch was marked as a ducing, a 752: disabledlcon="%nlI$/icons/full/dicl16/exaatch.gif”

though it is not guaranteed that it existed in revision 3. 53

L e . . 7 icon="nl/icons/full/elcl16/excatch.gif”
Suppose that at revision 3 the 'foo’ function does not exist, and 762: icon="nI/icons/full/obj16/packagabj.gif’
only the ’bar’ function exists shown in Figufe]10. Then our as- 776: icon="nl/icons/full/obj16/packagebj.qgif’
sumption is wrong and the 'foo’ function in revision 3 is not a fix- 808: hoverlcon="nl/icons/full/etool16/rusbook.gif”

inducing change (false positive). Since the SCM annotation does ~ 810: disabledicon="nl/icons/full/dtool16/risbook.gif’
not provide the line number of the annotated lines, it is not feasible 812: icon="nI/icons/full/etool16/rusbook.gif"
to identify the right function that includes the changed lines. The second pattern was spread across three different files: a text
file called version.txt, and two Java files, both named Library.java,

Improving precision with annotation graphsthe anno- but within different directories. The lines contained information
tation graph can address the problem by providing line level evolu- about the minor version of an SWT component and were change
tion information including line numbers in each revision. We can 171 times together.
then simple identify the function that includes the annotated lines \orsion.txt line 1: version 3.215
using line numbers provided by the annotation graph. j2mel. . .ILibrary.java, line 25: static int MINORERSION = 215;

To demonstrate the usefulness of annotation graphs for locat- j2se/.../Libraryjava, line 25: static int MINQRERSION = 215;
ing fix-inducing changes, we identified method level fix-inducing ging the above pattern, we can infer association rules such as:
changes of theCLIPSE(org.eclipse.jdt.core) projeatith andwith- “Whenever a developer’changed line 1 of version.txt she also

out using annotation graphs. The left circle in Figirg 11 shows anq6q jine 25 of LibraryjavaSuch a rule holds with a high
the count of method level fix-inducing changes identified without ., sidence of 87% (171 out of 196 changes).

using the annotation graph; the right circle shows the sane count
when using the annotation graphs. Without the annotation graph
we have about 8.3% false positive and 6.5% false negative (total 6. RELATED WORK
14.8% errors) fix-inducing changes. Thus annotation graphs pro- In this section we discuss work that is related to annotation graphs.
vide information for accurate fix-inducing change identification. Annotating revisions. Chen et al. developed the CVSSearch
tool that annotates source code with the log messages from the last
code change and uses this information to guide programmers using
5. FINDING RELATED LINES textual similarity[5]. Hassan and Holt annotated static dependency
In this section, we show how to compute related lines using fre- graphs withsticky notes A sticky note for a dependency contains
guent pattern mining. In order to create the input for data mining, the developer who created it, including the time when it was created
we annotated all lines dfCLIPSE (snapshot 2005-11-23) with all ~ and the log message that was provided with that change. In contrast
past changes. However, instead of revision ids that are only uniqueto the work by Chen et al. and Hassan and Holt, the annotation
per file, we used the corresponding transaction ids. As a result, wegraph considerall changes and not only the last ones.
get for every line the set of transactions that changed this line is Related changes.Ying et al. [14] and Zimmermann et al. [17]
the past. By using transactions instead of revisions, we are able toapplied data mining on co-change information in order to recom-
recognize patterns that are spread across several files. mend related locations such as files or methods. We applied the
For our experiments with frequent pattern mining, we used the same data mining techniques, however, our focus was on lines and
Apriori algorithm [1]. In order to keep the complexity low, we not on coarse-grained items such as methods or files.
applied the following optimizations: Origin analysis. It is a common understanding that identifying
the same entity such as module, file, method, and function between
— ignore lines containing whitespace or just a single curly brace revisions is important for software evolution related analysis. Most
software evolution researchers use entity names (such as file names
— investigate only modifications (not additions) and function names) as entity identifiers based on the assumption

that each entity is uniquely identifiable by its name over revisions. Visualize evolution of lines. Using the models and layout algo-

Unfortunately names change over time. Godfrey ef al. [8] and Kim
et al. [9] proposed algorithms called origin analysis, which identify
the same entities over revisions by computing entity similarities—
even when entity name changes. Origin analysis is similar to our
work in that origin analysis tries to map entities over revisions,
while the annotation graph maps lines over revisions. However,
origin analysis is very coarse-grained entity mapping compared to
the annotation graph. Origin analysis can benefit from annotation
graphs, since observing mapped lines over revisions can provide
a simple way to track entities such as functions and methods and
detect entity name changes.

Small changes. Sliwerski et al. showed how to locate fix-in-
ducing changes in version archives|[13]. A subset of fix-inducing
changes has been investigated under the rdependencielsy Pu-
rushothaman and Perry [12] to measure the likelihood that small [2]
changes introduce errors. Their dependency concept is similar to
the annotation graph, however our work focuses on the annotation 3]
of line evolution in order to compute related changes.

Visualization. CCVisu provides a visualization to show a clus-
tering layout for co-changed entities [3]. Nodes represent entities,
and energy models are used to layout and cluster nodes. The ba-
sic idea of energy models is making entity nodes bigger and closer
if they changed together. CCVisu reveals related groups of entities [5]
and allows developers to detect abnormal co-changes. For example,
we can identify related entities in cluster groups, which are gath-
ered together in the visualization. Suppose each node color repre- [6]
sents modules of the corresponding entity. Then clusters with many
different colored nodes indicate a violation of modularization—

[

(4]

entities of many different modules are changing together too often. (7]
Using the energy models and layout algorithms of CCVisu, we can
visualize line level co-changes in order to identify related lines and
detect abnormalities. 8]
7. CONCLUSION [9]
In this paper we presented the annotation graph which captures
the evolution of lines. With this graph we carried out a first in-
vestigation of the life cycle of lines and improved the localization [10]
of fix-inducing changes for fine-grained entities such as classes or
methods. Additionally, we pointed out that it is possible to find [11]
related lines with co-change analysis using the annotation graph.
However, data mining on co-change is still expensive. Thus our
future work will focus on improving the mining performance and [12]
exploring other mining techniques.

[13]

Origin analysis on lines. Modifications result in a complete bi-
partite subgraph, since we cannot figure out which lines are
changed to which lines (see Sectjon|2.2). We will apply ori-
gin analysis|[8] 9] in the line level to identify the origin of
each line. This will lead to more precise annotation graphs. [15]

Large modifications. The parameters for recognizing large mod-
ifications (see Sectidn 2.5) were selected after a manual in- 14
spection of several code changes. We are planning a sensi-
tivity analysis to determine how our results depend on the
selection of these parameters. (7

Increase mining performance. Frequent pattern mining on line
level turned out to be too extensive. As a first optimization
we combined lines that shared the same history to blocks.
This yielded first results, however only for patterns with high
support count values. Currently, we investigate other opti-
mizations to find interesting patterns that have a low support.

rithms, such as the ones implemented in Epo$ee [4] or
CCVisu [3], we plan to visualize line level co-changes to
identify related lines and to detect abnormalities.

Build tool support. We are currently developing plug-ins that will

integrate annotation graphs into tB€LIPSE development
environment. The user will be able to explore the evolution
of lines with anannotation graph browseand related lines
will be automatically displayed with tool tips.

REFERENCES

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In J. B. Bocca, M. Jarke, and C. Zaniolo, edRooseedings of

20th International Conference on Very Large Data Bases (VLDB 1$8@es
487-499. Morgan Kaufmann, September 1994,

J. Bevan and E. J. Whitehead Jr. Identification of software instabilities. In
Proceedings of the 10th Working Conference on Reverse Engineering (WCRE
2003) pages 134-145, Victoria, Canada, 2003. IEEE Computer Society.

D. Beyer and A. Noack. Clustering software artifacts based on frequent
common changes. IRroceedings of the 13th IEEE International Workshop on
Program Comprehension (IWPC 200ppges 259-268. IEEE Computer

Society Press, Los Alamitos (CA), 2005.

M. Burch, S. Diehl, and P. Wei3gerber. Visual data mining in software archives.
In Proceedings of the 2005 ACM symposium on Software visualization (SoftVis
2005) pages 37-46, New York, NY, USA, 2005. ACM Press.

A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and A. Michail.
CVSSearch: Searching through source code using CVS comments. In
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM 2001) pages 364—-373, Florence, Italy, 2001. IEEE Computer Society.
H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on
product release history. roceedings of the International Conference on
Software Maintenance (ICSM 199®gnges 190-197, Bethesda, Maryland,

USA, 1998. IEEE Computer Society.

H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for detecting
logical couplings. IrProceedings of the 6th International Workshop on
Principles of Software Evolution (IWPSE 2008xages 13-23, Helsinki,

Finland, 2003. IEEE Computer Society.

M. W. Godfrey and L. Zou. Using origin analysis to detect merging and
splitting of source code entitieEEEE Transactions on Software Engineering
31(2):166-181, 2005.

S. Kim, K. Pan, and E. J. Whitehead Jr. When functions change their names:
Automatic detection of origin relationships. Rroceedings of the 12th Working
Conference on Reverse Engineering (WCRE 2Qf¥ges 143-152, Pittsburgh,
Pennsylvania, USA, 2005. IEEE Computer Society.

D. MacKenzie, P. Eggert, and R. Stallman. Comparing and merging files.
http://www.gnu.org/software/diffutils/manual/, 2002.

A. Mockus and L. G. Votta. Identifying reasons for software changes using
historic databases. Rroceedings of the International Conference on Software
Maintenance (ICSM 2000pages 120-130, San Jose, California, USA, 2000.
IEEE Computer Society.

R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of small
source code changd&EE Transactions on Software Engineering
31(6):511-526, 2005.

J. Sliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In
Proceedings of the 2005 International Workshop on Mining Software
Repositories (MSR 20053%t. Louis, Missouri, USA, 2005. ACM Press.

4] A.T.T.Ying, G. C. Murphy, R. T. Ng, and M. Chu-Carroll. Predicting source

code changes by mining change histdBEE Transactions on Software
Engineering 30(9):574-586, 2004.

T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system
architecture (or not). IWPSE '03: Proceedings of the 6th International
Workshop on Principles of Software Evolutjigages 73—84, Helsinki, Finland,
2003. IEEE Computer Society.

T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead Jr. Mining version
archives for co-changed lines. Broceedings of the International Workshop on
Mining Software Repositories (MSRBhanghai, China, may 2006.

T. Zimmermann, P. Wei3gerber, S. Diehl, and A. Zeller. Mining version
histories to guide software changdsEE Transactions on Software
Engineering 31(6):429-445, 2005.

http://www.gnu.org/software/diffutils/manual/

	Introduction
	Tracking Lines
	What are Annotation Graphs?
	How to Read GNU's diff
	How to Compute Annotation Graphs
	How to Use GNU's diff
	How to Recognize Large Modifications

	Annotating Lines
	First Applications
	Life Cycle of Lines
	Fix-Inducing Changes

	Finding Related Lines
	Related Work
	Conclusion
	References

