
Mining Additions of Method Calls in ArgoUML

Thomas Zimmermann1 Silvia Breu2 Christian Lindig1 Benjamin Livshits3

1 Dept. of Computer Science
Saarland University

Saarbrücken, Germany

{tz, cl}@st.cs.uni-sb.de

2 University of Cambridge
Computer Laboratory

Cambridge, UK

silvia@ieee.org

3 Dept. of Computer Science
Stanford University

Stanford, USA

livshits@cs.stanford.edu

ABSTRACT
In this paper we refine the classical co-change to the addition of
method calls. We use this concept to find usage patterns and to
identify cross-cutting concerns for ArgoUML .

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—version control; D.2.9 [Management]: Software
configuration management

General Terms
Management, Measurement

1. INTRODUCTION
One of the most frequently used techniques for mining version
archives isco-change. We specialize this concept to theaddition
of method calls:

Two method calls that are added together in the
same transaction, are related to each other.

We use the concept ofco-additionsfor the following two tasks:

• Find usage patterns,such as “the methodscontainsNode
andcontainsEdge are frequently called together.”

• Identify cross-cutting concerns,such as “the first statement
of every method calls theinfo method to log the method
name.”

In Section 2 we will describe our input data and the tools we used;
we present our results for usage patterns in Section 3 and for cross-
cutting concerns in Section 4.

2. INPUT DATA AND TOOLS
We applied our mining techniques to the ArgoUML repository that
was supplied for the MSR challenge [4]. We restricted our analysis
to thesrc new directory that contains the actual source code of
ArgoUML . All data was collected with an extended version of the
eROSEplug-in [2] for theECLIPSEenvironment. For mining, we
usedSQL queries and the Xelopes data mining library [5].

To reconstruct transactions we use thesliding windowapproach
with a window size of 200 seconds. For each transaction we com-
pute the set ofnewly added method calls. For this we compare the

Copyright is held by the author/owner.
MSR’06,May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

Pattern Count

localize(2) addField(2) 57
localize(1) lookupIcon(1) 45
addCaption(4) addField(4) 43
addButton(1) lookupIcon(1) 41
localize(1) addField(2) 28
findFigsForMember(1) findType(1) 23
addModelEventListener(2) removeModelEventListener(2) 19
addModelEventListener(3) removeModelEventListener(3) 13
addFocusListener(1) addKeyListener(1) 12
hasMoreElements(0) nextElement(0) 12
error(2) debug(1) 11
addSeperator(0) addField(2) 10
info(1) isInfoEnabled(0) 10
max(2) isDisplayed(0) 9
containsNode(1) containsEdge(1) 8

Table 1: Usage patterns for ArgoUML .

total set of method calls from the actual and the previous transac-
tion. The total set of method calls is computed for each transaction
by traversing the abstract syntax trees of all affected files.

For a call expressionc1().c2(). . . . cn() we only take the final
method callcn() into account. Since we only analyze one file at a
time, the full signature for methodcn isn’t available. Instead, we
augment it with the number of parameters, as shown in Table 1. An-
alyzing single files rather than complete snapshots makes our pre-
processing cheap, as well as platform- and compiler-independent.

3. MINING USAGE PATTERNS
Our approach is based on an observation: Method calls that are
added to source code simultaneously often represent a pattern. To
identify such patterns, we performedfrequent pattern miningon
the set of added method calls.

We focused our analysis onintra-proceduralpatterns: patterns
that occur within a single method. In terms of mining this means
that we do not use complete transactions as input but group transac-
tions by the method in which a call was added. Furthermore, we ig-
nored calls to frequently usedJAVA methods, such asiterator ,
hasNext , andtoString , since patterns involving these meth-
ods are well-known.

Table 1 shows the patterns we mined, sorted by decreasing fre-
quency. Actual usage patterns are printed in boldface, thus the pre-
cision is 40%. Below we discuss a few examples.

• addModelEventListener ,
removeModelEventListener
This pattern is used when elements are changed. First, the
listener is removed for the old element, then the element
is changed, and finally the listener is added for the new
element.

if (Model.getFacade().isAElement(target)) {
Model.getPump().removeModelEventListener

(this , target);
}
target = t;
if (Model.getFacade().isAElement(target)) {

Model.getPump().addModelEventListener
(this , target, "name");

}

• addFocusListener , addKeyListener
This pattern indicates a relationship between the focus and a
key listener: A user may enter text only to graphical elements
that are in focus.

• isInfoEnabled , info
Sometimes the return value ofisInfoEnabled is checked
before theinfo method is called.

if (LOG.isInfoEnabled()) {
LOG.info("Removing feature " + feature);

}

• containsNode , containsEdge
These two methods are frequently called with the same argu-
ments to check whether an edge is valid; if not, an error is
logged.

if (!containsNode(destModelElement)
&& !containsEdge(destModelElement)) {

LOG.error("some message");
return false ;

}

4. MINING CROSS-CUTTING CONCERNS
Programs can be modularized in only one way at a time. Aspect-
oriented programming (AOP) remedies this by factoring out as-
pects and weaving them back in a separate processing step. For
existing projects to benefit from AOP, these cross-cutting concerns
must be identified first. This task is calledaspect mining.

Our hypothesis is thatnot all cross-cutting concerns exist from
the beginning, but some emerge over time. By analyzing where de-
velopers add code to a program, we can identify cross-cutting con-
cerns. Our approach searches transactions for sets of locationsL
where at each location calls to a set of methodsM have been added.
In other words: The calls to methodsM are spread throughout
source code locationsL. We call such a pair(M, L) anaspect can-
didate. In order to identify aspect candidates that actually cross-cut
a considerable part of a program, we ignore all candidates(M, L)
where|L| < 7 or |M | · |L| < 20. This means that each aspect can-
didate has to cross-cut at least7 locations, and it has to comprise at
least3 method calls that got added.

For ArgoUML we identified 230 aspect candidates in 73 out
of 6,286 transactions. Below we discuss a few examples.

Logging. We observed that the transaction with the log message
“Replaced deprecated log4j Category with Logger.”inserted
several calls to methodsdebug , error , andwarn . The
last two methods turned out to be false positives. However,
for debug we found several cross-cutting calls that logged
the method names as shown in the following example:

public void doAction(int oldStep) {
LOG.debug("doAction " + oldStep);
...

}

This logging could have easily been realized with an aspect.

Illegal arguments. The transaction with the log message“Made
the methods look a little more alike. Collected the numer-
ous IllegalArgument calls in methods. [. . .]”inserted many
cross-cutting calls toillegalArgument or one of its
variants. These calls are always last in the method body:

public String getValueOfTag(Object handle) {
if (handle instanceof MTaggedValue) {
return ((MTaggedValue) handle).getValue();
}
return illegalArgumentString(handle);

}

In this case the methodillegalArgumentString
throws anIllegalArgumentException and returns a
null object. Most of the 262 calls toillegalArgument
methods could have been realized as aspects.

Instance of a thing. The transaction with the log message“Re-
place every single instance of something instanceof MThing
with ModelFacade.isAThing(something)”inserted many
isA calls to the source code.isA methods look as follows:

public boolean isAClassifier(Object handle) {
return handle instanceof MClassifier;

}

There exist 111 methods of the above form; these methods
could have easily been generated with aspects.

In our previous work [1] we showed that mining cross-cutting con-
cerns from version archives has a high precision, for the top 20
aspect candidates ofECLIPSEwe reached up to 90%. Measuring
recall requires knowing all aspect candidates, which is typically
only possible for a few small benchmark projects.

5. CONCLUSION
Co-addition of method callsidentifies usage patterns; a usage pat-
tern may be actually a cross-cutting concern when all locations
where calls were added call the same set of locations. Both usage
pattern and cross-cutting concerns can be identified by mining ver-
sion archives, as demonstrated by the ones we found in ArgoUML .

Usage patterns and cross-cutting concerns have several benefits.
Mining usage patterns can locate defects in software and supports
program understanding. Knowing cross-cuttings concerns helps to
reduce maintenance effort and is the prerequisite for refactoring a
legacy system into an aspect-oriented design.

For a more detailed description of our mining approaches, we re-
fer to our publications on finding usage patterns [3] and identifying
cross-cutting concerns [1].

6. REFERENCES
[1] S. Breu and T. Zimmermann. Mining Aspects from History.

Submitted for publication.
[2] eROSE. Guiding Programmers in Eclipse.

http://www.st.cs.uni-sb.de/softevo/erose/.
[3] V. B. Livshits and T. Zimmermann. Dynamine: Finding

Common Error Patterns by Mining Software Revision
Histories. InProc. Europ. Software Engineering Conf./ACM
SIGSOFT Symp. on the Foundations of Software Engineering,
2005.

[4] MSR. Mining Challenge 2006.
http://msr.uwaterloo.ca/challenge/.

[5] Prudsys AG. XELOPES Library.
http://www.prudsys.com/Produkte/Algorithmen/Xelopes/.

http://www.st.cs.uni-sb.de/softevo/erose/
http://msr.uwaterloo.ca/challenge/
http://www.prudsys.com/Produkte/Algorithmen/Xelopes/

	Introduction
	Input Data and Tools
	Mining Usage Patterns
	Mining Cross-Cutting Concerns
	Conclusion
	REFERENCES -9pt

