
If Your Bug Database Could Talk. . .

Adrian Schröter · Thomas Zimmermann · Rahul Premraj · Andreas Zeller
Saarland University

Saarbrücken, Germany

{schroeter|zimmerth|premraj|zeller}@st.cs.uni-sb.de

ABSTRACT
We have mined the Eclipse bug and version databases to map fail-
ures to Eclipse components. The resulting data set lists the defect
density of all Eclipse components. As we demonstrate in three sim-
ple experiments, the bug data set can be easily used to relate code,
process, and developers to defects. The data set is publicly avail-
able for download.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—version control; D.2.8 [Software Engineering]:
Metrics—Complexity measures, Process metrics, Product metrics;
D.2.9 [Software Engineering]: Management—Software quality
assurance (SQA)

General Terms
Management, Measurement, Reliability

1. INTRODUCTION
Why is it that some programs are more failure-prone than others?
This is one of the central questions of software engineering. To an-
swer it, we must first know which programs are more failure-prone
than others. With this knowledge, we can search for properties of
the program or its development process that commonly correlate
with defect density; in other words, once we can measure the ef-
fect, we can search for its causes.

One of the most abundant, widespread, and reliable sources for fail-
ure information is a bug database, listing all the problems that oc-
curred during the software life time. Unfortunately, bug databases
frequently do not directly record how, where, and by whom the
problem in question was fixed. This information is hidden in the
version database, recording all changes to the software source
code. In recent years, a number of techniques have been devel-
oped to relate bug reports to fixes [6, 3, 2]. Since we thus can relate
bugs to fixes, and fixes to the locations they apply to, we can easily
determine the defect density of a component—simply by counting
the applied fixes.

We have conducted such a work on the code base of the Eclipse
programming environment. In particular, we have computed the
mapping of classes to the number of defects that were reported in
the first six months before and after release, respectively. We have
made this Eclipse bug data set freely available, such that anyone
can use it for research purposes.

Figure 1 shows an excerpt of the data set in XML format. The
file Plugin.java had 5 failures (and thus defects) before release 3.0
(“pre”); it had one failure after release (“post”). The enclosing
package org.eclipse.core.runtime contains 43 files (“points”) and
encountered 16 failures before and one failure after release 3.0;
on average each file in this package had 0.609 failures before and
0.022 failures after release (“avg”).1

What can one do with such data? In this paper, we illustrate how
the data set can be used to address simple research questions:

• Can one predict failure-proneness from metrics like code
complexity? (Section 3)

• What does a high number of bugs found during testing mean
for the number of bugs found after release? (Section 4)

• Do some developers write more failure-prone code than oth-
ers? (Section 5)

This paper does not attempt to give definitive answers on these
questions, but merely highlights the potential of bug data when it
comes to answer these questions. We hope that the public avail-
ability of data sets like ours will foster empirical research in soft-
ware engineering, just like the public availability of open source
programs fostered research in program analysis.

2. GETTING BUG DATA
How do we know which components failed and which did not?
This data can be collected from version archives like CVS and bug
tracking systems like BUGZILLA in two steps:

1. We identify corrections (or fixes) in version archives: Within
the messages that describe changes, we search for references
to bug reports such as “Fixed 42233” or “bug #23444”. Ba-
sically every number is a potential reference to a bug report,
however such references have a low trust at first. We increase
the trust level when a message contains keywords such as
“fixed” or “bug” or matches patterns like “# and a number”.
This approach was previously used in research [3, 2].

1Since one failure can affect several files in one package, the counts
on package level cannot be aggregated from file level and therefore
are provided separately.

<defects project =”eclipse” release =”3.0”>
<package name=”org.eclipse.core.runtime”>

<counts>
<count id=”pre” value=”16” avg=”0.609” points=”43” max=”5”>
<count id=”post” value=”1” avg=”0.022” points=”43” max=”1”>

</counts>
<compilationunit name=”Plugin.java”>
<counts>
<count id=”pre” value=”5”>
<count id=”post” value=”1”>

</counts>
</compilationunit>
<compilationunit name=”Platform.java”>
<counts>
<count id=”pre” value”1”>
<count id=”post” value=”0”>

</counts>
</compilationunit>
...

</package>
...

</defects>

Figure 1: The Eclipse bug data set (excerpt).

2. We use the bug tracking system to map bug reports to re-
leases. The bug database version field lists the release for
which the bug was reported; however, since the field value
may change during the life-cycle of a bug, we only use the
first reported release. We distinguish two different kinds of
failures: pre-release failures are observed during develop-
ment and testing of a program, while post-release failures are
observed after the program has been deployed to its users.

Since we know the location of every failure that has been fixed, it
is easy to count the number of defects per location and release—
resulting in the data set of Figure 1.

3. THE CODE FACTOR
So where do these bugs come from? One hypothesis is that some
code is more failure-prone than other because it is more complex.
Complexity metrics attempt to quantify this complexity, mapping
code to metric values. In earlier work on mining Microsoft bug
databases [4], we could not find a single metric that would correlate
with bug density across multiple projects. Using the Eclipse bug
data set, we can easily check this result by correlating, for each
class, complexity metrics with the number of bugs.

Chidamber and Kemerer [1] proposed several code metrics that
capture the complexity of a class. Table 1 lists the correlations
of each of these metrics (gathered using the tool ckjm [7]) with pre-
release and post-release failures. Albeit weak, the most strongly
correlated features2 to pre-release and post-release failures include
RFC (Response for a Class), CBO (Coupling Between Object
classes) and WMC (Weighted Methods per Class).

These results are in line with our previous research at Microsoft [4],
thus suggesting that either new or a combination of existing metrics
need to be explored to study the relationship between the complex-
ity of code to the presence of bugs in a given class. One important
predictor might be the domain of a component—in related work,
we could predict the failure-proneness of an Eclipse package from
its imports alone [5].
2For detailed explanations of these code metrics, the reader is re-
quested to refer to [1].

Number of Pre-release failures Post-release failures

Pearson Spearman Pearson Spearman

Pre-release failures 1.00 1.00 0.26 0.19
Post-release failures 0.26 0.19 1.00 1.00
WMC 0.32 0.31 0.16 0.11
DIT 0.07 0.11 0.00 0.01
NOC 0.00 0.04 0.00 0.02
CBO 0.36 0.40 0.23 0.12
RFC 0.39 0.38 0.21 0.11
LCOM 0.13 0.23 0.03 0.07
CA 0.09 0.05 0.02 0.04
NPM 0.20 0.18 0.11 0.09

Table 1: Correlation of pre-release and post-eelease failures
with code metrics

Number of Pre-release failures Post-release failures

Pearson Spearman Pearson Spearman

Pre-release failures 1.00 1.00 0.30 0.20
Post-release failures 0.30 0.20 1.00 1.00
Changes 0.34 0.44 0.14 0.15
Changes since 2.1 0.47 0.56 0.19 0.17
Authors 0.30 0.30 0.15 0.13
Authors since 2.1 0.41 0.49 0.21 0.17

Table 2: Correlation of process measurements with failures
[Eclipse 3.0].

4. THE PROCESS FACTOR
Any problem that raises after product release indicates a defect
not only in the product, but also in its process: Clearly, the de-
fect should have been caught by quality assurance first. In practice,
this may mean that the product was not tested enough. Therefore,
we could turn to the testing process as a cause for the problem.

Failures during testing are recorded as pre-release failures in bug
tracking systems. Other measures for the development process are
the number of changes and authors of a file. Tables 2 shows how
these measurements correlate with each other. For pre-release fail-
ures the correlation is highest for the number of changes (0.47) and
authors (0.41) since release 2.1. This is not surprising, since every
pre-release failure also resulted in at least one change (namely the
fix). Post-release failures show almost now correlation with process
measurements, except for pre-release failures where the correlation
is 0.30. To summarize, it is difficult to predict post-release failures
solely from process measurements.

5. THE HUMAN FACTOR
As a third and final example of using the Eclipse bug data set, let
us turn to the ultimate cause of errors: humans. Unfortunately, data
from one project alone is not enough to judge managerial decisions.
However, we can turn to the developers and examine whether spe-
cific developers are more likely to produce bugs than others.

Tables 3 and 4 summarize pre-release and post-release bug patterns
introduced by developers. In both tables, the first column lists the
names of developers3 and the second column lists the number of
files owned by the developer. The latter was derived by attributing

3Names have been changed to maintain anonymity.

Failure-densities

Developer No. of Files PrRF / 1000 lines Avg. PrRF / File

Frederick 320 16.42 2.81
Peter 97 14.70 1.96
Isaac 178 9.95 1.69
Mary 392 9.35 1.84
London 63 9.18 1.41
David 88 8.77 1.64

Harry 55 2.55 1.18
Tommy 92 2.20 0.35
King 162 2.18 0.36
Charles 63 1.82 0.43
Nellie 60 1.14 0.32
Robert 58 0.47 0.17

Table 3: Pre-release failures by developer

the file to the developer(s) that owned most number of lines of code
in a file and only those developers that owned 50 or more files were
included in the analysis. Columns 3 and 4 record the number of
pre-release and post-release failures per 1000 lines of code and the
average number of pre-release and post-release failures per file. For
brevity, only the first and last six entries of each table are reported.

In Table 3, one observes substantial differences in pre-release fail-
ure densities in files (indicated by Columns 3 and 4) between dif-
ferent developers. However, such results should be carefully inter-
preted. We suspect that the results do not indicate developer com-
petency but instead, reflect the complexity of code they are work-
ing on. Hence, developers with lesser pre-release or post-release
failures are not necessarily better developers that the others. Our
stance is further supported by there being no clear relation between
the number of files owned by a developer and the corresponding
failure densities observed since experienced and better program-
mers may own more files.

Likewise, Table 4 again indicates a high variance in failure den-
sity in files owned by different developers, although the densities
are smaller in comparison to pre-releasure failures. It is note-
worthy that developer Frederick lists in Table 3 as the owner of
the files with highest pre-release failure density, while in Table 4,
the same developer is the owner of nearly failure free post-release
files. In contrast to Frederick, files owned by Tommy are less pre-
release failure prone while the post-release failures are consider-
ably higher.

Hence, different developers are likely to introduce different num-
ber of failures into the code for manifold possible reasons. We con-
sider such information to be only the tip of the iceberg indicating
directions for future investigations pertaining to the human factor
in software development.

6. CONCLUSION AND CONSEQUENCES
Where do bugs come from? By mapping failures to components,
the Eclipse bug data set offers the opportunity to research these
questions. Our initial studies, as shown in this paper, do not give
a definitive answer. However, they raise obvious follow-up ques-
tions and indicate the potential of future empirical research based
on such bug data. To support this very research, we are happy to
make the bug data set publicly available.

Failure-densities

Developer No. of Files PoRF / 1000 lines Avg. PoRF / File

Jack 54 0.71 0.13
London 63 0.52 0.08
Queen 111 0.51 0.20
Edward 55 0.41 0.04
Samuel 67 0.39 0.12
Tommy 92 0.34 0.05

Alfred 152 0.03 0.01
Oliver 106 0.03 0.02
Frederick 320 0.02 0.00
King 162 0.00 0.00
Benjamin 119 0.00 0.00
George 52 0.00 0.00

Table 4: Post-release failures by developer

Overall, we would like this set to become both a challenge and
a benchmark: Which factors in programs and processes are the
ones that predict future bugs, and which approach gives the best
prediction results? The more we learn about past mistakes, the
better are our chances to avoid these mistakes in the future—and
build better software at lower cost.

For access to the Eclipse bug data set, as well as for ongoing infor-
mation on the project, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments. Our work on mining software reposito-
ries is funded by the Deutsche Forschungsgemeinschaft, grant
Ze 509/1-1. Thomas Zimmermann is additionally funded by the
DFG-Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”.

7. REFERENCES
[1] S. R. Chidamber and C. F. Kemerer. A metrics suite for object

oriented design. IEEE Trans. Software Eng., 20(6):476–493,
1994.

[2] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth.
Hipikat: A project memory for software development. IEEE
Transactions on Software Engineering, 31(6):446–465, June
2005.

[3] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In Proc. 10th Working
Conference on Reverse Engineering (WCRE 2003), Victoria,
British Columbia, Canada, Nov. 2003. IEEE.

[4] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proceedings of the International
Conference on Software Engineering (ICSE 2006). ACM,
May 2006.

[5] A. Schröter, T. Zimmermann, and A. Zeller. Predicting
failure-prone components at design time. In Proceedings of
the 5th International Symposium on Empirical Software
Engineering (ISESE 2006). ACM, Sept. 2006.

[6] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? In Proc. International Workshop on Mining
Software Repositories (MSR), St. Louis, Missouri, U.S., May
2005.

[7] D. Spinellis. Code Quality: The Open Source Perspective.
Addison Wesley, 2006.

http://www.st.cs.uni-saarland.de/softevo/

	Introduction
	Getting Bug Data
	The code factor
	The process factor
	The human factor
	Conclusion and Consequences
	References

