
Mining Workspace Updates in CVS

Thomas Zimmermann

tz@acm.org

Department of Computer Science, Saarland University, Saarbrücken, Germany

Abstract

The version control archive CVS records not only all
changes in a project but also activity data such as when
developers create or update their workspaces. Further-
more, CVS records when it has to integrate changes be-
cause of parallel development. In this paper, we analyze the
CVS activity data of four large open-source projects GCC,
JBOSS, JEDIT, and PYTHON to investigate parallel develop-
ment: What is the degree of parallel development? How
frequently do conflicts occur during updates and how are
they resolved? How do we identify changes that contain
integrations?

1. Introduction

The version control system CVS allows concurrent devel-

opment and is widely adopted in the open-source commu-

nity, especially for large projects like ECLIPSE, GCC, or

MOZILLA. Therefore, recent research used CVS to inves-

tigate change data, that is, who changed what, why, when,

and how [8].

Beside change data, CVS also records activity data that

contains additional events: When did developers update

their workspaces and did this update happen smoothly with-

out any incidents? In particular, has another developer

meanwhile changed the same file? And if so, could CVS

integrate1 the changes automatically or did the developer

have to resolve the conflicts manually? Such events are

interesting as they point out parallel development: What is

the degree of parallel development? How frequently do con-

flicts occur during updates and how are they resolved? How

do we identify changes that contain integrations?

We introduce in Section 2 the CVS history command on

which we base our case studies of four large open-source

projects: the GNU Compiler Collection GCC, the applica-

tion server JBOSS, the editor JEDIT, and the PYTHON inter-

preter. In Sections 3 and 4 we address the above questions.

1We prefer the term integrate over the CVS terminology merge to

avoid confusion with the merge of branches.

In Section 5 we discuss the limitations of activity data; Sec-

tion 6 presents related work and Section 7 concludes the

paper with future work.

2. CVS History in a Nutshell

In addition to change data, CVS records activity data that

is when did developers use which commands with what pa-

rameters. Currently, CVS tracks the activities of the follow-

ing commands in a special file, called the history file:

• The checkout command2 (O) creates a workspace in

which developers can make their changes to a module.

• The release command (F) removes a workspace and

issues a warning in case a change is not yet committed.

Note that it is possible to remove workspaces without

CVS interaction.

• The update command synchronizes a workspace. It

retrieves all changes since the last checkout or update

and creates new files (U), replaces outdated files (both

U and P)3, and removes files that have been deleted in

the repository (W). If a file has been changed in both

the workspace and the repository, CVS tries to integrate

the changes automatically (G for smooth integration, C

for integration with conflicts).

• The commit command submits changes made by a de-

veloper to the repository. Changes can modify (M),

add (A), or remove (R) files.

• The rtag command (T) assigns symbolic names, called

tags, to revisions in the repository. The tag command

that works on the revisions in the workspace rather

than on the repository, is not tracked in the history.

• The export command (E) creates a copy of a

workspace without the administrative CVS files. This

is useful for preparing releases.

2The history of CVS distinguishes the commands with a single capital

letter. For convenience we will reuse them throughout the paper.
3The U update transfers the complete new revision; in contrast, the P

update only transfers the differences to the new revision, i.e., a patch that

is applied to the revision in the workspace. CVS chooses automatically

between U and P updates based on the size of files and differences.

O 2004-06-13 05:45 +0000 mary foo =foo= <remote>/*
U 2004-06-15 06:56 +0000 mary 1.14 Bar.java foo == <remote>
P 2004-06-17 07:22 +0000 mary 1.15 Bar.java foo == <remote>
M 2004-06-19 07:50 +0000 mary 1.16 Bar.java foo == <remote>
C 2004-06-21 07:48 +0000 john 1.16 Bar.java foo == <remote>
G 2004-06-22 08:48 +0000 kate 1.16 Bar.java foo == /home/kate/foo

Mary

Kate

John

checkout
update

1.14
update

1.15
commit

1.16

smooth integration
 update 1.16

integration with conflicts
 update 1.16

time

Figure 1. A sample output for CVS history

While the first four commands are used by all developers,

the last two commands, rtag and export, are used mainly by

developers to prepare releases.

We access the history file with the CVS history com-

mand. Figure 1 shows a sample output. For each record

CVS returns a line that tells us that the developer called at

timestamp the command that is indicated by the single capi-

tal letter type. Additionally, we get the location of the devel-

oper’s workspace and the affected module, file, and repos-
itory. The specific syntax depends on the commands and

further information may be included [9].

In Figure 1, the history snippet tells us that Mary first

created a workspace (O), then synchronized Bar.java two

times (U and P), and finally submitted changes on Bar.java
to the repository (M). Meanwhile, Kate and John also have

changed Bar.java; thus, during their next update CVS inte-

grated their changes with the changes of Mary. For Kate’s

changes, the automatic integration worked fine (G), but the

changes of John interfered with the changes of Mary and

resulted in conflicts (C).

In the remainder of this paper, we will analyze entires for

commit and update to measure the degree of concurrency.

3. A First Investigation of Concurrency

We investigated the CVS histories for four large open source

projects: GCC, JBOSS, JEDIT, and PYTHON. Unfortunately,

the implementation of CVS did not record updates correctly

until version 1.11.7 which has been released on September

29, 2003.4 For this reason, we started our investigation for

a project with the first recorded update (see Table 1).

3.1. Degree of Parallel Development

Table 2 contains a breakdown of the update commands. We

use them to measure the parallel development within files:

Integration Rate =
G + C

W + U + P + G + C
(1)

4The release 1.11.7 of CVS fixed “a long-standing bug that prevented

most client/server updates from being logged in the history file”; it also

introduced the logging of updates that are done via a patch (P).

Project Recorded since Investigated Period

GCC 2004-09-16 2004-09-16 to 2005-02-02

JEDIT 2000-01-13 2004-01-12 to 2005-02-03

JBOSS 1999-10-13 2004-01-12 to 2005-02-09

PYTHON 2000-05-12 2004-01-12 to 2005-02-05

Table 1. Investigated Projects

Conflict Rate =
C

G + C
(2)

The integration rate measures the percentage of updates

which were integrated with local user changes. It is very

low for all projects (between 0.15% and 0.54%, see Ta-

ble 2(a)). This indicates that parallel changes within sin-

gle files are rare and have only little impact on the devel-

opment process. However, the conflict rate that measures

the frequency of conflicts is between 22.75% (for GCC) and

46.62% (for JBOSS). These rather high values indicate that

parallel changes frequently affect the same locations within

a file or cannot be integrated by CVS.

Additionally, we measured how many commits led to

an integration (see Table 2(b)).5 The value is lowest for

JBOSS; in GCC and JEDIT approximately every 11th com-

mit led to an integration, for PYTHON even every 5th com-

mit. If we focus on conflicts, the order of projects remains

unchanged. This suggests that the degree of parallel devel-

opment is highest in PYTHON.

3.2. Self-integrations and Self-conflicts

Integrations are not always caused by other developers.

Many developers work at different places (home, office)

or on different branches and use CVS to synchronize their

changes. An interesting phenomenon are self-integrations
(or in the presence of conflicts self-conflicts), that are up-

dates where CVS integrates local changes of a developer

with a commit that has been made by the same developer.

Table 2(c) shows that self-integrations and self-conflicts oc-

curred in all investigated projects. They are a good indicator

that developers have several workspaces at the same time.

However, they show only the presence not the frequency of

simultaneous workspaces.

4. How Concurrency is Resolved

After CVS integrates changes, developers can decide

whether to commit or discard the integrated file. In this

section, we will address how integrations are resolved and

how to identify revisions that include integrated changes.

5This number is smaller than the sum of G and C because one commit

can lead to several integrations.

GCC JBOSS JEDIT PYTHON

General statistics
Number of developers 166 91 56 57

Number of recorded events 7,776,010 2,326,323 95,800 662,002

– ignored (anonymous) 3,010,563 82,846 2,324 1,779

– investigated 4,765,447 2,243,477 93,476 660,223

Breakdown of updates (W+U+P+G+C) 4,662,843 1,339,201 88,323 650,487

File was integrated without conflicts (G) 9,285 1,066 361 1,743

File was integrated with conflicts (C) 2,735 931 116 1,080

Concurrency
(a) Integration rate (G+C)/(W+U+P+G+C) 0.26% 0.15% 0.54% 0.43%

Conflict rate C/(G+C) 22.75% 46.62% 24.32% 38.26%

(b) Commits (only M and A) that led to integrations (G or C) 9.06% 3.89% 9.03% 20.20%

Commits (only M and A) that led to conflicts (C) 2.84% 1.86% 2.58% 7.82%

(c) Self-integrations (G caused by a commit of the same developer) 1,373 314 71 145

Self-conflicts (C caused by a commit of the same developer) 307 396 41 56

Table 2. Breakdown of commands. For a detailed breakdown, we refer to our technical report [9].

4.1. Resolution of Integrations

If a developer has made local changes to a file which has

meanwhile changed in the repository, CVS integrates these

changes with the other changes during the next update. We

investigated what developers do with such integrated files:

Do they commit their changes to the repository? Or, do they

discard their changes by deleting the file and performing

a second update? To answer these questions, we looked

at the record that succeeded an integration. For instance

the sequence GM means that a smooth integration (G) was

followed by a commit (M). Table 3 shows the results for the

following categories:

Changes were committed (M). The sequences GM or

CM indicate that the integrated changes were com-

mitted to the repository. Between 8.3% and 31.8% of

all integrations without conflicts are committed to the

repository; for integration with conflicts these values

are slightly lower between 4.4% and 24.6%.

Changes were discarded (UP). The sequences GU or CU

indicate that the developer discarded the integrated

changes and replaced the file with a fresh version from

the repository; the sequences GP or CP indicate that

the local changes were discarded manually without

deleting the file. In every investigated project more

than 30% of all integrations are discarded; this per-

centage is higher when conflicts occurred.

Changes were kept (CG). The sequences GG, GC, CG,

and CC indicate that the local changes were neither

discarded nor directly committed to the repository, i.e.,

Without conflicts (G) With conflicts (C)

Project (M) (UP) (GC) ($) (M) (UP) (GC) ($)

GCC 11.8 44.8 22.8 20.6 24.6 38.4 26.0 11.1

JBOSS 31.8 34.4 11.6 22.2 14.3 68.5 5.7 11.6

JEDIT 8.6 58.7 27.4 5.3 10.3 57.8 9.5 22.4

PYTHON 8.3 49.6 30.8 11.2 4.4 57.5 35.4 2.7

Table 3. How integrations are resolved (in %).

they were carried over to the next update in which an-

other integration took place.

Others ($). The sequences G$ and C$ are integrations

where we could not identify a next record, i.e., the inte-

gration was the last record for this file by the developer.

4.2. Identification of Integrated Revisions

In order to locate revisions that contain integrated changes,

we searched for activity patterns of the form [GC]+M, i.e.,

a sequence of integrations [GC]+ that is followed by a com-

mit operation M for a revision r, all by the same developer.

Furthermore, we disallowed any other operation between

the integrations and the commit because then it would un-

likely that r contains any integrated changes. If the se-

quence of integrations [GC]+ contains a conflict (the posi-

tion of C does not matter) we say that the revision r contains

integrated changes with a conflict, otherwise we say without
conflict. In total, we located 2,307 revisions with integrated

changes [9].

5. Limitations

• The CVS history has only limited functionality if it is

used on a CVS server (most distributed projects use

it this way). For instance, until version 1.11.7 the

record types U and P were not logged. Furthermore,

the workspace is logged relative to the repository. This

makes it almost impossible to distinguish between dif-

ferent workspaces of one developer.

• Only a subset of the commands is recorded in the CVS

history. For instance, the import and join commands

are not yet recorded. The latter would be valuable to

precisely detect the merge of branches without heuris-

tics like the one proposed by Fischer et al. [1].

• Until version 1.11.7 of CVS, developers could suppress

the logging of commands with the -l option. This

means that the data in the history may be incomplete

for older entries.

• The history data of CVS is only available for a few

projects. We had difficulties finding projects for our

case studies.

6. Related Work

To our knowledge this is the first work that analyzes CVS

activity data as obtained from CVS history. A similar case

study on change data was performed by Perry et al. [4] who

investigated parallel changes on different levels. In contrast

to their work, we could not observe a high degree of par-

allelism on within single files. Voinea and Telea studied

how developers interact with each other via changing simi-

lar files in the context of CVS and Subversion [7, 6].

The high percentage of integrations with conflicts re-

flects a shortcoming of CVS and underpins the need for tools

like Palantı́r which was developed by Sarma, Noroozi, and

van der Hoek [5]. Palantı́r continuously shares information

about changes. This way it increases the awareness among

developers and can reduce conflicts.

Research has been aware of the problem of conflicts for

a long time and several solutions were proposed to handle

source code merging in a more syntax and semantic-aware

way [3]. Unfortunately, only few of them are used in today’s

version control systems.

7. Conclusions and Consequences

We investigated CVS activity data of four large open source

projects. Our results are as follows:

• We observed that parallel development within the same

file has only little impact on other developers (between

0.26% and 0.54% of all updates).

• CVS can integrate many changes but not all; in our case

studies between 22.75% and 46.62% of all integrations

resulted in a conflict.

• Developers work with different workspaces, e.g., at

work and at home. Between 7.3% and 26.4% of all

integrations are caused by this circumstance.

• We can identify revisions that contain integrated

changes by analyzing the sequence of updates and

commits.

CVS activity data is a valuable supplement to other project

data. In future work we plan to assess the risk of inte-

grations by correlating with bug-introducing changes [2].

One can use the CVS history to distinguish commits with-

out integration, with smooth integration, and with conflicts.

One would guess that commits that succeed a conflict are

more risky, but we expect the opposite because conflicts are

(hopefully) inspected by developers.

Acknowledgments. Thanks to Holger Cleve, Christian Lindig,

Stephan Neuhaus, and the anonymous reviewers for their help-

ful suggestions on earlier revisions of this paper. This research

was funded by a fellowship from the Graduiertenkolleg “Leis-

tungsgarantien für Rechnersysteme” sponsored by the Deutsche

Forschungsgemeinschaft.

References

[1] M. Fischer, M. Pinzger, and H. Gall. Populating a release his-

tory database from version control and bug tracking systems.

In Proc. International Conference on Software Maintenance
(ICSM 2003), Amsterdam, Netherlands, Sept. 2003. IEEE.

[2] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead Jr. Au-

tomatic identification of bug-introducing changes. In Proc.
IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 81–90, Sept. 2006.

[3] T. Mens. A state-of-the-art survey on software merging. IEEE
Transactions on Software Engineering, 28(5):449–462, 2002.

[4] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes

in large-scale software development: an observational case

study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 10(3):308–337, 2001.

[5] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantı́r: Raising

awareness among configuration management workspaces . In

Proc. 25th International Conference on Software Engineering
(ICSE), pages 444–454, Portland, Oregon, May 2003.

[6] L. Voinea and A. Telea. Cvsgrab: Mining the history of large

software projects. In EUROVIS - Eurographics/IEEE VGTC
Symposium on Visualization, pages 187–194, 2006.

[7] L. Voinea and A. Telea. Multiscale and multivariate visual-

izations of software evolution. In Proc. of ACM Symposium
on Software Visualization (SoftVis), pages 115–124, 2006.

[8] T. Xie. Bibliography on mining software engineering data.

http://ase.csc.ncsu.edu/dmse/. Retrieved in Feb 2007.

[9] T. Zimmermann. The landscape of concurrent development.

Technical report, Universität des Saarlandes, Saarbrücken,

Germany, August 2006.

