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FOR HARRY AND l.I.OYD EVERY DAY IS A NO-BRAINER.
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public class ImageViewerPlugin extends AbstractUIPlugin {

//The shared instance. \ 3
private static ImageViewerPlugin plugin; .I -
/ kk -
* The constructor.
*/

public ImageViewerPlugin() A{
plugin = this;
5

/ k%
* This method 1s called upon plug—-in activation
*/
public void start(BundleContext context) throws Exception {
super.start(context);
5

Basic actions
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public class ImageViewerPlugin extends AbstractUIPlugin {

//The shared instance.
private static ImageViewerPlugin plugin;
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Files ith

Release Total chars Total files defects

Eclipse 2.0 44,914,520 6,728 975 (14%)
Eclipse 2.1 56,068,650 7,887 854 (11%)
Eclipse 3.0 76,193,482 10,593 1,568 (15%)

Eclipse bug data

[PROMISE 2007]
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Training Set

Eclipse 2.0 Eclipse 2.1 Eclipse3.0 Average

Eclipse 2.0
Eclipse 2.1 0.55 0.64 0.56 0.58
Eclipse 3.0 0.57 0.40 0.64 0.54

Average
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Training Set

Eclipse 2.0 Eclipse 2.1 Eclipse3.0 Average

Eclipse 2.0
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Eclipse 3.0

Average
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Training Set Eclipse 2.0 Eclipse 2.1 Eclipse 3.0 Average
| Eclipse 2.0 0.32 0.27 0.27 0.28
" Eclipse 2.1 0.03 0.18 0.14 0.11
Eclipse 3.0 0.19 0.16 0.20 0.18
Average 0.18 0.20 0.20 0.19

Recall
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Coding standards
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FAQ@s and threats



1. How about external validity®
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1. How about external validity*

(findings based on 2177,000,000 characters +
1,000s of defects; one of largest studies ever)

<. Are the correlations significant?
(yes — all of them)

3. Are the measures appropriate?

(all code originally input as characters;
no abstraction taken that could interfere)

FAQ@s and threats
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e Automartic renamings
(PROMISE — ENGAGEMENT, Eclipse — Eclse)

e Abstraction

(Failure / mistake / error / problem / bug report
VS. success / fame)

® Generalization
(UPOII principle)

Future work
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Why all this is wrong
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Correlation vs. Causation

/11717
otk Ak K tttttttrtttttttrttttt

dddaaddadaa
uduuuuuuuuuyu
CCCcCccccc

d
eeceeeeeeeeeeeeee

9999999

iiiiiiiiiiiii
Lttt
mmmm
nnnnnnnnnnNNANNn

000000000
PPPPPPPPPP
rerrrrerrrr

SS5SSSSSSSSS

No abstraction




Machine Learning works
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Cherry Picking
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Fix Causes, not Symptoms
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when (g != null)
{ num n; as (gq[n] < @) n++; handback n; }
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Use Paper in Class

Failure is a Four-Letter Word
— A Parody in Empirical Research —

Andreas Zeller
Saarland University
Saarbricken, Germany

zeller@cs.uni-saarland.de

ABSTRACT

Background: The past years have seen a surge of techniques
predicting failure-prone locations based on more or less complex
metrics. Few of these metrics are actionable, though.

Aims: This paper explores a simple, easy-to-implement method
to predict and avoid failures in software systems. The IROP
method links elementary source code features to known software
failures in a lightweight, easy-to-implement fashion.

Method: We sampled the Eclipse data set mapping defects to
files in three Eclipse releases. We used logistic regression to as-
sociate programmer actions with defects, tested the predictive
power of the resulting classifier in terms of precision and recall,
and isolated the most defect-prone actions. We also collected
initial feedback on possible remedies.

Results: In our sample set, IROP correctly predicted up to 74% of
the failure-prone modules, which is on par with the most elaborate
predictors available. We isolated a set of four easy-to-remember
recommendations, telling programmers precisely what to do to
avoid errors. Initial feedback from developers suggests that these
recommendations are straightforward to follow in practice.
Conclusions: With the abundance of software development data,
even the simplest methods can produce “actionable” results.

Thomas Zimmermann
Microsoft Research
Washington, USA

tzimmer@microsoft.com

Christian Bird

Microsoft Research
Washington, USA

chird@microsoft.com

number of developers associated with a file. As elaborate as these
approaches may be, they all share the same problem which we call
the cost of consequence: If 1 know that a module is failure-prone
because it frequently changes, should I stop changing it? If I
know failures are related to complexity, should I rewrite it from
scratch? Any of these measures induces a new risk — a risk which
may be greater than the one originally addressed.

In this paper, we take a different approach. We predict failures
from the most basic actions programmers undertake, focusing on
the actions that introduce defects as they are being made — literal-
ly at the moment the source code is typed in. Our recommenda-
tions are immediately actionable: A simple visual representation
associates actions with the likelihood of introducing defects —
warning programmers before they might hit the wrong key. Our
approach is both effective and efficient: In a case study on the
Eclipse failure set, it correctly identified up to 74% of the failure-
prone modules, which is on par with the most elaborate predictors
available. Specifically, our contributions include:
1) A novel mechanism to associate programmer actions with
software defects;
2) A predictor that is purely text-oriented, thus lightweight,
real-time, easy to implement, and language-agnostic;
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