Failure is a four-letter word

Andreas Zeller * Thomas Zimmermann ¢ Christian Bird
PROMISE 2011, Banff, Canada

L —

Software failures

Mozilla Vdnerabilities

security malinews content extensions nsprpub
nss base Imap base xsit wxul canvasid webservice python spelich pr]
b src utsl SIC sc p sIC temp doc $rc SOAP PO XpKo IC src tests t
libplix freedd softoken xsht xpath sec ¢ md
W 1
phix_pl_nss mer ed - e -~ sche w\:(lc u‘m: ‘::‘ wi unl ma
searc cont ' - |
modu | pki 3y e . : s L L) = Java nane o b
& $ wy everts xml xpeom met pre ins typ LAt d A
pkix incl ssl wtll lcertd lsmum dddrbook | compose import mml comtent e d xforms st I — misc pthre s I
1~
top i e $r¢ sre ol | sre content dox e ! et xredveren RIS WS P the cp md(= M
- =
~ e sre o4 | xtd tase line ’ Wl oo s o S - -
’ - ~ n M
oamf phi pkes de el - & < S e jxm ! 2
cht t {]
‘ fw T : — gy xpcom Arectory db . xpetall
builting <a pkesl2 mime - e Toale o glue C~ 3k sqlite 3 Compder Utiitie wizard
ns pkil g [y ¢ dap s Code Ffromt Cener windows libxpne
- L hbvaries clie I -) |}
certhig g — DS ' e i md 28 |ga setup u_'v- cus
mags ~ liblda x Primi |
— L db b reflect [strng typelib) P _Llaexa®) ¢ _ ‘
cmd t oo me xptcal [x [pu Tsr| e x suncsdk xp ’ . : 2 mac
zhd lib m ok si figs pk (c [3 dules C i s| el c-sdk b mork i Runtim oc Pack — —
- 5 <riu bt S) plugm ds base teuts dap ! sre ‘_’ Syste s i B —
2 ! wies <0
manager 58 s tests W tools [sam s & | libraries cli H md N C Tools o =
org sre test 3 s Cef , buid compo i J st jx O
layous NI - 3 obsolete Kahe |pr il editor toolkit xple
genenc stybe ol C ArA C L c 1“0""' = vconv libeditor tum components alrbag | comporme | bootstra
base AL ‘e RS - wodlat| src Juth lucy mmi base | place his's | airbag sear/boo | app
wi z - - P
e libemg libfont hbpeOn 250 $re Bulut o Al - pal xre Im M
r UCVEN ' g
pog xge dec 3 e mac otk u text Dxtwy - appshel
: J src || - _— : > -
L . unichar Jocale <t calendar rser tools accessibd
. . ¥ Mibre ibp libb sre sre src libical mwlwv r tr c.c:)dc Lt
Base e softupd [Tho o windows | 032 |beos $I< | parser expa trace-~ codes re $rc
rof e — ! chardet | $r¢ st¢ o b " a1 atk bas ht xu
= wC libjar 2 3 [l i " erc boecal libac - ' P "
y - ~ — et
m'aVQ z - L pro ; Xpwi ot ph netwerk U — e i (e emd TT
b e pon in e by ofx * Base protoco = o msgick cck g¢
— $7¢ b 0 g 9 r— hitp ftp base e C expat muc. boehm
Is [Mb | mac theb wib z src 2 — ' e driver |10
¢ tamana = sre - -
j - embedding ’ <
xpeonnect <o core 3 @ phoe —— SIreamCo | 1est o re plagin unlocader camino Ipc
e test os 5 . - ~
gtk windo be xp sh activex gtk phot bui other-hicense v O,M xtha (DY _ s#c Iped
| “ Tieq e ¢ cache dns 7 libar R MR .
L x11sh st hbast plu 1l “
fdlib xpe 0 <o & web o e lib maton view mail
pcre code MM wL— = 4 powerp ava
cairo thebe plu i @ || i g 7z - raf mac SIC | sC | com
- . cairo gz sre el | webclient [pluggab browser atk-1. [base ‘chwo fmmiin it
1 " src orc compon | Qa tests | src_moz wi Components — sl profile
shell pl e B8 oubh JLoTin Jreste mic 'w G] “places migrat =9 s 19 |57 win |3 i Fstu [w
[] ' —
R i do_[plu I "sre BoCshell |
H e libpixma bl win fi . xpcom = boo T s config CADs SL0 | GCon mini
g e ;e web o “““' - | 2 ¥ L heo

Defect distributions

JIM CARREY JEFF DANIELS

FOR HARRY AND l.I.OYD EVERY DAY IS A NO-BRAINER.

Failure causes

S

(8)

Failure causes

Failure causes

PROCRASTINATORS
UNITE

.TOMORROW

Cost of consequence

Back to basics

Back to basics

Basic actions

10

public class ImageViewerPlugin extends AbstractUIPlugin {

//The shared instance. \ 3
private static ImageViewerPlugin plugin; .I -
/ kk -
* The constructor.
*/

public ImageViewerPlugin() A{
plugin = this;
5

/ k%
* This method 1s called upon plug—-in activation
*/
public void start(BundleContext context) throws Exception {
super.start(context);
5

Basic actions

10

public class ImageViewerPlugin extends AbstractUIPlugin {

//The shared instance.
private static ImageViewerPlugin plugin;

/ %k
* The constructor.
*/
public ImageViewerPlugin() {
plugin = this;
5

/ k%
* This method 1s called upon plug—-in activation
*/
public void start(BundleContext context) throws Exception {
super.start(context);
I3

No abstraction

11

/111717
skokokokokokokoK

dddddddadadd
CCCCCCCCCC

d
EEEEEeEeeeeeeeeceec

9999999

1111111131111
Lttt
mmmm
nnnnnnnnnnnnnnnn

000000000

PPPPPPPPPP
rerrrrrrrr

SSSSSSSSSSSS

ttttttttttttttttttttt
uuuuuuuuuuuu

mnw>§<

IIII
PPPP
TTT

VVV

{{H
Fr}

No abstraction

12

Hypotheses

1. We can predict defects from
programmer actions.

Hypotheses

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

Hypotheses

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

Files ith

Release Total chars Total files defects

Eclipse 2.0 44,914,520 6,728 975 (14%)
Eclipse 2.1 56,068,650 7,887 854 (11%)
Eclipse 3.0 76,193,482 10,593 1,568 (15%)

Eclipse bug data

[PROMISE 2007]

15

S5E+6
4E+6
3E+6
2E+6
1E+6 L
OE+Q frmmmtfrirmmrrriverm l“l“l“uJJflll‘JllI‘ﬁﬁﬁﬁﬁanﬁlllllllllll'ﬁllﬁllllllllll‘llllllﬁﬁf‘ﬁl“# Jll L llllllllfllfllfll
~ = N M < W ~ O O O «—~ ™
= =~ e

Eclipse characters

16

Training Set

Eclipse 2.0 Eclipse 2.1 Eclipse3.0 Average

Eclipse 2.0
Eclipse 2.1 0.55 0.64 0.56 0.58
Eclipse 3.0 0.57 0.40 0.64 0.54

Average

o O SR W D G G D D G R S S D G S D D G S W D G S D D D SR S D G S SR S G R W D D G S S D G G W D G G S D D G S D D G R D G G T D D G e e

Precision

17

Training Set

Eclipse 2.0 Eclipse 2.1 Eclipse3.0 Average

Eclipse 2.0
Eclipse 2.1 0.55 0.64 0.56 0.58
Eclipse 3.0 0.57 0.40 0.64 0.54

Average

o O SR W D G G D D G R S S D G S D D G S W D G S D D D SR S D G S SR S G R W D D G S S D G G W D G G S D D G S D D G R D G G T D D G e e

Precision

18

Training Set

Eclipse 2.0 Eclipse 2.1 Eclipse3.0 Average

Eclipse 2.0
Eclipse 2.1

Eclipse 3.0

Average

Precision

18

Training Set Eclipse 2.0 Eclipse 2.1 Eclipse 3.0 Average
| Eclipse 2.0 0.32 0.27 0.27 0.28
" Eclipse 2.1 0.03 0.18 0.14 0.11
Eclipse 3.0 0.19 0.16 0.20 0.18
Average 0.18 0.20 0.20 0.19

Recall

19

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

<0

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

v

<0

1. We can predict defects from
programmer actions.

v

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

0.350
0.345
0.340
0.335
0.330
0.325
0.320
0.315
0.310

I I I I I I

abcdefghijklmnopgrstuvwxyz

Defect correlations

R

0.350
0.345
0.340
0.335
0.330
0.325
0.320
0.315
0.310

I I I I I I

abcdefghijklmnopgrstuvwxyz

Defect correlations

R3S

0.350
0.345
0.340
0.335

0.330 -
0.325 -
0.320 -
0.315 -
0.310 -

o O SR W D R G P S G R e S e e

abcdefghijklmnopgrstuvwxyz

SR WD G G SR W D G S WD D R R S P G S SR S G R W D D G S W D D G W D G SR SR S D SR S D D G R D D G T D D G e e

Detect correlations

3

Detect correlations

Detect correlations

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

v

5

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

v
v

5

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

v
v

6

Explicit causes

: Uuu_][: I qu[; e]U[__]

Explicit causes

IROP keyboard

8

Coding standards

1D =" nuill)
fednt dns while Cpld ¢ 0) St return1; i}

Coding standards

1E(p =" null
fednt dns while Cpld ¢ 0) St return1; i}

when (g != null)

{ num n; as (g[n] < @) n++; handback n; }

Coding standards

when (g != null)
{ num n; as (g[n] < @) n++; handback n; }

Coding standards

when (g != null)
{ num n; as (g[n] < @) n++; handback n; }

Coding standards

New habits

M@Mﬂ&/ﬂ%@@wf Wa%é/
M/ZWQ L‘@f@g/«}gﬂ swell as

New habits

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

v
v

3R

1. We can predict defects from
programmer actions.

<. We can isolate defect-prone
programmer actions.

3. We can prevent defects by
restricting programmer actions.

Hypotheses

v
v

v

3R

FAQ@s and threats

1. How about external validity®

(findings based on 2177,000,000 characters +
1,000s of defects; one of largest studies ever)

FAQ@s and threats

33

1. How about external validity®

(findings based on 2177,000,000 characters +
1,000s of defects; one of largest studies ever)

<. Are the correlations significant?
(yes — all of them)

FAQ@s and threats

33

1. How about external validity*

(findings based on 2177,000,000 characters +
1,000s of defects; one of largest studies ever)

<. Are the correlations significant?
(yes — all of them)

3. Are the measures appropriate?

(all code originally input as characters;
no abstraction taken that could interfere)

FAQ@s and threats

33

Future work

e Automartic renamings
(PROMISE — ENGAGEMENT, Eclipse —

Future work

Eclse)

34

e Automatic renamings
(PROMISE — ENGAGEMENT, Eclipse — Eclse)

e Abstraction

(Failure / mistake / error / problem / bug report
VS. success / fame)

Future work

34

e Automartic renamings
(PROMISE — ENGAGEMENT, Eclipse — Eclse)

e Abstraction

(Failure / mistake / error / problem / bug report
VS. success / fame)

® Generalization
(UPOII principle)

Future work

34

Failure is a four-letter word

0.350
0.345
0.340

0.335 - : -HE
0.330 ; HH
0.325 - 111
0.320 - -H
0.315 - [—F -+t I I
0310 +e-nEEEEE K i ~
q y

abcdefghijkimnopqrstuvwxyz

Defect correlations

IROP

Defect correlations

Failure is a four-letter word

_J_J_J_J_Jt_JL_J -f-f-7 7. .0.7.
IHHHHAEADEEamm
ag HER

Da0nBeEE=

BIIBIII-

IROP keyboard

1. We can predict defects from J
programier actions.

&. We can isolate defect-prone J
programimer actions.

3. We can prevent defects by J
restricting programmer actions.

Hypotheses

0.345 - t

0.340 - 1

0.335 1 - —

0.330 il T T

0.325 - 23 1

0.320 - 438

0.315 FHE t 1988 : |, [

0.310 ST T et AU B et e o st 2 von 1og
abe i jJkImnopqrstuvwxy?

Defect correlations

IROP

Defect correlations

Failure is a four-letter word

e 8 3 I3 8 3 0
8 [& JdHEAEamm

' HHEN
.IIll---
10 000RBE e

-
"

IROP keyboard

1. We can predict defects from J
programimer actions.

2. We can isolate defect-prone J
programimer actions.

3. We can prevent defects by J
restricting programmer actions.

Hypotheses

Why all this is wrong
TROP

Defect correlations Defect correlations

Failure is a four-letter word

!
Ill._II---

IROP keyboard Hypotheses

Correlation vs. Causation

/11717
otk Ak K tttttttrtttttttrttttt

dddaaddadaa
uduuuuuuuuuyu
CCCcCccccc

d
eeceeeeeeeeeeeeee

9999999

iiiiiiiiiiiii
Lttt
mmmm
nnnnnnnnnnNNANNn

000000000
PPPPPPPPPP
rerrrrerrrr

SS5SSSSSSSSS

No abstraction

Machine Learning works

Precision

Cherry Picking

Detect correlations

Fix Causes, not Symptoms

. AN 4

100%
semantics
preserving

when (g != null)
{ num n; as (gq[n] < @) n++; handback n; }

Coding standards

Actionable Findings

Detect correlations

Our Inspiration

http://xkcd.com/882/

JELLY BEANS WE FOUND NO THAT SETILES THAT.
CAUSE ACNE! LINK BETWEEN /

T HEAR ITS ONLY
A CERTAIN COLOR
THAT CAUSES IT.

SCIENTISTS! JELLY BEANS AND
INVESTIGATE! ANE (p > 0.05)

http://xkcd.com/882/
http://xkcd.com/882/

JELLY BEANS WE FOUND NO THAT SETILES THAT.
CAUSE ACNE! LINK BETWEEN '
T HEAR ITS ONLY
SCIENTISTS) Lo gl A CERTAN ColDR
lNVESTuCATE' ANE (P > 0-05). THAT CAUSES IT.
BUT WERE \
mm SCIEMT'STS
FWE H'"MMT'
WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO
LINK BETWEEN LINK BGETWEEN LINK BETWEEN LUNK BETWEEN LNK BETWEEN
PURPLE JELLY BROWN JELLY PINK JELLY BWE JeEuy TEAL JELLY
BEANS AND ANE BEANS ANDANE | | BEANS AND ANE BEANS AND ACNE BEANS AND ACNE
(P>0.05) (P>0.05). (P>0.05). (P>0.05). (P>0.05)
/ / / / /

Th

M

7

7

7

7

WE. FOUND NO WE. FOUND NO WE FOUND NO WE FOUNDNO WE FOUND NO
LINK BETWEEN LINK BETWEEN LINK BGETWEEN LINK BETWEEN LINK BETWEEN
PURPLE JELLY BROWN JELLY PINK JELLY BWE JeEuy TEAL JELLY
BEANS AND ANNE BEANS AND ANE BEANS AND ANE BEANS AND ANE BEANS AND ANE
(P>0.05). (P>0.05) (P>0.05) (P>0.05) (P>0.05)

@ @' @ @ @'

WE FOUNDNO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUNDNO

LINK BETWEEN UNK GETWEEN LINK BETWEEN UNK BGETWEEN LINK BETWEEN

SALMON JELLY RED JELY TURGUOISE JELLY MAGENTA JELLY YELLOW JELLY

BEANS AND ACNE. BEANS AND ANE BEANS AND ACNE BEANS AND ACNE BEANS AND ACNE

(P>0.05). (P>0.05). (P>0.05) (P>0.05) (P>0.05),

7

| (P>0.05) (P20.05) | (P>0.05), (P>0.05) (P>0.05)
/ / / /
WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO
LINK BETWEEN LUNK GETWEEN LINK GETWEEN LINK BETWEEN LINK BETWEEN
SALMON JELLY RED JELWY TURGUOISE JELLY | | MAGENTA JELLY YELLOW JELY
BEANS AND ACNE BEANS AND ANE BEANS AND ACNE BEANS AND ACNE BEANS AND ANE
(P>0.05) (P>0.05). (P>0.05). (P>0.05) (P>0.05).
/ / / / /
WE FOUNDNO WE FOUND NO WE FOUNDNO WE FOUND A WE FOUNDNO
LINK BETWEEN UNK GETWEEN LINK BETWEEN LINK BETWEEN LINK BETWEEN
GREY JELY TAN JELLY CvAN JELY GREEN JELY MAUVE JELLY
esmsmonme Gsmsmonwr: Bsmswm«s BEANS AND ACNE esmsmom
p>oos) p>oos') P>005) (P<0.05) p>oos)
oAl
’:/ ﬂa

(P)0.0g} (P)0.0b"} (P)0.0S}, (P)0.05)
da o8 | D &
WE FOUNDNO WE FOUND NO WE FOUND NO WE FOUND A WE FOUNDNO
LINK BETWEEN UNK GETWEEN LINK GETWEEN LINK BETWEEN LINK BETWEEN
GREY JELY TAN JELWY CYAN JELY GREEN JELLY MAUVE JELLY
BEANS AND ACNE BEANS AND ANE BEANS AND ACNE BEANS AND ACNE BEANS AND ACNE
(P>0.05). (p> 0.05), (P>0.05) (p<o. 05) (P>0.05).
@’i @’i @’% - i @’i
ﬂ ﬂ ﬂ 'I/ ﬂ ﬁ
WE FOUNDNO WE FOUND NO WE FOUND NO WE FOUNDNO WE FOUNDNO
LINK BETWEEN UNK GETWEEN LINK BETWEEN LINK BGETWEEN LINK BETWEEN
BEIGE JELLY UILAC JELY BLACK JELLY PEACH JELLY ORANGE JELLY
BEANS AND ANE BEANS AND ANE BEANS AND ACNE BEANS ARD ACNE BEANS AND ACNE
(P>0.05) (P>0.05) (P>0.05) (P>0.05). (P>0.05).
/ / / /

News =
GREEN JEUY |

REANS LINKED |
To ACNE.!

Use Book in Class

Use Paper in Class

Failure is a Four-Letter Word
— A Parody in Empirical Research —

Andreas Zeller
Saarland University
Saarbricken, Germany

zeller@cs.uni-saarland.de

ABSTRACT

Background: The past years have seen a surge of techniques
predicting failure-prone locations based on more or less complex
metrics. Few of these metrics are actionable, though.

Aims: This paper explores a simple, easy-to-implement method
to predict and avoid failures in software systems. The IROP
method links elementary source code features to known software
failures in a lightweight, easy-to-implement fashion.

Method: We sampled the Eclipse data set mapping defects to
files in three Eclipse releases. We used logistic regression to as-
sociate programmer actions with defects, tested the predictive
power of the resulting classifier in terms of precision and recall,
and isolated the most defect-prone actions. We also collected
initial feedback on possible remedies.

Results: In our sample set, IROP correctly predicted up to 74% of
the failure-prone modules, which is on par with the most elaborate
predictors available. We isolated a set of four easy-to-remember
recommendations, telling programmers precisely what to do to
avoid errors. Initial feedback from developers suggests that these
recommendations are straightforward to follow in practice.
Conclusions: With the abundance of software development data,
even the simplest methods can produce “actionable” results.

Thomas Zimmermann
Microsoft Research
Washington, USA

tzimmer@microsoft.com

Christian Bird

Microsoft Research
Washington, USA

chird@microsoft.com

number of developers associated with a file. As elaborate as these
approaches may be, they all share the same problem which we call
the cost of consequence: If 1 know that a module is failure-prone
because it frequently changes, should I stop changing it? If I
know failures are related to complexity, should I rewrite it from
scratch? Any of these measures induces a new risk — a risk which
may be greater than the one originally addressed.

In this paper, we take a different approach. We predict failures
from the most basic actions programmers undertake, focusing on
the actions that introduce defects as they are being made — literal-
ly at the moment the source code is typed in. Our recommenda-
tions are immediately actionable: A simple visual representation
associates actions with the likelihood of introducing defects —
warning programmers before they might hit the wrong key. Our
approach is both effective and efficient: In a case study on the
Eclipse failure set, it correctly identified up to 74% of the failure-
prone modules, which is on par with the most elaborate predictors
available. Specifically, our contributions include:
1) A novel mechanism to associate programmer actions with
software defects;
2) A predictor that is purely text-oriented, thus lightweight,
real-time, easy to implement, and language-agnostic;

Why all this is wrong Machine Learning works

Failure is a four-letter word Precision

http://www.st.cs.uni-saarland.de/softevo/irop/

Actionable Findings Use Paper in Class

Iill “iﬁ “ll 1

Failure is a Fou -Letter Word
A Parody In pirical Researcs -

B LATIMmarTare
" "

Defect correlations

http://www.st.cs.uni-saarland.de/softevo/irop/
http://www.st.cs.uni-saarland.de/softevo/irop/

