
Failure is a four-letter word
Andreas Zeller • Thomas Zimmermann • Christian Bird

PROMISE 2011, Banff, Canada

Software failures
2

Defect distributions
3

Failure causes
4

Failure causes
5

Failure causes
6

Failure causes
7

Failure causes
7

Cost of consequence
8

Back to basics
9

Back to basics
9

ABC

Basic actions
10

public class ImageViewerPlugin extends AbstractUIPlugin {

! //The shared instance.
! private static ImageViewerPlugin plugin;
!
! /**
! * The constructor.
! */
! public ImageViewerPlugin() {
! ! plugin = this;
! }

! /**
! * This method is called upon plug-in activation
! */
! public void start(BundleContext context) throws Exception {
! ! super.start(context);
! }

Basic actions
10

11

public class ImageViewerPlugin extends AbstractUIPlugin {

! //The shared instance.
! private static ImageViewerPlugin plugin;
!
! /**
! * The constructor.
! */
! public ImageViewerPlugin() {
! ! plugin = this;
! }

! /**
! * This method is called upon plug-in activation
! */
! public void start(BundleContext context) throws Exception {
! ! super.start(context);
! }

12

//////

aaaaaaaaaa
cccccccccc
d
eeeeeeeeeeeeeeee
ggggggg
hh
iiiiiiiiiiiii
lllllllllllll
mmmm
nnnnnnnnnnnnnnnn
ooooooooo
pppppppppp
rrrrrrrrrr
ssssssssssss

ttttttttttttttttttttt
uuuuuuuuuuuu
v
wwww
A
B
C
E
IIII
PPPP
TTT
U
VVV
{{{
}}}

Hypotheses
13

Hypotheses
13

1. We can predict defects from
programmer actions.

Hypotheses
13

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

Hypotheses
13

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses
14

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Eclipse bug data
[PROMISE 2007]

15

Table 1: Features of the Eclipse datasets.

Release& Total&chars& Total&files&
Files&with&
defects&

Eclipse(2.0(44,914,520(6,728(975((14%)(

Eclipse(2.1(56,068,650(7,887(854((11%)(

Eclipse(3.0(76,193,482(10,593(1,568((15%)(

Eclipse characters
16

style of interaction is especially interesting, as its effect is imme-
diately reflected in the program artifacts being created. Indeed,
we can interpret source code as the product of a long sequence of
keystrokes, immediately visible in the program text.
One may argue at this point that this again is too much of an ab-
straction, as the final product (the source code) would not con-
serve all the editing actions that lead to it. When it comes to ac-
tionable consequences, though, treating source code as a product
of keystrokes has several advantages, as we shall see later in this
paper. Let us thus formulate our research hypotheses:

H1. We can predict defects from programmer actions.
Should H1 hold, we can test the next hypothesis:

H2. We can isolate defect-prone programmer actions.

These failure-correlated actions are what we call IROPs, which is
an airline industry acronym for “irregular operation”. (IROP also
refers to the four most important features to avoid in source code,
as detailed in Section 3.5.)
Good predictive power and actionable results lead to our final
hypothesis, stating the ultimate goal of our research:

H3. We can prevent defects by restricting programmer actions.

3. EVALUATION
3.1 Study Subject
The key challenge for empirical research is to find appropriate
data sets that would allow linking failures to program features. To
encourage replication and public assessment, we selected the pub-
licly available Eclipse bug dataset [1] [2] for our studies. It maps
between 6,729 files (for Eclipse 2.0) and 10,593 files (Eclipse 3.0)
to the number of pre- and post-release defects found and fixed in
each file.

3.2 Independent Variables
For our investigation, we needed to establish a relation between
specific actions and defects. For this purpose, we modeled a pro-
grammer action as one of 256 possible keystrokes, one for each 8-
bit ASCII character. The result of these keystrokes is easily
measured by the number of occurrences in individual source code
files. Figure 1 shows the distribution of characters 1–127 across
all files in Eclipse 2.0; space (ASCII code 32) is the most frequent
character, followed by “e” (101), and “t” (116), which also hap-
pen to be the most frequent letters in the English language. Note
that while there is a clear bias towards printable and blank 7-bit
characters, there is nothing to assume that such a bias would be
specific to Eclipse source code.

3.3 Dependent Variables
Our dependent variable in this setting is whether a file would be
defect-prone or not. We only care for post-release defects, as
these would be the ones impacting actual users. Table 1 provides
descriptive statistics on these features.

Table 1: Features of the Eclipse datasets.

3.4 Predicting Defects by Actions
We start with a standard research question, namely asking wheth-
er programmer actions predict the defect-proneness of files. For
this purpose, we replicated a standard setting, training a model
from a set of features (c, d) for each file f. Here, c would be 256-
tuple denoting the occurrence counts over all 256 characters in f,
and d would be a Boolean value expressing whether f has had a
defect fixed in the past or not. Our null hypothesis would be:

H0. A character distribution is not sufficient to predict defect-
proneness.

In our experiment, we used a logistic regression model, as provid-
ed by the R statistical package. Having trained the model on one
of the Eclipse datasets, we used it to classify files f’ in the other
data sets whether they would contain defects or not. Table 2 lists
the precision we obtained for our experiments. For instance,
training the model on Eclipse 2.0 (first row) and predicting
whether files would be defect-prone in Eclipse 2.1 yields a preci-
sion of 0.39 – that is, 39% of all files predicted to be defect-prone
actually are defect-prone. Note that this is the worst of all preci-
sions observed; on average, more than 50% of all files are correct-
ly classified, bringing them on par with the best defect predictors.

Table 2: Precision for various training/testing combinations.
One feature we found striking was how well the model performed
when used within one release of Eclipse only. This setting is par-
ticularly important when applying the prediction during develop-
ment of a release – in a way, “training on the job”. When applied
within Eclipse 2.0 only, the precision is 74%, which makes this a
highly useful prediction tool.

Table 3: Recall for various training/testing combinations.
In terms of recall, our approach fares less well (Table 3), but this
is a feature (or problem) shared with most defect predictors. Still,
applied within Eclipse 2.0, our approach correctly identifies 32%

Release& Total&chars& Total&files&
Files&with&
defects&

Eclipse(2.0(44,914,520(6,728(975((14%)(

Eclipse(2.1(56,068,650(7,887(854((11%)(

Eclipse(3.0(76,193,482(10,593(1,568((15%)(

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0(0.74(0.39(0.49(0.54(

Eclipse(2.1(0.55(0.64(0.56(0.58(

Eclipse(3.0(0.57(0.40(0.64(0.54(

Average(0.62(0.47(0.56(0.55(

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0(0.32(0.27(0.27(0.28(

Eclipse(2.1(0.03(0.18(0.14(0.11(

Eclipse(3.0(0.19(0.16(0.20(0.18(

Average(0.18(0.20(0.20(0.19(

Figure 1: Character occurrences in Eclipse 2.0

Precision
17

style of interaction is especially interesting, as its effect is imme-
diately reflected in the program artifacts being created. Indeed,
we can interpret source code as the product of a long sequence of
keystrokes, immediately visible in the program text.
One may argue at this point that this again is too much of an ab-
straction, as the final product (the source code) would not con-
serve all the editing actions that lead to it. When it comes to ac-
tionable consequences, though, treating source code as a product
of keystrokes has several advantages, as we shall see later in this
paper. Let us thus formulate our research hypotheses:

H1. We can predict defects from programmer actions.
Should H1 hold, we can test the next hypothesis:

H2. We can isolate defect-prone programmer actions.

These failure-correlated actions are what we call IROPs, which is
an airline industry acronym for “irregular operation”. (IROP also
refers to the four most important features to avoid in source code,
as detailed in Section 3.5.)
Good predictive power and actionable results lead to our final
hypothesis, stating the ultimate goal of our research:

H3. We can prevent defects by restricting programmer actions.

3. EVALUATION
3.1 Study Subject
The key challenge for empirical research is to find appropriate
data sets that would allow linking failures to program features. To
encourage replication and public assessment, we selected the pub-
licly available Eclipse bug dataset [1] [2] for our studies. It maps
between 6,729 files (for Eclipse 2.0) and 10,593 files (Eclipse 3.0)
to the number of pre- and post-release defects found and fixed in
each file.

3.2 Independent Variables
For our investigation, we needed to establish a relation between
specific actions and defects. For this purpose, we modeled a pro-
grammer action as one of 256 possible keystrokes, one for each 8-
bit ASCII character. The result of these keystrokes is easily
measured by the number of occurrences in individual source code
files. Figure 1 shows the distribution of characters 1–127 across
all files in Eclipse 2.0; space (ASCII code 32) is the most frequent
character, followed by “e” (101), and “t” (116), which also hap-
pen to be the most frequent letters in the English language. Note
that while there is a clear bias towards printable and blank 7-bit
characters, there is nothing to assume that such a bias would be
specific to Eclipse source code.

3.3 Dependent Variables
Our dependent variable in this setting is whether a file would be
defect-prone or not. We only care for post-release defects, as
these would be the ones impacting actual users. Table 1 provides
descriptive statistics on these features.

Table 1: Features of the Eclipse datasets.

3.4 Predicting Defects by Actions
We start with a standard research question, namely asking wheth-
er programmer actions predict the defect-proneness of files. For
this purpose, we replicated a standard setting, training a model
from a set of features (c, d) for each file f. Here, c would be 256-
tuple denoting the occurrence counts over all 256 characters in f,
and d would be a Boolean value expressing whether f has had a
defect fixed in the past or not. Our null hypothesis would be:

H0. A character distribution is not sufficient to predict defect-
proneness.

In our experiment, we used a logistic regression model, as provid-
ed by the R statistical package. Having trained the model on one
of the Eclipse datasets, we used it to classify files f’ in the other
data sets whether they would contain defects or not. Table 2 lists
the precision we obtained for our experiments. For instance,
training the model on Eclipse 2.0 (first row) and predicting
whether files would be defect-prone in Eclipse 2.1 yields a preci-
sion of 0.39 – that is, 39% of all files predicted to be defect-prone
actually are defect-prone. Note that this is the worst of all preci-
sions observed; on average, more than 50% of all files are correct-
ly classified, bringing them on par with the best defect predictors.

Table 2: Precision for various training/testing combinations.
One feature we found striking was how well the model performed
when used within one release of Eclipse only. This setting is par-
ticularly important when applying the prediction during develop-
ment of a release – in a way, “training on the job”. When applied
within Eclipse 2.0 only, the precision is 74%, which makes this a
highly useful prediction tool.

Table 3: Recall for various training/testing combinations.
In terms of recall, our approach fares less well (Table 3), but this
is a feature (or problem) shared with most defect predictors. Still,
applied within Eclipse 2.0, our approach correctly identifies 32%

Release& Total&chars& Total&files&
Files&with&
defects&

Eclipse(2.0(44,914,520(6,728(975((14%)(

Eclipse(2.1(56,068,650(7,887(854((11%)(

Eclipse(3.0(76,193,482(10,593(1,568((15%)(

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0(0.74(0.39(0.49(0.54(

Eclipse(2.1(0.55(0.64(0.56(0.58(

Eclipse(3.0(0.57(0.40(0.64(0.54(

Average(0.62(0.47(0.56(0.55(

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0(0.32(0.27(0.27(0.28(

Eclipse(2.1(0.03(0.18(0.14(0.11(

Eclipse(3.0(0.19(0.16(0.20(0.18(

Average(0.18(0.20(0.20(0.19(

Figure 1: Character occurrences in Eclipse 2.0

Precision
18

style of interaction is especially interesting, as its effect is imme-
diately reflected in the program artifacts being created. Indeed,
we can interpret source code as the product of a long sequence of
keystrokes, immediately visible in the program text.
One may argue at this point that this again is too much of an ab-
straction, as the final product (the source code) would not con-
serve all the editing actions that lead to it. When it comes to ac-
tionable consequences, though, treating source code as a product
of keystrokes has several advantages, as we shall see later in this
paper. Let us thus formulate our research hypotheses:

H1. We can predict defects from programmer actions.
Should H1 hold, we can test the next hypothesis:

H2. We can isolate defect-prone programmer actions.

These failure-correlated actions are what we call IROPs, which is
an airline industry acronym for “irregular operation”. (IROP also
refers to the four most important features to avoid in source code,
as detailed in Section 3.5.)
Good predictive power and actionable results lead to our final
hypothesis, stating the ultimate goal of our research:

H3. We can prevent defects by restricting programmer actions.

3. EVALUATION
3.1 Study Subject
The key challenge for empirical research is to find appropriate
data sets that would allow linking failures to program features. To
encourage replication and public assessment, we selected the pub-
licly available Eclipse bug dataset [1] [2] for our studies. It maps
between 6,729 files (for Eclipse 2.0) and 10,593 files (Eclipse 3.0)
to the number of pre- and post-release defects found and fixed in
each file.

3.2 Independent Variables
For our investigation, we needed to establish a relation between
specific actions and defects. For this purpose, we modeled a pro-
grammer action as one of 256 possible keystrokes, one for each 8-
bit ASCII character. The result of these keystrokes is easily
measured by the number of occurrences in individual source code
files. Figure 1 shows the distribution of characters 1–127 across
all files in Eclipse 2.0; space (ASCII code 32) is the most frequent
character, followed by “e” (101), and “t” (116), which also hap-
pen to be the most frequent letters in the English language. Note
that while there is a clear bias towards printable and blank 7-bit
characters, there is nothing to assume that such a bias would be
specific to Eclipse source code.

3.3 Dependent Variables
Our dependent variable in this setting is whether a file would be
defect-prone or not. We only care for post-release defects, as
these would be the ones impacting actual users. Table 1 provides
descriptive statistics on these features.

Table 1: Features of the Eclipse datasets.

3.4 Predicting Defects by Actions
We start with a standard research question, namely asking wheth-
er programmer actions predict the defect-proneness of files. For
this purpose, we replicated a standard setting, training a model
from a set of features (c, d) for each file f. Here, c would be 256-
tuple denoting the occurrence counts over all 256 characters in f,
and d would be a Boolean value expressing whether f has had a
defect fixed in the past or not. Our null hypothesis would be:

H0. A character distribution is not sufficient to predict defect-
proneness.

In our experiment, we used a logistic regression model, as provid-
ed by the R statistical package. Having trained the model on one
of the Eclipse datasets, we used it to classify files f’ in the other
data sets whether they would contain defects or not. Table 2 lists
the precision we obtained for our experiments. For instance,
training the model on Eclipse 2.0 (first row) and predicting
whether files would be defect-prone in Eclipse 2.1 yields a preci-
sion of 0.39 – that is, 39% of all files predicted to be defect-prone
actually are defect-prone. Note that this is the worst of all preci-
sions observed; on average, more than 50% of all files are correct-
ly classified, bringing them on par with the best defect predictors.

Table 2: Precision for various training/testing combinations.
One feature we found striking was how well the model performed
when used within one release of Eclipse only. This setting is par-
ticularly important when applying the prediction during develop-
ment of a release – in a way, “training on the job”. When applied
within Eclipse 2.0 only, the precision is 74%, which makes this a
highly useful prediction tool.

Table 3: Recall for various training/testing combinations.
In terms of recall, our approach fares less well (Table 3), but this
is a feature (or problem) shared with most defect predictors. Still,
applied within Eclipse 2.0, our approach correctly identifies 32%

Release& Total&chars& Total&files&
Files&with&
defects&

Eclipse(2.0(44,914,520(6,728(975((14%)(

Eclipse(2.1(56,068,650(7,887(854((11%)(

Eclipse(3.0(76,193,482(10,593(1,568((15%)(

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0(0.74(0.39(0.49(0.54(

Eclipse(2.1(0.55(0.64(0.56(0.58(

Eclipse(3.0(0.57(0.40(0.64(0.54(

Average(0.62(0.47(0.56(0.55(

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0(0.32(0.27(0.27(0.28(

Eclipse(2.1(0.03(0.18(0.14(0.11(

Eclipse(3.0(0.19(0.16(0.20(0.18(

Average(0.18(0.20(0.20(0.19(

Figure 1: Character occurrences in Eclipse 2.0

Precision
18

Recall
19

Table 3: Recall for various training/testing combinations.

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0(0.32(0.27(0.27(0.28(

Eclipse(2.1(0.03(0.18(0.14(0.11(

Eclipse(3.0(0.19(0.16(0.20(0.18(

Average(0.18(0.20(0.20(0.19(

Hypotheses
20

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses
20

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

✔

Hypotheses
21

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

✔

Defect correlations
22

Defect correlations
23

Defect correlations
23

Defect correlations
24

Defect correlations
24

IROP

Hypotheses
25

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

✔

Hypotheses
25

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

✔
✔

Hypotheses
26

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

✔
✔

Explicit causes
27

Explicit causes
27

IROP keyboard
28

Coding standards
29

Coding standards
29

if	 (p	 !=	 null)
	 	 {	 int	 i;	 while	 (p[i]	 <	 0)	 i++;	 return	 i;	 }

Coding standards
29

if	 (p	 !=	 null)
	 	 {	 int	 i;	 while	 (p[i]	 <	 0)	 i++;	 return	 i;	 }

when	 (q	 !=	 null)
	 	 	 {	 num	 n;	 as	 (q[n]	 <	 0)	 n++;	 handback	 n;	 }

Coding standards
30

when	 (q	 !=	 null)
	 	 	 {	 num	 n;	 as	 (q[n]	 <	 0)	 n++;	 handback	 n;	 }

Coding standards
30

when	 (q	 !=	 null)
	 	 	 {	 num	 n;	 as	 (q[n]	 <	 0)	 n++;	 handback	 n;	 }

100%semanticspreserving

New habits
31

New habits
31

We can !un "ese set majuscules,

and $ text %ays ju% as swell as

antecedently. Let us ju% ban "em!

Hypotheses
32

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

✔
✔

Hypotheses
32

1. We can predict defects from
programmer actions.

2. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.✔

✔
✔

FAQs and threats
33

FAQs and threats
33

1. How about external validity?
(findings based on ≥177,000,000 characters +
1,000s of defects; one of largest studies ever)

FAQs and threats
33

1. How about external validity?
(findings based on ≥177,000,000 characters +
1,000s of defects; one of largest studies ever)

2. Are the correlations significant?
(yes – all of them)

FAQs and threats
33

1. How about external validity?
(findings based on ≥177,000,000 characters +
1,000s of defects; one of largest studies ever)

2. Are the correlations significant?
(yes – all of them)

3. Are the measures appropriate?
(all code originally input as characters;
no abstraction taken that could interfere)

Future work
34

Future work
34

•Automatic renamings
(PROMISE → ENGAGEMENT, Eclipse → Eclse)

Future work
34

•Automatic renamings
(PROMISE → ENGAGEMENT, Eclipse → Eclse)

•Abstraction
(Failure / mistake / error / problem / bug report
vs. success / fame)

Future work
34

•Automatic renamings
(PROMISE → ENGAGEMENT, Eclipse → Eclse)

•Abstraction
(Failure / mistake / error / problem / bug report
vs. success / fame)

•Generalization
(ИРОП principle)

Failure is a four-letter word

Failure is a four-letter word

Why all this is wrong

Correlation vs. Causation

Machine Learning works

Cherry Picking

Fix Causes, not Symptoms

Actionable Findings

Our Inspiration
http://xkcd.com/882/

http://xkcd.com/882/
http://xkcd.com/882/

Use Book in Class

Use Paper in Class

Failure is a Four-Letter Word
– A Parody in Empirical Research –

Andreas Zeller*
Saarland University

Saarbrücken, Germany
zeller@cs.uni-saarland.de

Thomas Zimmermann
Microsoft Research
Washington, USA

tzimmer@microsoft.com

Christian Bird
Microsoft Research
Washington, USA

cbird@microsoft.com

ABSTRACT
Background: The past years have seen a surge of techniques
predicting failure-prone locations based on more or less complex
metrics. Few of these metrics are actionable, though.
Aims: This paper explores a simple, easy-to-implement method
to predict and avoid failures in software systems. The IROP
method links elementary source code features to known software
failures in a lightweight, easy-to-implement fashion.
Method: We sampled the Eclipse data set mapping defects to
files in three Eclipse releases. We used logistic regression to as-
sociate programmer actions with defects, tested the predictive
power of the resulting classifier in terms of precision and recall,
and isolated the most defect-prone actions. We also collected
initial feedback on possible remedies.
Results: In our sample set, IROP correctly predicted up to 74% of
the failure-prone modules, which is on par with the most elaborate
predictors available. We isolated a set of four easy-to-remember
recommendations, telling programmers precisely what to do to
avoid errors. Initial feedback from developers suggests that these
recommendations are straightforward to follow in practice.
Conclusions: With the abundance of software development data,
even the simplest methods can produce “actionable” results.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – process metrics, prod-
uct metrics; K.3.2 [Computers and Society]: Computer and In-
formation Science Education – computer science education; K.7.4
[The Computing Profession]: Professional Ethics – codes of
good practice;

General Terms
Measurement, Experimentation

Keywords
Empirical Research, Parody

1. INTRODUCTION
In empirical software engineering, it is a long-standing observa-
tion that failures follow a Pareto distribution: The largest part of
software defects occurs in a small fraction of software compo-
nents. Therefore, research has concentrated on identifying fea-
tures that correlate with the presence of software defects – fea-
tures such as the number of changes, code complexity, or the

number of developers associated with a file. As elaborate as these
approaches may be, they all share the same problem which we call
the cost of consequence: If I know that a module is failure-prone
because it frequently changes, should I stop changing it? If I
know failures are related to complexity, should I rewrite it from
scratch? Any of these measures induces a new risk – a risk which
may be greater than the one originally addressed.

In this paper, we take a different approach. We predict failures
from the most basic actions programmers undertake, focusing on
the actions that introduce defects as they are being made – literal-
ly at the moment the source code is typed in. Our recommenda-
tions are immediately actionable: A simple visual representation
associates actions with the likelihood of introducing defects –
warning programmers before they might hit the wrong key. Our
approach is both effective and efficient: In a case study on the
Eclipse failure set, it correctly identified up to 74% of the failure-
prone modules, which is on par with the most elaborate predictors
available. Specifically, our contributions include:
1) A novel mechanism to associate programmer actions with

software defects;
2) A predictor that is purely text-oriented, thus lightweight,

real-time, easy to implement, and language-agnostic;
3) A set of easy-to-remember recommendations, validated on

the well-known Eclipse dataset.
The remainder of this paper is organized as follows: We start with
motivating our approach (Section 2), linking basic program fea-
tures to failures. Section 3 evaluates our approach on the Eclipse
bug data set, reaching new heights in accuracy. Section 4 dis-
cusses threats to validity, followed by an outline of future work in
this area in Section 5. *

2. THE IROP APPROACH
Empirical research has long focused on finding abstractions that
would correlate with failures – in the hope that addressing these
abstractions would also get rid of the failures. In the end, though,
all these abstractions (just like software as a whole) are nothing
but the product of elementary programmer actions such as open-
ing files, writing tests, or running programs. To change pro-
grammer behavior for the good, we must act at an abstraction
level where such change is actually feasible. (Clearly, we cannot
prohibit programmers from opening files!)
Interestingly enough, it is the lowest abstraction layers where
change becomes actionable. In the end, we can express program-
mer actions as a series of low-level human-computer interactions,
such as moving the mouse, or typing on the keyboard. The latter

* Andreas Zeller was a visiting researcher with Microsoft Re-

search, Washington, USA while the research leading to this pa-
per was conducted.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PROMISE '11, September 20-21, 2011, Banff, Canada
Copyright 2011 ACM 978-1-4503-0709-3/11/09... $10.00.

http://www.st.cs.uni-saarland.de/softevo/irop/

http://www.st.cs.uni-saarland.de/softevo/irop/
http://www.st.cs.uni-saarland.de/softevo/irop/

