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public class ImageViewerPlugin extends AbstractUIPlugin {

! //The shared instance.
! private static ImageViewerPlugin plugin;
!
! /**
!  * The constructor.
!  */
! public ImageViewerPlugin() {
! ! plugin = this;
! }

! /**
!  * This method is called upon plug-in activation
!  */
! public void start(BundleContext context) throws Exception {
! ! super.start(context);
! }
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Table 1: Features of the Eclipse datasets. 

Release& Total&chars& Total&files&
Files&with&
defects&

Eclipse(2.0( 44,914,520( 6,728( 975((14%)(

Eclipse(2.1( 56,068,650( 7,887( 854((11%)(

Eclipse(3.0( 76,193,482( 10,593( 1,568((15%)(
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style of interaction is especially interesting, as its effect is imme-
diately reflected in the program artifacts being created.  Indeed, 
we can interpret source code as the product of a long sequence of 
keystrokes, immediately visible in the program text. 
One may argue at this point that this again is too much of an ab-
straction, as the final product (the source code) would not con-
serve all the editing actions that lead to it.  When it comes to ac-
tionable consequences, though, treating source code as a product 
of keystrokes has several advantages, as we shall see later in this 
paper.  Let us thus formulate our research hypotheses: 

H1. We can predict defects from programmer actions. 
Should H1 hold, we can test the next hypothesis: 

H2. We can isolate defect-prone programmer actions. 

These failure-correlated actions are what we call IROPs, which is 
an airline industry acronym for “irregular operation”. (IROP also 
refers to the four most important features to avoid in source code, 
as detailed in Section 3.5.) 
Good predictive power and actionable results lead to our final 
hypothesis, stating the ultimate goal of our research: 

H3. We can prevent defects by restricting programmer actions. 

3. EVALUATION 
3.1 Study Subject 
The key challenge for empirical research is to find appropriate 
data sets that would allow linking failures to program features.  To 
encourage replication and public assessment, we selected the pub-
licly available Eclipse bug dataset [1] [2] for our studies. It maps 
between 6,729 files (for Eclipse 2.0) and 10,593 files (Eclipse 3.0) 
to the number of pre- and post-release defects found and fixed in 
each file. 

3.2  Independent Variables 
For our investigation, we needed to establish a relation between 
specific actions and defects.  For this purpose, we modeled a pro-
grammer action as one of 256 possible keystrokes, one for each 8-
bit ASCII character.  The result of these keystrokes is easily 
measured by the number of occurrences in individual source code 
files.  Figure 1 shows the distribution of characters 1–127 across 
all files in Eclipse 2.0; space (ASCII code 32) is the most frequent 
character, followed by “e” (101), and “t” (116), which also hap-
pen to be the most frequent letters in the English language.  Note 
that while there is a clear bias towards printable and blank 7-bit 
characters, there is nothing to assume that such a bias would be 
specific to Eclipse source code. 

 

3.3 Dependent Variables 
Our dependent variable in this setting is whether a file would be 
defect-prone or not.  We only care for post-release defects, as 
these would be the ones impacting actual users. Table 1 provides 
descriptive statistics on these features.  

Table 1: Features of the Eclipse datasets. 

3.4 Predicting Defects by Actions 
We start with a standard research question, namely asking wheth-
er programmer actions predict the defect-proneness of files.  For 
this purpose, we replicated a standard setting, training a model 
from a set of features (c, d) for each file f. Here, c would be 256-
tuple denoting the occurrence counts over all 256 characters in f, 
and d would be a Boolean value expressing whether f has had a 
defect fixed in the past or not.  Our null hypothesis would be: 

H0. A character distribution is not sufficient to predict defect-
proneness. 

In our experiment, we used a logistic regression model, as provid-
ed by the R statistical package.  Having trained the model on one 
of the Eclipse datasets, we used it to classify files f’ in the other 
data sets whether they would contain defects or not.  Table 2 lists 
the precision we obtained for our experiments.  For instance, 
training the model on Eclipse 2.0 (first row) and predicting 
whether files would be defect-prone in Eclipse 2.1 yields a preci-
sion of 0.39 – that is, 39% of all files predicted to be defect-prone 
actually are defect-prone.  Note that this is the worst of all preci-
sions observed; on average, more than 50% of all files are correct-
ly classified, bringing them on par with the best defect predictors. 

Table 2: Precision for various training/testing combinations. 
One feature we found striking was how well the model performed 
when used within one release of Eclipse only.  This setting is par-
ticularly important when applying the prediction during develop-
ment of a release – in a way, “training on the job”.  When applied 
within Eclipse 2.0 only, the precision is 74%, which makes this a 
highly useful prediction tool. 

Table 3: Recall for various training/testing combinations. 
In terms of recall, our approach fares less well (Table 3), but this 
is a feature (or problem) shared with most defect predictors.  Still, 
applied within Eclipse 2.0, our approach correctly identifies 32% 

Release& Total&chars& Total&files&
Files&with&
defects&

Eclipse(2.0( 44,914,520( 6,728( 975((14%)(

Eclipse(2.1( 56,068,650( 7,887( 854((11%)(

Eclipse(3.0( 76,193,482( 10,593( 1,568((15%)(

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0( 0.74( 0.39( 0.49( 0.54(

Eclipse(2.1( 0.55( 0.64( 0.56( 0.58(

Eclipse(3.0( 0.57( 0.40( 0.64( 0.54(

Average( 0.62( 0.47( 0.56( 0.55(

Training&Set& Eclipse&2.0& Eclipse&2.1& Eclipse&3.0& Average&

Eclipse(2.0( 0.32( 0.27( 0.27( 0.28(

Eclipse(2.1( 0.03( 0.18( 0.14( 0.11(

Eclipse(3.0( 0.19( 0.16( 0.20( 0.18(

Average( 0.18( 0.20( 0.20( 0.19(

Figure 1: Character occurrences in Eclipse 2.0 
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no abstraction taken that could interfere)
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ABSTRACT 
Background: The past years have seen a surge of techniques 
predicting failure-prone locations based on more or less complex 
metrics.  Few of these metrics are actionable, though. 
Aims:  This paper explores a simple, easy-to-implement method 
to predict and avoid failures in software systems.  The IROP 
method links elementary source code features to known software 
failures in a lightweight, easy-to-implement fashion. 
Method:  We sampled the Eclipse data set mapping defects to 
files in three Eclipse releases.  We used logistic regression to as-
sociate programmer actions with defects, tested the predictive 
power of the resulting classifier in terms of precision and recall, 
and isolated the most defect-prone actions.  We also collected 
initial feedback on possible remedies. 
Results: In our sample set, IROP correctly predicted up to 74% of 
the failure-prone modules, which is on par with the most elaborate 
predictors available.  We isolated a set of four easy-to-remember 
recommendations, telling programmers precisely what to do to 
avoid errors.   Initial feedback from developers suggests that these 
recommendations are straightforward to follow in practice. 
Conclusions: With the abundance of software development data, 
even the simplest methods can produce “actionable” results. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – process metrics, prod-
uct metrics; K.3.2 [Computers and Society]: Computer and In-
formation Science Education – computer science education; K.7.4 
[The Computing Profession]: Professional Ethics – codes of 
good practice; 

General Terms 
Measurement, Experimentation 

Keywords 
Empirical Research, Parody 

1. INTRODUCTION 
In empirical software engineering, it is a long-standing observa-
tion that failures follow a Pareto distribution: The largest part of 
software defects occurs in a small fraction of software compo-
nents.  Therefore, research has concentrated on identifying fea-
tures that correlate with the presence of software defects – fea-
tures such as the number of changes, code complexity, or the 

number of developers associated with a file. As elaborate as these 
approaches may be, they all share the same problem which we call 
the cost of consequence: If I know that a module is failure-prone 
because it frequently changes, should I stop changing it?  If I 
know failures are related to complexity, should I rewrite it from 
scratch?  Any of these measures induces a new risk – a risk which 
may be greater than the one originally addressed. 

In this paper, we take a different approach.  We predict failures 
from the most basic actions programmers undertake, focusing on 
the actions that introduce defects as they are being made – literal-
ly at the moment the source code is typed in.  Our recommenda-
tions are immediately actionable: A simple visual representation 
associates actions with the likelihood of introducing defects – 
warning programmers before they might hit the wrong key.  Our 
approach is both effective and efficient: In a case study on the 
Eclipse failure set, it correctly identified up to 74% of the failure-
prone modules, which is on par with the most elaborate predictors 
available.  Specifically, our contributions include: 
1) A novel mechanism to associate programmer actions with 

software defects; 
2) A predictor that is purely text-oriented, thus lightweight, 

real-time, easy to implement, and language-agnostic; 
3) A set of easy-to-remember recommendations, validated on 

the well-known Eclipse dataset. 
The remainder of this paper is organized as follows: We start with 
motivating our approach (Section 2), linking basic program fea-
tures to failures.  Section 3 evaluates our approach on the Eclipse 
bug data set, reaching new heights in accuracy.  Section 4 dis-
cusses threats to validity, followed by an outline of future work in 
this area in Section 5. * 

2. THE IROP APPROACH 
Empirical research has long focused on finding abstractions that 
would correlate with failures – in the hope that addressing these 
abstractions would also get rid of the failures.  In the end, though, 
all these abstractions (just like software as a whole) are nothing 
but the product of elementary programmer actions such as open-
ing files, writing tests, or running programs.  To change pro-
grammer behavior for the good, we must act at an abstraction 
level where such change is actually feasible. (Clearly, we cannot 
prohibit programmers from opening files!) 
Interestingly enough, it is the lowest abstraction layers where 
change becomes actionable.  In the end, we can express program-
mer actions as a series of low-level human-computer interactions, 
such as moving the mouse, or typing on the keyboard.  The latter 

                                                                    
* Andreas Zeller was a visiting researcher with Microsoft Re-

search, Washington, USA while the research leading to this pa-
per was conducted. 
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