
Program Analysis: A Hierarchy

Andreas Zeller
Lehrstuhl f̈ur Softwaretechnik

Universiẗat des Saarlandes, Saarbrücken, Germany
zeller@acm.org

Abstract

Program analysis tools are based on four reasoning
techniques: (1) deduction from code to concrete runs,
(2) observation of concrete runs, (3) induction from obser-
vations into abstractions, and (4) experimentation to find
causes for specific effects. These techniques form a hier-
archy, where each technique can make use of lower levels,
and where each technique induces capabilities and limits of
the associated tools.

1. Introduction

Reasoning about programs is a core activity of any pro-
grammer. To answer questions like “what can happen?”,
“what should happen?”, “what did happen?”, and “why did
it happen?”, programmers use four well-known reasoning
techniques:

Deduction from an abstraction into the concrete—for in-
stance, analyzing program code to deduce what can or
cannot happen in concrete runs.

Observation of concrete events—e.g. tracing, monitoring
or profiling a program run or using a debugger.

Induction for summarizing multiple observations into an
abstraction—an invariant, for example, or some visu-
alization.

Experimentation for isolating causes of given effects—
e.g. narrowing down failure-inducing circumstances
by systematic tests.

These reasoning techniques form a hierarchy (Figure1),
in which each “outer” technique can make use of “inner”
techniques. For instance, experimentation uses induction,
which again requires observation; on the other hand, deduc-
tion cannot make use of any later technique.

The interesting thing about this hierarchy is that the very
same reasoning techniques are also the foundations of auto-
matedprogram analysistools. In fact, each of the reasoning
techniques induces a specific class of tools, its capabilities
and its limits. This is the aim of this paper: to provide a
rough classification of the numerous approaches in program
analysis—especially in dynamic analysis—, to show their
common benefits and limits, and to show up new research
directions to overcome these limits.

2. Deduction

Deduction is reasoning from the general to the particular;
it lies at the core of all reasoning techniques. In program
analysis, deduction is used for reasoning from the program
code (or other abstractions) to concrete runs—especially for
deducing what can or cannot happen. These deductions take
the form of mathematical proofs: If the abstraction is true,
so are the deduced properties.

Since deduction does not require any knowledge about
the concrete, it is not required that the program in question
is actually executed—the program analysis isstatic.Static

Deduction

Observation

Induction

Experimentation

Figure 1. A hierarchy of reasoning techniques

http://www.st.cs.uni-sb.de/~zeller/
http://www.st.cs.uni-sb.de/
mailto:zeller@acm.org

program analysis was originally introduced in compiler op-
timization, where it deduces properties like

• Can this variable influence that other variable? (if not,
one can parallelize their computation)

• Can this variable be used before it is assigned? (if not,
there is probably an error)

• Is this code ever executed? (if not, it can be ignored)

Deduction techniques are helpful in program understand-
ing, too—especially for computingdependenciesbetween
variables. A variablev′ at a statements′ is dependent on
a variablev at a statements if altering v at s can alter the
value ofv′ at s′; in other words, the value ofv at s is apo-
tential causefor v′ at s′. By tracing back the dependencies
of some variablev, one obtains asliceof the program—the
set of all statements that could have influencedv [13, 14].

As an ongoing example, consider the following piece of
C code. Ifp holds, a is assigned a value, which is then
printed into the stringbuf .

3 char *format = "a = %d";
4 if (p)
5 a = compute value();
6 sprintf(buf, format, a);

Let us assume that after executing this piece of code, we
find thatbuf contains"a = 0" . However,a is not sup-
posed to be zero. What’s the cause of"a = 0" in buf ?

By deduction, we find that the stringbuf is set by the
sprintf function which takesa as an argument; hence,
buf depends ona at line 5. Likewise,a depends onp at
line 4 (since alteringp may altera) and on the result of
compute value() . To find out whya is zero, we must
trace back these dependencies in the slice. More impor-
tant than the slice itself are the statementsnot included in
the slice—e.g. a statement likec = d + e; The analy-
sis proves that these cannot influencea or buf in any way;
hence, they can be ignored for all further analysis.

Unfortunately, proving that executing some statement
cannot influence a variable is difficult. Parallel or dis-
tributed execution, dynamic loading or reconfiguration of
program code, unconstrained pointer arithmetic, or use of
multiple programming languages are obstacles that are hard
to handle in practice.

The biggest obstacle for deduction, though, isobscure
code: If we cannot analyze some executed code, anything
can happen. Thesprintf function above, is typically part
of the C runtime library and not necessarily available as
source code. Only if we assume thatsprintf works as
expected can we ensure thatbuf depends ona.

3. Observation

Observation allows the programmer to inspect arbitrary
aspects of an individual program run. Since an actual run
is required, the associated techniques are calleddynamic.
Observation brings in actualfactsof a program execution;
unless the observation process is flawed, these facts cannot
be denied.

For observing program runs, programmers and re-
searchers have created a big number of tools, typically
called “debuggers” because they are mainly used for de-
bugging programs. A debugger allows to inspect states at
arbitrary events of the execution; advanced tools allow a
database-like querying of states and events [3, 12].

The programmer uses these tools tocompareactual facts
with expected facts—as deduced from an abstract descrip-
tion such as the program code. This comparison with ex-
pected facts can also be conducted automatically within the
program run, using specialassertioncode that checks run-
time invariants. Specific invariant checkers have been de-
signed to detect illegal memory usage or array bound viola-
tions.

By combining slicing with observation, one obtainsdy-
namic slicing: a slice that is valid for a specific execution
only, and hence more precise than a slice that applies for all
executions [1, 6, 11]. In principle, a dynamic slicing tool
does not require source code as long as it can intercept all
read/write accesses to program state and thus trace actual
dependencies.

As an example of dynamic slicing, assume that after the
execution of the code above, we find thatbuf contains
"a = 0" and thatp is true. Consequently, a dynamic slice
tool can deduce from the code that the value ofa can only
stem fromcompute value() ; an earlier value ofa can-
not have any effect onbuf (that is, unlessa is being read
in compute value()).

Let’s now introduce a little complexity: By observation,
we also find thatcompute value() returns a non-zero
value. Yet,buf contains"a = 0" . How can this be?

4. Induction

Induction is reasoning from the particular to the general.
In program analysis, induction is used tosummarizemul-
tiple program runs—e.g. a test suite or random testing—to
some abstraction that holds for all considered program runs.
In this context, a “program” may also be a piece of code
that is invoked multiple times from within a program—that
is, some function or loop body.

The most widespread program analysis tools that rely on
induction arecoverage toolsthat summarize the statement
and branch coverage of multiple runs; such results can be
easily visualized [10]. Most programming environments

support coverage tracing and summarizing. In program
visualization, call traces and data accesses are frequently
summarized [2].

On a higher abstraction level,invariant detectionfilters
a set of possible abstractions against facts found in multiple
runs. The remaining abstractions hold as invariants for all
examined runs [4, 7]. This approach relies only on observa-
tion of the program state at specific events; hence, it is not
limited by obscure code or other properties that make static
analysis hard.

Both techniques can be used to detectanomalies:One
trains the tool on a set of correct test runs to infer common
properties. Failing runs can then be checked whether they
violate these properties; these violations are likely to cause
the failures.

As an example, let us assume that we execute
the above C code under several random inputs, flag-
ging an error each timebuf contains "a = 0" .
An invariant detector can then determine that, say,
a < 2054567 || a % 2 == 1 holds at line 6 for all
runs where the error occurs. This is the common abstraction
for all abnormal runs:buf contains"a = 0" whenever
a is odd or smaller than 2,054,567. Obviously, something
very strange is going on.

5. Experimentation

As in our C example, most problems in program under-
standing can be formulated as a search forcauses:What
is the cause forbuf containing"a = 0" ? It may be sur-
prising that none of the techniques discussed so far is able
to find an actual cause—or, more precisely, toprove that
some aspect of a program is actually the cause for a specific
behavior. To prove actual causality, one needs two exper-
iments: one where cause and effect occur, and one where
neither cause nor effect occur. The cause must precede the
effect, and the cause must be aminimaldifference between
these experiments.

Searching for the actual cause thus requires a series of
experiments,refining and rejecting hypotheses until a mini-
mal difference—the actual cause—is isolated. This implies
multiple program runs that arecontrolledby the reasoning
process.

In our C example, our earlier induction step has already
refined the cause in the program state:a is the cause for
buf containing"a = 0" , because we can altera such
that buf has a different content. However, alteringa
in an experiment to, say,2097153 , makesbuf contain
"a = -2147483648" . Would we consider this non-
failing?

So, we decide thata is sane, and turn to thesprintf
call. Assuming thatsprintf works as specified, the only
cause that can remain is theformat string"a = %d" as

sprintf argument. Indeed, it turns out that%dis a format
for integers, whilea is declared as a floating-point value:

1 double a;

To verify that the format string is really the cause for
"a = 0" in buf , we experimentally change theformat
variable from"a = %d" to "a = %f" . Our observation
confirms thatbuf now has a sane value; this proves that the
format string was indeed the cause for the failure.

Where do we obtain such alterations from? Obviously,
a string likeformat can have an infinite number of possi-
ble contents. Finding the one format string that causes the
badbuf content to turn into the correct one is left to the
programmer; actually, this is part of writing a program that
works as intended.

Nonetheless, even the search for causes can be
automated—at least, if one has an alternate run where the
effect doesnot occur. Ourdelta debuggingapproach can
narrow down the initial difference between the two runs to
the actual cause in program input [8] or program state [15].
Delta debugging creates artificialintermediateconfigura-
tions that encompass only a part of the initial difference.
Testing such configurations and assessing the outcome then
allows to narrow down the actual cause.

Delta debugging has successfully isolated cause-effect
chains from programs that so far had defied all kinds of de-
ductive analysis, such as the GNU C compiler.

6. A Hierarchy of Program Analysis

By now, we have seen four techniques which are the
foundation of program analysis tools. Each of these tech-
niques induces aclassof program analysis tools, defined by
thenumber of program runsconsidered:

Deductive program analysis (“static analysis”) generates
findingswithout executingthe program.

Observational program analysis generates findings from
asingle executionof the program.

Inductive program analysis generates findings from
givenmultiple executionsof the program.

Experimental program analysis generates findings from
multiple executionsof the program, where the execu-
tions arecontrolledby the tool.

As in Figure1, these classes form a hierarchy where tools of
each “outer” class may make use of the techniques in “in-
ner” classes. Hence, dynamic slicing (observation) makes
use of static slices (deduction); invariant detection (induc-
tion) relies on observation; delta debugging (experimenta-
tion) relies on observation and induction.

The classes also induce capabilities and limits:

• To determine causes, one needs experiments.

• To summarize findings, one needs induction over mul-
tiple runs.

• To find facts, one needs observation.

• And deduction, perhaps to some surprise, cannot tell
any of these—simply because it abstracts from con-
crete program runs and thus runs the risk of abstracting
away some relevant aspect.

However, deduction effectively proves what can and what
cannot happen in the examined abstraction level; hence, it
is an excellent guidance on what to observe, where to induce
from and what to experiment.

7. Conclusion and Future Work

Program analysis tools can be classified into a hierar-
chy along the used reasoning techniques—deduction, ob-
servation, induction, and experimentation. Each class is
defined by the used knowledge sources which impose ca-
pabilities and limits. This allows for a finer distinction of
dynamic analysis techniques; names like observation, in-
duction, or experimentation link directly to the techniques
that programmers use in program comprehension.

While deduction and observation are quite well-
understood, we have only yet begun to automate induc-
tion and experimentation techniques. Research in machine
learning and data mining has produced a wealth of induc-
tion techniques. All of these can be applied to program runs
in order to find patterns, rules, and anomalies—in runs and
in code.

While induction works on a given set of program runs,
we can use experimentation to gather more data from new,
generated runs. The challenges here are when to use addi-
tional experimentation, how to generate runs that satisfy de-
sired properties, and how to guide the experimentation pro-
cess. The capability to design, run, and assess experiments
automatically is unique to dynamic program analysis; we
should make use of it.

Finally, program analysis can greatly benefit from fur-
ther integration of “inner” tools and “outer” tools. Inte-
grating experimentation with further inductive or deduc-
tive techniques is the main challenge in dynamic program
analysis—and its greatest chance.

Acknowledgments.Silvia Breu, Holger Cleve, Jens Krinke
and Tom Zimmermann provided substantial comments on
earlier revisions of this paper.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN 1990 Conference on Pro-
gramming Language Design and Implementation (PLDI),
volume 25(6) ofACM SIGPLAN Notices, pages 246–256,
White Plains, New York, June 1990.

[2] W. de Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M.
Vlissides, and J. Yang. Visualizing the execution of java
programs. In S. Diehl, editor,Proc. of the International
Dagstuhl Seminar on Software Visualization, volume 2269
of Lecture Notes in Computer Science, pages 163–175,
Dagstuhl, Germany, May 2002. Springer-Verlag.

[3] M. Ducasśe. Coca: An automated debugger for C. InProc.
International Conference on Software Engineering (ICSE),
pages 504–513, Los Angeles, California, May 1999.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE Transactions on Software En-
gineering, 27(2):1–25, Feb. 2001.

[5] W. G. Griswold, editor.Proc. Tenth ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (FSE-10),
Charleston, South Carolina, Nov. 2002. ACM Press.

[6] T. Gyimóthy,Á. Besźedes, and I. Forǵacs. An efficient rele-
vant slicing method for debugging. InProc. ESEC/FSE’99 –
7th European Software Engineering Conference / 7th ACM
SIGSOFT Symposium on the Foundations of Software En-
gineering, volume 1687 ofLecture Notes in Computer
Science, pages 303–321, Toulouse, France, Sept. 1999.
Springer-Verlag.

[7] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. In ICSE 2002 [9], pages
291–302.

[8] R. Hildebrandt and A. Zeller. Simplifying failure-inducing
input. In Proc. ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), pages 135–145,
Portland, Oregon, Aug. 2000.

[9] Proc. International Conference on Software Engineering
(ICSE), Orlando, Florida, May 2002.

[10] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. In ICSE 2002
[9], pages 467–477.

[11] B. Korel and J. Laski. Dynamic slicing of computer pro-
grams. The Journal of Systems and Software, 13(3):187–
195, Nov. 1990.

[12] R. Lencevicius. Advanced Debugging Methods. Kluwer
Academic Publishers, Boston, 2000.

[13] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3(3):121–189, Sept. 1995.

[14] M. Weiser. Programmers use slices when debugging.Com-
munications of the ACM, 25(7):446–452, 1982.

[15] A. Zeller. Isolating cause-effect chains from computer pro-
grams. In Griswold [5], pages 1–10.

	1 . Introduction
	2 . Deduction
	3 . Observation
	4 . Induction
	5 . Experimentation
	6 . A Hierarchy of Program Analysis
	7 . Conclusion and Future Work

