
Vom Fachbereich f¨ur Mathematik und Informatik

der Technischen Universit¨at Braunschweig

genehmigte Dissertation

zur Erlangung des Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

Andreas Zeller

Configuration Management with Version Sets
A Unified Software Versioning Model

and its Applications

1. April 1997

1. Referent: Prof. Dr. Gregor Snelting

2. Referent: Prof. Dr. Walter F. Tichy

Eingereicht am: 1. November 1996

Zeller, Andreas:
Configuration Management with Version Sets.
A Unified Software Versioning Model and its Applications.

Includes bibliographical references and index.

Revision1.103 of thesis.tex

Created: 1997-05-22 21:42:28

Formatted: 1997-05-22 23:44:00

Please note: This electronic version differs slightly from the original paper copy. The paper
copy uses a MathTime font for mathematical symbols; this font is copyrighted by Y&Y, Inc.
and must not be distributed electronically. This electronic version uses a Computer Modern
Roman font for mathematical symbols instead. The text itself is unchanged (except for this
note); locations of section headings, figures, etc. have not changed as well.

This electronic version is available via the WWW at
http://www.cs.tu-bs.de/softech/papers/zeller-phd/

Please use this URL when referring to this work.

As an exception of the copyright rules below, you are hereby granted to reproduce this
electronic version for the purposes of viewing its contents on a screen or creating a paper
copy for personal use only, provided that the copyright note below is preserved.

Typeset by Andreas Zeller, Braunschweig using Times 10 pt
Printed at the Technische Universit¨at Braunschweig
Bookbinding by Dissertations Druck Darmstadt (DDD), Darmstadt

Copyright c
 1996, 1997 Andreas Zeller, Braunschweig.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.

To my grandfather

Preface

GENTLE READER: This is a book about software configuration management, the
discipline to organize and control evolving software systems. In software con-
figuration management, orSCM for short, one deals with the problem of several
people developing, building, shipping, and maintaining several copies of soft-
ware products, each with an individual set of changes applied to make it fit into
a particular environment. The aim of anSCM engineer is to identify and control
these changes, such that all resulting software products are well-identified and
well-defined.

Software configuration management is a hard task, because few things are so
easy to change and so easy to propagate as software. Fortunately, a number of
automatedSCM tools and systems exist that can help enforcing and maintaining
SCM procedures. Unfortunately, there are many such tools and each comes with
its ownSCM policy, which is often centered on a specific environment and thus
seldom interoperates, yet alone integrates with otherSCM tools. From theSCM
engineer’s point of view, this is an unfortunate situation as the entire development
process must be adapted to a specificSCM policy.

In this work, I have attempted to provide a common formal and adaptive base
for the technical aspects of software configuration management. The base I have
chosen for this integration isfeature logic,a logic denoting objects by specifying
their possible attributes (or non-attributes). Characterizing objects by their fea-
tures is a common technique inSCM, and it seemed natural to me to choose a
logic based on this technique.

Using feature logic, I have been able to model and integrate commonSCM
functionality such as attributed components, repositories, work spaces, variant
sets, revision histories, or consistency checking in a single concept, calledver-
sion sets.Version sets group versions, components, and configurations by their
features.SCM functionality is realized through set operations. Versions are se-
lected and refined through set intersection. Set union realizes the grouping of

v

vi Preface

versions to repositories. Subsumption and disjointness express inclusion and ex-
clusion of changes, structuring the version space.

Version sets do not introduce new concepts intoSCM; instead, they expose
new ways of combining and integrating existing concepts and thus provide much
more flexibility in adaptingSCM systems to their users. In short, I have designed
the version set model as an attempt to integrate the current spectrum ofSCM
functionality into a single, hopefully simple and elegant formalism, allowing for
adaptive combinations ofSCM concepts with predictable effects.

In science, claims are justified by proofs; in engineering, claims are justified
by simulation. Applied computer science is both a scientific and an engineering
discipline. I thus have supplied both proofs and an implementation; the resulting
SCM systemICE (for Incremental Configuration Environment), is presented and
evaluated in its own part at the end of this work. The version set model could not
have been conceived without its usability and efficiency steadily being verified in
ICE.

While conceiving and developingICE, I have resisted the temptation to en-
rich the wide spectrum of software engineering with yet another eclectic environ-
ment, another eclectic special-purpose formalism, and another eclectic configu-
ration language. Instead, I have designedICE to work with well-establishedSCM
techniques and representations wherever possible, in order to keep the learning
curve flat and the integration smooth. It is my hope thatICE will not only help to
demonstrate the effectiveness of the underlying version set model, but also be a
useful aid in addressing today’s practicalSCM problems.

To make this book self-contained, the first part summarizes the state of the art
in today’sSCMpractice and research, followed by an introduction to feature logic.
The version set model andICE come in individual parts, closing with answers to
frequently asked questions. In short, this book presents today’sSCM concepts,
their common foundation, and some new applications. Enjoy!

Braunschweig A. Z.
November 1996

Abstract

Software configuration management (SCM) is the discipline for organizing and
controlling evolving complex software systems. SeveralSCM tools and systems
exist that automate and integrateSCM tasks like version identification, system
modeling, product construction, or team work coordination. However, the choice
of an SCM system is still a long-term commitment: EachSCM system comes
with its ownSCM policy, which is often centered on a specific environment and
thus seldom interoperates, yet alone integrates with otherSCM tools. This is
unfortunate, as the entire software development process must be adapted to fit the
system’sSCM policy.

We wantSCM systems that adapt to their users, rather than vice versa. As a
foundation, we propose a unified versioning model, theversion set model.Ver-
sion sets denote versions, components, and configurations byfeature terms,that
is, boolean terms over(feature:value)-attributions. Throughfeature logic,a well-
established formalism for knowledge representation and logic programming, we
define the semantics ofSCM tasks and concepts. Our results are as follows:

Unified versioning. Version sets provide one single formalism to express all ver-
sioning dimensions as well as constraints on them, integratingSCM con-
cepts like revisions, variants, workspaces, and configurations in one single
model. TheSCMpolicy is not constrained by decisions made in lowerSCM
layers.

Integration of changes and revisions.Configuration constraints, expressed in
feature logic, allow us to capture the entire range of temporal versioning—
from the rigidness of versions-oriented models to the flexibility of change-
oriented models.

Consistency checking under ambiguity.Through feature logic, we deduce the
features and the consistency of configurations as well as derived compo-

vii

viii Abstract

nents and thus describe how features propagate in theSCM process. In-
consistencies are detected even when the configuration description is in-
complete or ambiguous. Ambiguity is not only tolerated in consistency
checking; at allSCM layers, sets rather than single items are the primary
objects ofSCM tasks and procedures.

We have implemented the version set model in an experimentalSCM system
namedICE for Incremental Configuration Environment.In ICE, the version set
model shows up numerous user-visible benefits. Through theFFS, a virtual file
system, users can access version sets consisting of arbitrary combinations of re-
visions, changes, variants, and workspaces. Individual versions are accessed as
files; version sets as a whole can be handled via version directories or through
the well-known C preprocessor representation. On top of theFFS, specificSCM
protocols are realized efficiently through simple file operations on version sets.
These features makeICE a universal platform for individual well-structuredSCM
policies.

Zusammenfassung

Software-Konfigurationsmanagement (SCM, auchSoftware-Verwaltung) befaßt
sich mit der Organisation und Kontrolle des Entwicklungsprozesses komplexer
Softwaresysteme. Heute gibt es zahlreicheSCM-Werkzeuge undSCM-Systeme,
die Aufgaben wie Versionsbezeichnung, System-Modellierung, Programmkon-
struktion oder Koordination der Gruppenarbeit automatisieren und integrieren.
Allerdings bedeutet die Auswahl einesSCM-Systems immer noch eine langfristi-
ge Verpflichtung: JedesSCM-System bringt sein eigenes Vorgehensmodell mit,
das oft auf eine bestimmte Umgebung zugeschnitten ist und deshalb nicht mit an-
derenSCM-Systemen zusammenarbeitet, von einer Integration ganz zu schwei-
gen. Das ist um so bedauerlicher, da die gesamte Software-Entwicklung an die
jeweilige Verfahrensweise angepaßt werden muß.

Wir möchtenSCM-Systeme, die sich ihren Anwendern anpassen, statt umge-
kehrt. Als Grundlage schlagen wir ein vereinheitlichtes Versionierungs-Modell
vor, das Modell derVersionsmengen.Versionsmengen kennzeichnen Versio-
nen, Komponenten und Konfigurationen durchFeature-Terme– Boolesche Terme
über Ausdr¨ucke der Art(Eigenschaft:Wert). Mit Feature-Logik,einem etablier-
ten Formalismus f¨ur Wissensrepr¨asentation und logische Programmierung, defi-
nieren wir Aufgaben und Konzepte desSCM. Im einzelnen erhalten wir folgende
Ergebnisse:

Vereinheitlichte Versionierung. Versionsmengen sind ein einheitlicher Forma-
lismus, mit dem alle Dimensionen der Versionierung als auch Querbezie-
hungen ausgedr¨uckt werden. Dadurch werdenSCM-Begriffe wie Revisio-
nen, Varianten, Arbeitsumgebungen, und Konfigurationen in ein einziges
Modell integriert. DasSCM-Vorgehensmodell wird nicht durch Festlegun-
gen in unterenSCM-Schichten eingeschr¨ankt.

Integration von Änderungen und Revisionen. Konfigurationsbedingungen in
Feature-Logik decken das gesamte Spektrum zeitlicher Versionierung ab –

ix

x Zusammenfassung

von der Strenge der versionsorientiertenSCM-Modelle bis zur Kombinati-
onsfreudigkeit der ¨anderungsorientiertenSCM-Modelle.

Konsistenzprüfung unter Mehrdeutigkeit. Mit Feature-Logik bestimmen wir
die Eigenschaften und Konsistenz von Konfigurationen als auch abgelei-
teter Komponenten und beschreiben so, wie sich Eigenschaften imSCM-
Prozeß fortpflanzen. Unstimmigkeiten werden auch dann entdeckt, wenn
die Konfigurationsbeschreibung unvollst¨andig oder mehrdeutig ist. Mehr-
deutigkeit ist nicht nur bei der Konsistenzpr¨ufung zulässig; auf allenSCM-
Ebenen arbeiten dieSCM-Verfahren mit Versionsmengen statt Versionen.

Wir haben das Modell der Versionsmengen in einem experimentellenSCM-
System namensICE implementiert (ICE = incremental configuration environment,
inkrementelle Konfigurations-Umgebung). InICE zeigt das Modell der Versi-
onsmengen zahlreiche Vorteile f¨ur den Benutzer.Über dasFFS, ein virtuelles
Dateisystem, k¨onnen Anwender Versionsmengen bearbeiten, die aus beliebigen
Kombinationen von Revisionen, Varianten und Arbeitsbereichen bestehen. Ein-
zelne Versionen werden als Dateien angesprochen; Versionsmengen als ganzes
könnenüber Versions-Verzeichnisse oder ¨uber die wohlbekannte C-Pr¨aprozessor-
Darstellung bearbeitet werden. MitFFSals Grundlage lassen sichSCM-Verfahren
durch einfache Dateioperationen auf Versionsmengen effizient realisieren. Diese
Eigenschaften machenICE zu einer universellen Plattform f¨ur individuelle, wohl-
strukturierteSCM-Vorgehensmodelle.

Contents

Part One The State of the Art in SCM 1

1 Configuration Management 3
1.1 The Name of the Game . 3
1.2 FromCM to SCM . 4
1.3 SCM Procedures . 4
1.4 SCM Models . 5
1.5 SCM Functionality Areas . .. 6

2 Components Functionality 9
2.1 Versioning Dimensions . 9
2.2 Versioning Models . 10
2.3 Identifying Component Versions 11
2.4 Determining Version Differences 13
2.5 Storing Component Versions in Repositories. 14
2.6 Managing Variance . 15
2.7 Managing Changes . 17
2.8 Discussion . 20

3 Structure Functionality 21
3.1 Describing the System Structure 21
3.2 System Models forSCM . 21
3.3 Selecting System Configurations 24
3.4 Integrated Configuration Languages. 29
3.5 Visualizing the Configuration Space 31
3.6 Interfaces and Consistency .. 32
3.7 Discussion . 35

xi

xii Contents

4 Construction Functionality 37
4.1 Component Dependencies 37
4.2 Incremental Construction . 38
4.3 Determining Dependencies Automatically 39
4.4 Versioned Software Construction 39
4.5 Attribute Propagation . 40
4.6 Optimized Software Construction 41
4.7 Conclusion . 42

5 Team Functionality 43
5.1 Cooperation through Workspaces. 43
5.2 Workspaces as Private Directories 44
5.3 Workspaces through Application Interfaces 45
5.4 Workspaces through Virtual File Systems 45
5.5 Cooperation Strategies .. 48
5.6 Merging and Conflict Resolution 49
5.7 Multi-Site Development . 52
5.8 Process Functionality Areas 53
5.9 Conclusion . 54

6 Future SCM Requirements 55
6.1 Improved Support for Variant Sets 55
6.2 Consistency of Abstract Configurations 56
6.3 Beyond Version Graphs .. 56
6.4 Unified Versioning Models . 57
6.5 Flexible Process Support. 58
6.6 ImprovedSCM System Architectures 59
6.7 A UnifiedSCM Model . 60

Part Two Feature Logic 63

7 A SCM Foundation 65
7.1 First Foundation: Sets . .. 65
7.2 Second Foundation: Attribution. 66
7.3 Third Foundation: Unification 67
7.4 Putting it all Together . .. 67
7.5 First Candidate: First-Order Logic 68
7.6 Second Candidate: Description Logics 68

Contents xiii

7.7 Third Candidate: Feature Logics 69
7.8 Conclusion . 69

8 Feature Logic 71
8.1 The Evolution of Feature Logic 71
8.2 Feature Logic in a Nutshell . 72
8.3 Features and Feature Algebras 73
8.4 Syntax and Semantics of Feature Terms 74
8.5 Properties of Feature Terms . 83
8.6 Conclusion . 87

Part Three The Version Set Model 89

9 Versions and Components 91
9.1 Identifying Versions . 91
9.2 Selecting Versions . 93
9.3 Making Selections Unambiguous 95
9.4 Dynamic Version Creation . 96
9.5 Assigning Features to Versions 97
9.6 Discussion . 99

10 Composing Configurations 101
10.1 Extrinsic and Intrinsic Features 101
10.2 Unifying Extrinsic Features . 102
10.3 A Unification Example . 103
10.4 Handling Intrinsic Features . 105
10.5 Properties of Configurations . 108
10.6 Configurations and Ambiguity 108
10.7 Features of Derived Components 110
10.8 Discussion . 111

11 Changes and Revisions 113
11.1 Revision Graphs . 113
11.2 Identifying Revisions . 115
11.3 Revisions and Variants . 118
11.4 Revision Constraints . 119
11.5 Constraints and Lattices . 121
11.6 An Equivalence Result . 123

xiv Contents

11.7 Discussion . 128

12 Constraints and Repositories 131
12.1 Creating Revisions with a Single Origin 131
12.2 Adding Revisions with Multiple Origins. 132
12.3 Removing Revisions . 134
12.4 Orthogonal Changes . .. 134
12.5 Changes and Other Features . 136
12.6 Changes and Configurations . 137
12.7 Maintaining Configuration Constraints 138
12.8 Conclusion . 139

13 Cooperation Techniques 141
13.1 Working in Workspaces .. 141
13.2 Conservative Cooperation Techniques 147
13.3 Optimistic Cooperation Techniques 154
13.4 Discussion . 158

14 Taming Complexity 161
14.1 Deciding Inconsistency for Simple Feature Terms 161
14.2 Deciding Inconsistency for General Feature Terms 162
14.3 A Unification Example . 163
14.4 Reduction of Feature Terms . 164
14.5 A Divide-and-Conquer Approach. 166
14.6 Fast Consistency Checking for Simple Terms 167
14.7 Integrating Reduction and Fast Consistency Checking 169
14.8 Two Reduction Examples . 172
14.9 Conclusion . 175

Part Four Applications 177

15 A SCM Environment 179
15.1 The Properties ofICE . 179
15.2 Using Industry Standards. 180
15.3 A Layered Architecture . 181

Contents xv

16 Representing Version Sets 183
16.1 A Multi-Version Representation 183
16.2 Representing Feature Terms . 184
16.3 Syntax and Semantics ofCPPDirectives 187
16.4 File Encodings . 192
16.5 Implementation Notes . 195
16.6 Conclusion . 195

17 Handling Version Sets 197
17.1 Selecting Version Sets . 197
17.2 Changing Version Sets . 200
17.3 Creating aCPPRepresentation 203
17.4 File Operations on Version Sets 212
17.5 Implementation Notes . 213
17.6 Conclusion . 213

18 A Shell for Version Set Access 215
18.1 Reading Version Sets . 215
18.2 Writing Version Sets 216
18.3 Removing Version Sets . 217
18.4 Multi-Version Merging 218
18.5 Handling Arithmetic Constraints 219
18.6 MoreICICLE Features . 220
18.7 Implementation Notes . 220
18.8 Conclusion . 220

19 The Featured File System 223
19.1 ASCM Primitives Layer . 223
19.2 Versioned Directories . 224
19.3 Version Confinements . 226
19.4 Version Shortcuts . 227
19.5 Exploring the Version Space . 229
19.6 A Configuration Browser . 232
19.7 Implementation Notes . 233
19.8 Discussion . 235

xvi Contents

20 Performance Studies 237
20.1 Working On Variants . 237
20.2 A Revision History . 241
20.3 Caching Effects . 245
20.4 Conclusion . 246

21 Efficient SCM 247
21.1 Version Selection . 247
21.2 Versioning Dimensions . 248
21.3 Configuration Consistency . 248
21.4 The Benefits of Low Coupling 248
21.5 The Benefits of High Cohesion 249
21.6 Maintaining Unstructured Software 249
21.7 Conclusion . 250

Part Five Odds and Ends 251

22 Conclusion 253

A Frequently Asked Questions 257
A.1 General Questions . 257
A.2 Topic: Feature Logic . 258
A.3 Topic: The Version Set Model 259
A.4 Topic: Complexity . 260
A.5 Topic: Applications . 261

B Obtaining ICE 263

Acknowledgements 265

About the Author 267
Curriculum Vitae . 267
Publications . 268

Bibliography 269

Abbreviations 283

Index 285

List of Figures

1.1 CM functionality requirements 7

2.1 Version kinds in a version graph 11
2.2 The object pool and some of its projections 12
2.3 Finding textual differences withDIFF 14
2.4 Selecting versions withCPP 16
2.5 Applying changes withPATCH 18

3.1 AnAND/OR graph . 23
3.2 A database relationship graph 24
3.3 A SHAPEconfiguration rule 27
3.4 A database selection rule with preferences 28
3.5 CLEARCASEconfiguration rules 29
3.6 JASONconfiguration descriptions 30
3.7 Structural variability inPCL 31
3.8 Mapping variability inPCL . 32
3.9 Version selection from aRCErevision graph 33
3.10 Version threads . 34
3.11 A constraint diagram . 35
3.12 AJASONconstraint specification 36

4.1 A simple Makefile . 38
4.2 Tool specifications inCAPITL 41

5.1 Syntax-based merging . 50

6.1 Three levels ofCM services 59

9.1 Selecting component versions 94

xvii

xviii List of Figures

10.1 Consistent configurations in a text/graphic editor 104
10.2 Creating a configuration from two components 107

11.1 A revision graph . 114
11.2 Changes and revisions . 117
11.3 A revision graph as subsumption lattice 121

12.1 Adding a revisionR7 with a single originR6 132
12.2 Adding a revisionR7 with two originsR5 andR6 133
12.3 Orthogonal changes .. 135
12.4 Combining delta features and variant features 136

13.1 Disjoint write contexts . 142
13.2 Changes and workspaces 143
13.3 Workspaces and configurations 144
13.4 Changing currency in a workspace 146
13.5 Users and projects . 147
13.6 Propagating changes across workspaces 149
13.7 Propagating changes through a production workspace 150
13.8 A production workspace 151
13.9 Creating user workspaces 151
13.10 Locking the current version 152
13.11 Changing a locked version . 152
13.12 Committing changes to the production workspace 152
13.13 Updating a workspace from the production workspace 153
13.14 Locking a variant . 153
13.15 Changing a variant . 153
13.16 Committing variant changes 154
13.17 Merging changes from the production workspace 154
13.18 A production workspace and two user workspaces 156
13.19 Changes in user workspaces 157
13.20 Simple synchronization of the production workspace 157
13.21 Updating a user’s workspace 157
13.22 Merging in a user’s workspace 158
13.23 Synchronization of the production workspace after merge . . . 158

15.1 TheICE service layers . 182

16.1 Tagging lines with feature terms 184

List of Figures xix

16.2 Multiple versions in one file with feature andCPPdirectives . . 185
16.3 Interpretation of#if directives 189
16.4 A program file in C encoding 192
16.5 A Makefile in text encoding 193
16.6 A C++ program file in binary encoding 193
16.7 Binary encoding with character boundaries 194
16.8 Binary encoding with line boundaries 194

17.1 Three version selections from aCPPfile 198
17.2 Selecting revisions from aCPPfile 199
17.3 Changing a version subset . 201
17.4 Version subsets in internal representation 201
17.5 Determining new line features 203
17.6 CPPrepresentation after a subset change 204
17.7 AlternateCPPrepresentations 205

18.1 Merging of version sets . 219

19.1 A versioned directory . 224
19.2 Three views of a versioned directory 225
19.3 Narrowing the configuration space in theFFS 227
19.4 Symbolic links to workspaces 228
19.5 Using virtual subdirectories to select configurations 230
19.6 Browsing through files and configurations withSKATE 233
19.7 Processes accessing the featured file system 234

20.1 xload configuration constraints 240
20.2 Revision checkin times forICICLE, RCS, andSCCS 243
20.3 A multi-revision file . 244

List of Tables

2.1 Version-oriented vs. change-oriented models 19

8.1 Syntax and interpretation of feature terms 73
8.2 Formal denotation of feature terms 82

16.1 Representing feature terms inASCII and asCPPexpressions 186
16.2 Encoding tokens . 192

20.1 CPPsymbols inxload . 238
20.2 Revision checkin times forICICLE, RCS, andSCCS 242
20.3 ICICLE checkin times with and without reduction 242
20.4 FFSperformance sample . 245

xxi

Part One

The State of the Art in SCM

1

Chapter 1

Configuration Management

We begin with a short presentation of software configuration management. We
show why software configuration management (SCM) is important in creating
complex software, we show the procedures required bySCM, and we give a brief
survey of theSCM models andSCM functionality areas as supported by today’s
automatedSCM systems.

1.1 The Name of the Game

In software development, nothing is as persistent as change. Typically, we find
several individuals producing, changing, and exchanging common and individual
software parts, all oriented towards a common goal. Often, this common goal
is not a single static product, but a dynamic collection of components destined
to work with each other, where not all assemblies may result in a complete and
consistent product. There may be hundreds or thousands of such components,
with several hundred persons at different sites maintaining and changing them;
the entire development process becomes a continuous history of changes and im-
provements. To keep all these multi-version, multi-people activities under control,
the need forconfiguration managementarises.

Configuration management (CM) is the discipline for organizing and control-
ling evolving systems. Configuration management is an old discipline, born out
of systems manufacturing.CM mandates procedures for identification of compo-
nents and their assemblies, for controlling releases and changes, for recording the
product status, and for validating the completeness and consistency of a product
[IEE88, IEE90]. RecentCM definitions [Dar91] also include areas like construc-
tion management, process management, and team work control.

3

4 Configuration Management

1.2 From CM to SCM

Software configuration management (SCM) goes beyond theseCM procedures in
several ways. First, few things are as malleable as software. This adds special
complexity to configuration management because changes are easy to make, and,
in fact, occur more often than in traditionalCM areas. Second, software is easily
duplicated. There may be multiple copies of a software component, some private,
some public, each having its individual set of changes which may diverge in time.
Third, software is complex. Applying a change in a single component may in-
duce hard-to-trace failures in other components. It is these properties that make
software development difficult, and which makeCM significantly harder when
applied to software development.

SCM also differs from traditionalCM since all components are under com-
puter control. Hence, software configuration management can be widely auto-
mated, compensating for the added complexity. Automation applies to most of the
identification and control tasks, to construction management as well as to com-
pleteness and consistency maintenance. Also,SCM tools can be integrated into
software development tools, which run on computers as well. Today, there are
severalSCM tools available that automateSCM procedures. SomeSCM systems
encompass the entireSCM process by combining several tools and techniques. In
this chapter, we give a brief survey ofSCM functionality, as addressed by these
systems.

1.3 SCM Procedures

A standard definition of configuration management [IEE88, IEE90] mandates the
following CM procedures(cited from [Dar91]):

Identification. Reflects the structure of the product, identifies components and
their type, making them unique and accessible in some form.1

Control. Controls the release of a product and changes to it throughout its life
cycle by having controls in place that ensure consistent software via the
creation of a baseline product.

Status Accounting. Records and reports the status of components and change
requests, and gathers vital statistics about components in the product.

1The IEEE SCMstandards [IEE88, IEE90] denote components byconfiguration items; the syn-
onymsconfiguration objector simplyobject are also found.

1.4 SCM Models 5

Audit and Review. Validates the completeness of a product and maintains
consistency among the components, ensuring that the product is a
well-defined collection of components.

RecentSCM surveys [Dar91] broaden this definition to include procedures
like construction management, process management, and team work control:

Manufacture. Manages the construction and building of the product in an
optimal manner.

Process Management.Ensures the carrying out of the organization’s
procedures, policies and life cycle model.

Team work. Controls the work and interactions between multiple developers.

When applied to software development, theseCM procedures can be easily
carried out with computer support, since all software components are under com-
puter control. Several software configuration management (SCM) tools and sys-
tems are available today, automating some or all of theseCM procedures and
providing a wide range of functionality.

1.4 SCM Models

In [Fei91a], Peter H. Feiler made a first approach to classifySCM functionality.
He examines the software process as it is enforced by existingSCM systems and
distinguishes fourconfiguration management models,each introducing specific
functionality:

Checkin/Checkout Model. The basicSCM model introduces the concept of a
repositoryholding multipleversionsof a product component. Developers
can copy versions from (check out) and to (check in) the repository.

Change-Oriented Model. As its name says, the Change-Oriented Model fo-
cuses onchangesrather than on versions. In this model, versions are the
product ofchange setapplied to a baseline. This model is useful for prop-
agating and combining changes across users and sites.

Composition Model. The Composition Model extendsSCM from the compo-
nent level to the system level, introducingsystem modelsdescribing the
system structure andconfigurationsdenoting versions of several compo-
nents.Consistencyissues are also found here.

6 Configuration Management

Long Transaction Model. The Long Transaction Model introduces the notion
of a workspace,where developers are isolated from each other’s changes.

Since Feiler’s survey, many newSCM systems have emerged, and many have ex-
tended their initial functionality to incorporate functionality that was previously
found in otherSCM models. Although all of todaysSCM systems are essentially
based on one of theseSCM model, and although no significantly newSCM mod-
els have emerged, a more fine-grained approach is required to capture the entire
spectrum of functionality inSCM systems.

1.5 SCM Functionality Areas

In [Dar91], Susan Dart uses a typicalSCM scenario to define a set ofSCM func-
tionality areasusers expect from today’sSCM systems, reproduced in figure 1.1
on the facing page. Although someSCM aspects are missing (notablyvariants
anddistribution),it still constitutes a valid schema to captureSCM functionality.

Dart distinguishes between team-centered and process-centered functionality
areas. Theteam-centeredfunctionality areas deal with thetechnical aspectsof
software configuration management:

Components. Identify, classify, store and access the components that form the
product.

Structure. Represent the architecture of the product.

Construction. Support the construction of the product and its artifacts.

Team. Enable a project team to develop and maintain a family of products.

In contrast to the team-centered areas, theprocess-centeredfunctionality ar-
eas (shown in grey) cover management issues:

Auditing. Keep an audit trail of the product and its process.

Accounting. Gather statistics about the product and its process.

Controlling. Control how and when changes are made.

Process.Support the management of how the product evolves.

1.5 SCM Functionality Areas 7

Workspaces
Conflict Resolution

Families

Lifecycle Support
Task Management

Communication
Documentation

System Model
Interfaces

Relationships
Selection

Consistency

Versions
Configurations

Versions of Configurations
Baselines

Project Contexts
Repository

Kinds of Components

Building
Snapshots

Optimization
Change Impact Analysis

Regeneration

History
Traceability

Logging

Statistics
Status

Reports

Access Control
Change Requests

Bug Tracing
Change Propagation

Partitioning

Accounting Controlling

Process

Auditing

Construction

Team

Structure

Components

Figure 1.1:CM functionality requirements (after [Dar91])

In this part, we give an overview on the spectrum of functionality in today’s
SCMsystems, following the classification of Dart’s survey, and treatingSCMmod-
els with their typical concepts. As our work is primarily concerned with the tech-
nical aspects ofSCM rather than with the process areas, we focus on the team-
centered functionality areas and only sketch the process-centered functionality
areas. As a conclusion, we identify requirements for futureSCM systems.

La maintenance des logiciels de grande taille est très coûteuse.
Cependant, ce thème est souvent ignoré des chercheurs.

— JEAN-MARIE FAVRE, Vers une représentation multi-langages
et multi-versions des programmes

Chapter 2

Components Functionality

We present the component functionality area, as realized in theCheckin/Checkout
Model. A central repository, shared among developers, holds all component ver-
sions as they are created. Versions are accessed by copying component versions
from the repository to a private space (check out) and copy them back again into
the repository (check in). The Checkin/Checkout Model is the simplest and oldest
SCM model; its typical realizations are Rochkind’sSource Code Control System
(SCCS) [Roc75]and Tichy’sRevision Control System(RCS) [Tic85]. As an al-
ternative, we also take a look at theChange-Oriented Model,which focuses on
managingchangesinstead of versions.

2.1 Versioning Dimensions

Software products are commonly broken down into severalcomponents,which
are created and maintained by different people. As these people apply changes
to software components, they create new componentversions. Each version is
one of several instances of a single component. This implies that two versions
of a component should be more similar to each other than any two components
are. Depending on the context, the unqualified word component denotes either all
component versions or one single version.

Depending on the intentions of the creator,SCM literature divides versions
into threeversioning dimensions[EC95]; ideally, all these dimensions should be
fully orthogonal to each other.

Historical versioning. Versions that are created tosupersedea specific version,
e.g. for maintenance purposes, are calledrevisions[Win87]. When a new

9

10 Components Functionality

revision is created, evolution of the original version is phased out in favor of
the new revision. In practice, a revision of a component is usually created
by modifying a copy of the most recent revision. The old revisions are
permanently stored for maintenance and documenting purposes; they form
the version history orrevision historyof the component.

Logical versioning. In contrast to revisions, a variant is created as analternative
to a specific version. They are created inbranches,that is, parallel devel-
opment threads that may eventually bemergedwith the main development
thread.Permanent variantsare created when the product is adapted to dif-
ferent environments. Variance can again arise in several dimensions, in-
cluding varying user requirements and varying system platforms, but also
variants for testing and debugging. Thesevariance dimensionsneed no
more be orthogonal and be subject to several constraints.

Cooperative versioning. A temporary variantis a variant that will later be inte-
grated (or merged) with another variant. Temporary variants are required,
for example, to change an old revision while the new revision is already
under development. We will discuss temporary variants in the context of
cooperation strategies in section 5.5.

2.2 Versioning Models
Figure 2.1 on the next page illustrates the difference between the various version
kinds. The boxes denote various versions as they are created; an arrow from
versionA to versionB indicates thatB was created based onA.1 The entire graph
is theversion graphof the component, showing how each version was created.

In a version graph, theSCMdistinction between revisions and variants is prag-
matic; deciding whether a version is a revision or a temporary variant or a perma-
nent variant can only be decideda posterioriwhen taking the later version graph
into account. Upon creation of a new version, the developer must choose a ver-
sion kind depending on the expected history. Since the motives of the developer
may change, it should be possible to change the version kind later.

In mostSCM tools and systems, the versioning dimensions are addressed by
separate concepts; changing the version kind thus is a non-trivial task. Also, early
version control tools likeSCCS[Roc75] orRCS[Tic85] were primarily conceived
for revision and change control; variance was managed by dedicated variant con-
trol tools like the C preprocessor (CPP) [KR89], discussed in section 2.6.1.

1As stated in section 3.2.2, this is called ais-derived-fromrelation.

2.3 Identifying Component Versions 11

Original
Version

Revisions
V

ar
ia

nt
s

Temporary
Variant

Permanent
Variant

(third revision)

Figure 2.1: Version kinds in a version graph

Recently, new versioning models have emerged that overcome the limitations
of version graphs. In [Rei89], Reichenberger coined the termorthogonal version
management,as implemented in theVOODOO SCMtool [Rei95]. In orthogonal
version management, the universe of all components, variants, and revisions con-
stitutes a three-dimensional space, theobject pool,from which projectionscan
be chosen to select groups of variants, revisions, or components, as illustrated in
figure 2.2 on the following page.

In [EC95], Estublier and Casallas also propose a three-dimensional versioning
model, using the historical, logical, and cooperative dimensions, as discussed
above. In contrast to Reichenberger’s orthogonal version management, however,
each dimension is accessed using different kinds of queries or services, according
to the specific needs.

2.3 Identifying Component Versions

Along with the creation of new versions comes a consistent version identification
scheme. It is common practice inSCM to use different identification schemes for
revisions as well as permanent and temporary variants.

2.3.1 Identifying Revisions

Revisions are typically identified byrevision numberswhich reflect their cre-
ation date: the most recent revision is the one with the highest revision number.

12 Components Functionality

Components

Variants

Revisions
Object
pool

Project
component

Revision
group

Object

Figure 2.2: The object pool and some of its projections (after [Rei89])

Numbering schemes include single integers—the first revision is named 1, the
second 2, and so on, as inCLEARCASE [Leb94]—and pairs of integers as in
SCCS[Roc75] orRCS[Tic85], sometimes called the release number and the level
number. An increment in the release number (for instance, from 2.2 to 3.1) indi-
cates a major change, an increment in the level number (from 3.1 to 3.2) indicates
a minor change. All revision control tools allow for identifying revisions by the
revision date(e.g. the time the revision was created).

In the Change-Oriented Model, revisions are identified by a list of changes
applied to the baseline, as discussed in section 2.7. The individual changes
are named; a version identified bybugfix-3, extension-5 thus has the changes
bugfix-3 andextension-5 applied.

2.3.2 Identifying Variants

Permanent variants are usually named instead of numbered, since they are not
implicitly ordered. One method, realized in theCLEARCASEsystem is to assign
names to edges in the version graph;zbuf.c@@/main/new GUI/color denotes
a path in the version graph of the componentzbuf.c. First, the path to the main
variant is chosen, then the new graphical user interface (GUI) from this main vari-
ant, then the color variant of theGUI. As shown in the example, this identification

2.4 Determining Version Differences 13

scheme imposes a hierarchical order on the variants and is restricted to paths in the
version graph: the specificationzbuf.c@@/color does not make sense, because
the major variants are not specified.

Other SCM systems use an approach independent from the version graph.
They assign a set ofattribute=valuepairs, where each attribute reflects a variance
dimension. For instance, a component occurring in several variants for multiple
languages and multiple operating systems can be identified by two variance di-
mensionslanguageandoperating-system. languagemay take values likeenglish,
german, frenchand so on, whileoperating-systemis eitherunix, windows, ormac.
Such schemes are also calledattribution schemes.They are used in high-level
SCM systems likeADELE [Est85, Est88, EC94] or in theattributed file system
(AtFS) of SHAPE[LM88, Mah94] as well as in low-level variant control tools like
the C preprocessor, which we discuss in section 2.6.1.

For temporary variants, various identification schemes exist. TheRCS and
SCCSway is to introduce additional numbering levels. That is, a variant of the
original revision 1.2 is named 1.2.1.1, with subsequent revisions 1.2.1.2, 1.2.1.3,
and so on. InCLEARCASE, there is no special distinction in identifying version
kinds.

2.4 Determining Version Differences

In order to determine changes made to software, users must be able to determine
the differences between versions. A basic procedure for this task istext file com-
parison[Tic84, MM85], as realized in theUNIX DIFF program.DIFF takes two
text filesA andB as input and generates a minimal set of changes (i.e. line dele-
tions and inclusions) that are necessary to convertA into B. In figure 2.3 on the
next page, we show the output ofDIFF applied to two text filestichy-cm anddart-
cm; in theDIFF output, lines occurring intichy-cm only are prefixed with “<”;
lines occurring indart-cm are prefixed with “>”. DIFF andDIFF-like tools are
the base of manySCM tools and systems, since they are convenient for reducing
the size of repositories (see section 2.5 for details).

Using DIFF is accurate for text data, since we can easily distinguish com-
mon lines from differing lines and manual changes are usually confined to small
regions. Differences that affect the entire file are not well handled by theDIFF al-
gorithm. This is especially true for non-text files, such as pictures, machine code
files, or compressed files, where a minimal change can affect the contents of the
entire file. In the last years, several improvements on the originalDIFF algorithm
have thus been developed; it has been empirically shown that these improvements
show better performance thanDIFF, notably on binary data [HVT96].

14 Components Functionality

dart-cm
Configuration
management is a
discipline
for controlling
the evolution of
systems.

tichy-cm
Configuration
management is the
discipline
of organizing and
controlling evolving
systems.

diff dart-cm tichy-cm
2c2
< management is a

> management is the
4,5c4,5
< for controlling
< the evolution of

> of organizing and
> controlling evolving

Figure 2.3: Finding textual differences withDIFF

To determine code differences in well-structured data, such as programs, a
structured representation is more effective than the textual representation. In sec-
tion 5.6, we discuss methods to determine code differences in abstract syntax
trees.

Historically, the primary objective of determining differences between ver-
sions is to save space when storing multiple versions at once, as discussed in
section 2.5. However, the difference must also be interpretable by humans to
find out what exactly changed. For these purposes, editors that keep track of
changes [MAM93, WG95] have been created; they track and express differences
in terms of user interactions rather than in terms of changed blocks of data.

2.5 Storing Component Versions in Repositories

As developers create new versions of components, old and new versions must be
stored persistently such that one can identify the product evolution and such that
earlier versions can be reconstructed.

2.5.1 SCM Repositories

EarlySCMtools likeSCCSandRCSintroduced the concept of arepository,where
the component versions are stored together with the relatedSCM information. A
repository does not store each version on its own, since that would require too
much space. Instead, it exploits the commonality between versions by storing
only thedifference(also calleddeltas) between versions. The mechanisms used
vary fromSCM system toSCM system.RCSstores the most recent version as full
text together with the differences (so-calledreverse deltas) to earlier versions. In
theSCCSsystem, each text block is tagged with the version(s) the block belongs
to. Most today’sSCM systems are based on either anRCSor SCCSapproach.

2.6 Managing Variance 15

2.5.2 Database Repositories

Emerging from the requirements of computer-aided design (CAD), substantial ef-
forts have been made to store composite and versioned objects in databases. The
common approach is to extend entity-relationship models by explicitversion rela-
tionshipslike derived-fromrelationships,is-part-of relationships, and so on; we
discuss such relationships in section 3.2.2.

Recently, such database technology has also been introduced in software en-
gineering environments [Dit89]. For instance, theIPSEN software engineering
environment is centered around agraph databasewhich supports version rela-
tionships [SS95]. But theIPSENauthors also state that still there is no database
fulfilling all needs of software engineering environments [ESW93].

2.6 Managing Variance

2.6.1 CPP “Repositories”

A completely different “repository” concept used for variant management is real-
ized in the C programming language. All variants are stored in a single component
visible to the programmer; variant-specific parts are enclosed in C preprocessor
(CPP) #if : : : #endif directives. As part of the compilation,CPPselects a single
variant from the source code determined by a conjunction of attribute/value pairs.
CPPevaluates each#if -expression, with any attribute being replaced by its re-
spective value. The code piece enclosed by the#if : : : #endif is included only
if the #if -expression evaluates to a non-zero value.

As shown in figure 2.4 on the following page, invocation ofCPPwith the
attributesTICHY set totrue andDATEset to1995 selects exactly the version
tagged with the formulaTICHY && DATE >= 1994.

UsingCPP, specific environments are described byconfiguration filesthat de-
fine attribute values reflecting the properties of a specific environment. Such def-
inition files can also be generated automatically. Tools likeAUTOCONF[Mac94]
run a series of tests to determine the features of the environment and create an
appropriate configuration file.

It is common to seeconditional compilation,as exemplified byCPP, as a pro-
gramming language feature. In our context, conditional compilation should rather
be regarded as a compiler- and language-independent version-control technique.
In fact, preprocessor use for other purposes than version control is highly dis-
couraged. In [Str94], Bjarne Stroustrup, the designer of the C++ programming
language, states that one of the aims of C++ was to makeCPPredundant and

16 Components Functionality

cm-defs
Configuration
#if TICHY && DATE >= 1994
management is the
#else
management is a
#endif
discipline
#if TICHY && DATE >= 1994
of organizing and
controlling evolving
#else
for controlling
the evolution of
#endif
systems.

cpp -D TICHY=true
-D DATE=1995 cm-defs

Configuration
management is the
discipline
of organizing and
controlling evolving
systems.

cpp -D TICHY=false cm-defs
Configuration
management is a
discipline
for controlling
the evolution of
systems.

Figure 2.4: Selecting versions withCPP

to “banishCPPinto the program development environment with the other extra-
linguistic tools where it belongs”.

In the extra-linguistic context ofSCM, conditional compilation is recognized
as a “flexible and general scheme” [GJM91] and called “normal industry prac-
tice” [GMSW89]. The main advantage of conditional compilation is that vari-
ance is explicitly placed under the control of the programmer, who can view and
edit several variants at once. Conditional compilation is thus frequently used to
enrich revision-orientedSCMsystems with orthogonal variance support. Unfortu-
nately, as variance grows, theCPPfile can become so strewn withCPPdirectives
that it is hard to understand, yet harder to change. Hence, the need for dedicated
variant-handling tools arises.

2.6.2 Multi-Variant Editors

On the component level, the problem of handling multiple variants was addressed
by variant-specific editors,exemplified by theP-EDIT andMVPE editors devel-
oped byIBM [SBK88]. These editors follow theCPPparadigm, but allow for
editing arbitrary version subsets. Only a single version is presented and edited,
but the color of each text part indicates whether the text part (and the subsequent
change) applies to the single version only or to several versions at once. For
transparency, the user can change the presented version while editing. A similar
functionality was implemented by Abrahamsen in theCPP-parse-edit-mode for

2.7 Managing Changes 17

theGNU EMACS editor [Abr95], allowing users to examine and edit a restricted
view of a CPPfile. TheCPP-parse-edit-mode also allows users to color text and
mark text as read-only based on theCPPvariable settings. A third approach is
presented by Narayanaswamy [Nar89], where a variant-specific editor encloses
differing code pieces inCPP-like directives.

When program code is stored not as text, but as anabstract syntax tree,struc-
ture editors can make variance explicit by supporting versioned subtrees and al-
lowing the user to switch between variants. Such interactive variant selection is
found in thePSG[BS86, SGS91, Sch95] andIPSEN[ELN+92, SS95] program
development environments. As the common code is stored in the common su-
pertree, the user can apply changes to all configurations by changing the common
supertree only. As shown in [Sch95], such approaches can be combined with syn-
tactical and semantical analysis, resulting in automatic consistency checking. The
problem is that changes occurring near the top of the syntax tree result in distinct
version subtrees, which may have identical, but unshared subtrees.

Multi-variant editors have not gained much acceptance. This may be due to
the fact that traditional techniques (such as conventional text editors andCPPus-
age) suffice in practice, or that users prefer open, tool-based environments to spe-
cialized program development environments. Another reason may be that recent
SCM research introduced other concepts for applying changes to several versions
at once, as discussed in section 2.7.

2.7 Managing Changes

In the concepts discussed so far, individualversionsof components were identi-
fied and managed. As an alternative, one can see a version as the result ofchanges
applied to some original version orbaseline.This is the basic idea of theChange-
Oriented Model,as realized in theSCM systemsEPOS[LCD+89, MLG+93]
andAIDE-DE-CAMP [Har89], where changes, rather than versions, are identified,
composed and applied on baselines.

In the Change-Oriented Model, changes are individual entities. For instance,
DIFF output, as discussed in 2.4 on page 13, may be regarded as a change rep-
resentation. Related changes, which may involve several components, can be
grouped intochange sets(also calledpatches) to ensure that they be applied as a
single entity.

Using a specialized stream editor, like theUNIX PATCH program, one can
apply change sets on a baseline and create the changed version from the original
version or vice-versa. As an example, consider figure 2.5 on the following page,
where the patchtichy-patch (the output of theDIFF run in figure 2.3 on page 14)
is applied to the baselinedart-cm. In dart-cm, PATCHremoves all lines prefixed

18 Components Functionality

dart-cm
Configuration
management is a
discipline
for controlling
the evolution of
systems.

tichy-patch
2c2
< management is a

> management is the
4,5c4,5
< for controlling
< the evolution of

> of organizing and
> controlling evolving

patch dart-cm< tichy-patch
Configuration
management is the
discipline
of organizing and
controlling evolving
systems.

Figure 2.5: Applying changes withPATCH

with “<” and inserts the lines prefixed with “>”, resulting in the “patched” text
on the right (which is actually thetichy-cm text from figure 2.5).

The main differences between change-oriented and version-oriented models
are summarized in table 2.1 on the next page. The principal advantages of the
Change-Oriented Model over version-oriented models are:

A natural link to SCM processes.Most SCM processes arechange-driven: A
customer or developer issues achange request(CR), which is considered
by a configuration control board(CCB), and finally incorporated into the
product afterCCB approval. The Change-Oriented Model allows changes
to be identified as separate entities and thus linking them with change re-
quests as these are processed.

Support for accounting and controlling is improved. Knowing the set of ap-
plied changes is important for determining the features of the final product.
For instance, one can always determine whether certain faults have been
corrected or whether special extensions have been made. Also, change sets
may reveal dependencies between components that do not show up in the
system model.

Changes may be applied to several variants at once.Representing changes as
individual entities allows users to perform a change on a single version and
to propagatethat change to a whole set of versions (calledambition), just
as a patch can be applied to files other than those it was generated from.

Many change combinations are possible.In the version-oriented models, each
version incorporates all changes leading up to that version. In the Change-
Oriented Model, one can choose for each change set whether it should be

2.7 Managing Changes 19

Version-oriented models Change-oriented models
Version space version graphs product-level changes;

(revisions and variants); attributes controlling
version attributes change application

Configuration ∑component versions base version+∑changes
Product white box approach black box approach
structure (query references the structure) (structure transparent to the query)

Version rules expressions over expressions over
version attributes change attributes

Constraints conditions on conditions on
version attributes change combinations

(e.g. consistent variant selection) (e.g.c1 impliesc2)
Versioning explicit implicit

(members of the version graph) (any change combination)
Combinability vm 2v

(m modules inv versions) (v changes)

Table 2.1: Version-oriented vs. change-oriented models (from [CW96a])

applied or not. For instance, one may create a version that excludes all
changes but the latest one, which is not possible in version-oriented models.

A problem with change propagation is that the user may not survey how his
change to a single version is propagated to the remaining versions. Another prob-
lem occurs with the ability of applying and combining arbitrary changes: one
must make sure that illegal combinations are excluded. Each application of a
change setC must ensure that all changesC0 thatC relies upon are applied as
well.

Until recently, change-orientedSCM systems did not allow users to specify
such mutually exclusive changes. Only combinations resulting in aconflict were
automatically excluded—that is, the change cannot be applied because the origi-
nal lines are not found in the base line.2 In [Mun96], Munch describes theHICOV
system, a constraint-based system that allows users to structure the configuration
space. It remains open, however, whether these constraints could actually be used
to model “traditional” version graphs and thus result in a unifiedSCM model.

Another recent approach that attempts to unify change-oriented and version-
oriented models is theASGARD system [MC96], which is realized on top of
CLEARCASE. In ASGARD, each user groups his changes according to a specific
activity. An activity is a group of related changes (e.g. fixing bug #327, extending
the editor, changing the font resolution, and so on) and can thus be defined as a

2See section 5.6 for a description of conflicts.

20 Components Functionality

process resulting in achange set.This simple and intuitive scheme is useful for
organizingSCM tasks and will help to introduce change-oriented versioning in
practice.

2.8 Discussion
We have identified several concepts used for maintaining evolving components.
Various versioning models are used to denote variants, revisions, and components.
As Conradi states in [Est95, p. 80], there is not yet a common agreement on
basic versioning models. At least, the versioning models can be identified and
classified; see [CW96b] for a detailed discussion.

Tools like DIFF can determine the difference (or change, or delta) between
versions automatically; this is useful for maintaining repositories in which a mul-
titude of versions can be stored in a compact fashion. Using tools likeCPPor
multi-variant editors, users can apply changes to several versions at once. More
advanced tools, especially suitable for structured texts (e.g. programs) will be
discussed in section 5.6.

In contrast to the Checkin/Checkout Model, where developers copy individual
versionsfrom and to a central repository, the Change-Oriented Model focuses
on changesbeing applied to a baseline. Managing changes instead of versions
allows for smooth integration into commonSCM processes and provides much
flexibility in combining change sets. Until recently, the Change-Oriented Model
lacked a notion of inconsistency across change sets. This is now addressed by
constraint-based systems likeHICOV, although it still seems difficult to integrate
both version-oriented and change-oriented versioning in a unified model.

Both the Checkin/Checkout Model and the Change-Oriented Model are pri-
marily concerned with single components; support for componentrelationships
is poor. Such structure functionality is found in theComposition Model,which is
discussed in the following chapter.

My second remark is that our intellectual powers
are rather geared to master static relations

and that our powers to visualize processes evolving in time
are relatively poorly developed.

— EDSGER W. DIJKSTRA, Go To Statement Considered Harmful

To look back to antiquity is one thing, to go back to it is another.

— CHARLES CALEB COLTON

Chapter 3

Structure Functionality

We extendSCM from the component level to the system level, using the concepts
of theComposition Model.The central concepts in the Composition Model are a
system modeldescribing the system structure andconfiguration rulesdescribing
which component versions are to be selected. Developers operate on configura-
tions by composing a system from its components and by selecting the desired
version for each component.

3.1 Describing the System Structure
To build a software product, components are assembled to form asoftware sys-
tem. To keep the terminology simple, we denote the set of all software com-
ponents that form a product assoftware system,any subset thereof assoftware
subsystem,and any unbreakable item ascomponent.A software system together
with any non-software items (such as documentation) forms thesoftware product.

An unstructured set of components is not enough to describe a software sys-
tem. A system modelis required that describes the architecture of a software
system, that is, its structure, its components, and how to build it [Dar91]. Since
the system model evolves with the software system, it must be subject ofCM
procedures; it is a basicCM principle that the system model must be explicit,
unambiguous and managed as an item in its own right [Whi91].

3.2 System Models for SCM
System models are commonly defined by describing therelationshipsbetween
the software items—that is, software components, subsystems, and systems. The
simplest system model describes a system as the aggregation of its components.

21

22 Structure Functionality

Its basic relationship isis-a-part-of: An itemA is said to bepart of an itemB if B
containsA. Usingis-a-part-of, one can decompose a system into subsystems and
atomic components and thus describe item hierarchies.

Recent time has seen considerable advances in system modeling, especially
with the introduction of modular and object-oriented approaches. ForSCM pur-
poses, specialized system models have been developed. Besidesis-a-part-of re-
lationships, these also reflect the relationships between versions.

3.2.1 AND/OR Relationships

Among the first concepts that included version concepts in a system model were
AND/OR graphs[MNR83, Tic81]. In anAND/OR graph, aggregates (systems and
subsystems) are modeled byAND nodes; an edge leading from anAND nodeA
to a componentC indicates thatC is a part ofA (is-a-part-of relation). To model
version alternatives, specialOR nodes are introduced. Each edge leading from
anOR nodeO to a componentC indicates a possible alternative;C is a possible
versionof O (is-a-version-ofrelation).

As an example, consider theAND/OR graph shown in figure 3.1 on the facing
page. The systemS is present in two versions 1:0 and 2:0. Version 1:0 consists of
the subsystemRand the componentC. R itself comes in two versions 1:0 and 2:0;
version 1:0 of R is built from two arbitrary versions of the componentsA andB;
version 2:0 of R requires specific versions ofA andB.

3.2.2 Database Relationships

One of the drawbacks of theAND/OR graph model is that it does not distinguish
between different version kinds: there is no way to determine an ordering between
versions. Such distinctions were introduced in later models. In his survey on ver-
sion modeling in engineering databases [Kat90], Katz replaces theis-a-version-of
relation by two new relations: Theis-derived-fromrelation models revision histo-
ries; theis-a-kind-ofrelation modelsgeneric components—the set of all versions
of a component. His system model distinguishes four types of relationships:

is-a-part-of: A componentA is said to bepart of a componentB if B contains or
usesA. B is thus either a client ofA, usingA’s functionality, or an aggregate
containingA. is-a-part-of relationships model component hierarchies.

is-derived-from: A componentA is derived from a componentB if A is a ver-
sion based onB. Typically, A is a revision ofB; Katz does not distinguish

3.2 System Models forSCM 23

1.1 1.2 1.3 1.1 1.2 1.3 1.1 1.2 1.3 1.4

A B C

1.0 2.0

R

1.0 2.0

SOR

AND

Figure 3.1: AnAND/OR graph (from [Tic88])

between revisions and variants. Usingis-derived-fromrelationships, one
can determine the version graph.1

is-a-kind-of: A componentA is a kind of B if A is an instance of the generic
componentB. is-a-kind-ofrelations unite specific versions of a single com-
ponent.

is-equivalent-to: Some applications, especiallyCAD, provide a variety of com-
ponentrepresentations.These can be tied together usingis-equivalent-to
relationships.

An example ofis-derived-fromand is-a-kind-of hierarchies is shown in fig-
ure 3.2 on the next page. The componentALU:Layoutcomes in the five versions

1Note that the termderivationis more frequently used for denoting the relationship between source
components and derived components.

24 Structure Functionality

ALU[0].Layout

ALU[1].Layout

ALU[2].Layout

ALU[3].Layout

ALU[4].Layout

ALU[5].Layout

ALU.Layout

is-a-kind-of

is-derived-from

Figure 3.2: A database relationship graph (from [Kat90])

ALU[0]:Layout to ALU[5]:Layout. ALU[0]:Layout is the original version; both
ALU[4]:LayoutandALU[5]:Layoutare derived from the versionALU[2]:Layout.

Since Katz’s system model originates from maintaining design data, it pro-
vides no relationships between target components derived from source compo-
nents, as discussed in chapter 4; Consistency issues (see section 3.6) are left un-
addressed as well. Such issues, specific to software construction, were introduced
in specificSCM models, such as the one realized in theConfiguration Manage-
ment Assistant(CMA), discussed in section 3.6.2. It remains unclear, though,
how SCM operations—transitions between relationship graphs—are to be mod-
eled and how constraint relationships such as consistency or compatibility are to
be verified.

3.3 Selecting System Configurations

From a system model, theSCM system (and the developers) can determine what
components are part of the system. To work on a particular set of components,
they determine aconfiguration. A configuration is a collection of components

3.3 Selecting System Configurations 25

tailored for a specific purpose [Whi91]. Typically, a configuration meets the needs
of a particular environment or user, which is identified byconfiguration rules
denoting the components and their respective versions.

The configurations described by configuration rules can be grouped into three
configuration types.

Bound configuration. A bound configuration[LCS88] describes an unambigu-
ous configuration independent from a specific context, as the current time
or the state of other components. Bound configurations are typically used
to identify product releases as shipped to customers.

Generic configuration. In contrast to bound configurations, ageneric configura-
tion [Tic88] (also calledpartially bound[LCS88]) describes an unambigu-
ous configuration dependent on the context; for instance, a rule specifying
the most recent version of a component. Generic configurations are typi-
cally used in software development and production.

Abstract configuration. Both bound and generic configurations denote an un-
ambiguous set of components and versions. In case the rules are ambigu-
ous, the configuration specification is incomplete. We call such a configu-
rationabstractbecause of the similarity to abstract superclasses in object-
oriented design (see section 3.3.6 for details); the synonymsdynamic con-
figuration [Kat90], configuration template[Fei91a, Sch95],configuration
family [PF89], andambition [LDC+89, MLG+93] are also found.2 Ab-
stract configurations allow for describing sets of configurations and have
recently found increased interest in the domain of dynamically composed
systems (DCS) [SM95a, SM95b].

The configuration rules as realized bySCM systems are discussed below.

3.3.1 Tagging Configurations

SimpleSCM tools likeSCCSandRCSprovide bound configurations: specific ver-
sions are tagged with a label (aconfiguration tag) identifying the configuration.
This allows for the definition of aconfiguration baseline.RCSandSCCSdo not

2The termdynamic configurationis prone to confusion, since it is widely used in the context of
adaptive systems as the ability to modify the structure of an application while the application continues
to operate [WS95]. The termconfiguration templatesuggests an instantiation instead of a refinement.
The termconfiguration familyimplies a finite, well-defined set of possible configurations, which
need not be, and the termambition is too closely related with change propagation, as discussed in
section 2.7.

26 Structure Functionality

allow for specifying the set of components actually included in the configuration.
This is handled by theConcurrent Versions System(CVS) [Ber90], which extends
the tagging mechanism to software systems and thus identifies the set of compo-
nents in the configuration. In all these simpleSCMsystems, generic configuration
is supported only through selection of the most recent version.

3.3.2 Boolean Attribute Queries

The configuration rules of more advancedSCM systems reflect the respective
identification schemes, as discussed in section 2.3. The basic idea is to use
boolean expressions which must be satisfied by the identification term of selected
version.

Theoption spaceas described by Lieet al.[LCD+89] is closely related with
the Change-Oriented Model, where each change can be applied or not. Conse-
quently, configurations are described by a formula in propositional logic, where
each proposition (calledoption) may be true, standing for a change to be applied,
or false, meaning that the change not be applied.

In ADELE [Est85, Est88, EC94], variants are identified byattributes,where
each attribute can have an arbitrary value; thus, one is not restricted to boolean
values as in the option space. The user can designate a configuration by specifying
a boolean term based upon the desired attributes. TheADELE configuration rule

window-system= x11^ (current_status6= experimental)

includes all components in a configuration whose window system is X11; only
current or non-experimental components are to be included. Revisions are se-
lected in a similar fashion by imposing constraints on thedate attribute (e.g.
date< 18 02 89). Through this flexible and general scheme,ADELE supports
both bound and generic configurations.

In Nicklin’s context model[Nic91], a similar scheme is used. As an exten-
sion, attributes can be undefined: referencing an undefined attribute results in an
undefined value of the selection term. The richest model of boolean queries, how-
ever, is found in theJASONsystem [Wie93], where full first-order logic may be
used, including existential and universal quantifiers. These queries can also be
used as generalconfiguration constraints,as discussed in section 3.6.1.

3.3.3 Preferences and Defaults

As mostSCM systems cannot handle ambiguity, they provide means to make
selections unambiguous. The idea is to provide special configuration rules for
these tasks:

3.3 Selecting System Configurations 27

Preferences.A preferencerule applies if the selection is ambiguous. It selects
one “most preferred” version out of the selection.

Defaults. A default rule applies if the selection is empty. It makes the selection
contain one “default” version.

As an example for preferences and defaults, consider theSHAPEsystem. In
SHAPE, configuration rules are specified in aPROLOG-like syntax. Each rule
denotes alternatives of boolean conjunctions; the rules are specified according to
their preference: the most preferred versions come first, the least (the default)
comes last.

Figure 3.3 shows aSHAPE configuration rule that implements a change of
a component status from “saved” to “proposed” (components are either saved,
proposed, or published).

i test rule :– gt(status, saved), max(version);
eq(status, proposed), eq(test switch, on);
ge(status, published), max(version);
cut(Cannot bind $+ — something’s wrong here!).

Figure 3.3: ASHAPEconfiguration rule

The first preference clause selects the most recently published version with
status saved or better. If the first clause fails, such a version is is not available.
Hence, the second clause chooses a proposed version dedicated for testing (with
a test switch set toon). If this clause again fails, the nextdefault clause applies,
stating that all remaining objects are to be chosen from the home baseline—that
is, the most recently published version. If this clause also fails, the final clause
issues a diagnostic and aborts the selection.

3.3.4 Preferences in Queries

Another approach for specifying preferences and defaults is found indatabase
queries. When databases are used as component repositories, database queries
are used to retrieve specific component versions. In [LL87], Lacroix and Lavency
point out that traditional database query languages are not sufficient for selec-
tion of configurations. Since configuration queries areintensional,they denote
objects by their properties rather than by their name (or exact version specifi-
cations). But intensional queries may be ambiguous and result in more than one
selected version; theSCMuser must select the best suitable version manually. The

28 Structure Functionality

select the instances of CONF
having

the version of MAIN
having

same TARGET as the version
of PROCESS-DATA and

same TARGET as the version
of GET-DATA

from which
prefer those

having
the version of MAIN

having STATUS = tested
prefer those

having
the version of PROCESS-DATA

having STATUS = tested

Figure 3.4: A database selection rule with preferences (from [LL87])

authors thus suggest to extend database query languages by preferences and de-
faults to make the selection process explicit. A self-documenting example of such
a database query, selecting component versions with a certain status, is shown in
figure 3.4.

3.3.5 Search Paths in the Version Graph

All query mechanisms discussed so far rely on versions tagged with a set of at-
tribute/value pairs; each query mechanism can be expressed by specifying a first-
order boolean formula which the selected versions must satisfy (for database se-
lection rules, second-order formulas may be required). Systems relying on other
identification schemes provide alternate configuration rules.

As discussed in section 2.3.2,CLEARCASE identifies versions by labeling
edges in the version graph. TheCLEARCASEconfiguration rules are thussearch
pathsin the version graph. Search options can include the work areas, variants,
and revisions in either all components or selected subsets.

Figure 3.5 on the facing page illustrates the usage of configuration rules in the
CLEARCASEsystem. Each rule, beginning with the keywordelement, contains
a wildcard denoting the components it applies to (“*” applies to all components)
and aversion graph query.

3.4 Integrated Configuration Languages 29

— Rules for maintenance to an old release:
— if the file is checked out, use this version.
element * CHECKEDOUT
— otherwise, use latest version on maintenance branch.
element * : : : /vs fixes/LATEST
— otherwise, use the official V2 released version.
element * V2 -mkbranch v2 fixes

Figure 3.5:CLEARCASEconfiguration rules (from [Leb94])

If a query finds one or more versions, the latest version is taken; otherwise,
the next rule is tried. Each developer is assigned a set of rules describing his
particular environment.

3.3.6 Refinement of Configurations

Rather than disambiguating selections as soon as possible, a fewSCM systems
also handle abstract configurations, as discussed in section 3.3, and allow for
operating with several configurations at once.

The JASONsystem [Wie93] uses partial attribute descriptions to denote ab-
stract configurations. Abstract configurations are used as abstract superclasses of
further instantiated configurations; subclassed configurations inherit the attributes
of their superclasses.JASONthus realizes anobject-orientedSCM model.

Figure 3.6 on the next page illustratesJASONconfiguration descriptions. The
configurationEMailSpecis defined as a subclass ofDesignSpec: an abstract
configuration denoting all electronic mail systems, inheriting allDesignSpecat-
tributes likecontents, version, or revision.

Even more concrete (less abstract) configurations may be obtained through
further subclassing: Starting with an abstract configuration likeEMailSpec, the
set of configurations is constrained through additional attribute specifications until
a fully instantiated (bound or generic) configuration is obtained.

3.4 Integrated Configuration Languages

Recently, specializedconfiguration languageshave been developed that attempt
to integrate allSCM aspects of system modeling into one single formalism.PCL,
the configuration language of thePROTEUSsystem [TGC95], allows to express
variability in the composition of a system, including relationships between com-
ponents and versions, as well as the selection of a bound consistent configuration
(calledbinding in PROTEUS).

30 Structure Functionality

In figure 3.7 on the facing page, we see aPCL example modeling a family
of calculator programs namedCalcProg. Theattributes section declares the
attributes by which the individual versions differ—in this case, one version has a
graphical user interface (xgui = true), and the other does not.

Theparts section declares the components of theCalcProg family; calc is a
member of theCalculator family, whilemath is a member of themathlib family.
The user interface part, is only present in the graphical user interface version, as a
member of theXGUI component family; the non-graphical version (xgui = false)
does not require such a component.

In PROTEUS, primitive entities likeCalculator are mapped to physical files.
Again, this mapping can be subject to variability, as shown in figure 3.8 on
page 32—if theexpression attribute is set toinfix, the filesexpr.C andexpr.h
are chosen, and ifexpression is set toreverse polish, the filesrpn expr.C and
rpn expr.h are chosen.

Version selection is done by a simple instantiation of attributes; for instance,
by assigning the valuetrue to thexgui attribute and the valuereverse polish to
theexpression attribute.PROTEUSalso allowspartial instantiationsto refine the
selection incrementally.

The benefit of a full-fledged configuration language likePROTEUSis that it
integrates severalSCM aspects—in this case, system modelling, configuration se-
lection, and manufacturing—into one single formalism. The question is how far
such a formalism is more than the sum of its parts. If eachSCM aspect is rep-
resented by yet another language feature, the language gets easily overloaded by
individual, non-orthogonal features.

DesignSpec: class
f

system: String,
contents: Document,
version: Integer,
revision: Integer

g

EMailSpec: family of DesignSpec
f

system = “Electronic Mail System”
g

Figure 3.6:JASONconfiguration descriptions (from [Wie93])

3.5 Visualizing the Configuration Space 31

family CalcProg
attributes

: : :
xgui: boolean default false;

end
parts

ui) if xgui = true then XGUI endif ;
calc) Calculator;
math) mathlib;

end
end

Figure 3.7: Structural variability inPCL (from [TGC95])

3.5 Visualizing the Configuration Space

To keep track of the growing number of possible configurations, users must be
able to conceptualize and visualize the configuration space. In this section, we
present some visualization techniques.

Version graphs. The first approach to visualizing the version space, and still by
far the most popular, is to display component-based version graphs and let
the user choose versions interactively. Version graphs are useful for sin-
gle components only and thus useful forSCM tools realizing the Checkin/
Checkout model. In figure 3.9 on page 33, we see a revision graph as dis-
played inRCE[Xcc95, Tic95], anRCSsuccessor providing a graphical user
interface.

Version threads. To illustrate version selection for systems built from several
components,version threadshave been suggested as notation, as shown in
figure 3.10 on page 34. Each system revision (shown on the left) consists of
one revision of each system component, as indicated by the specific version
thread. This notation does not support variants, even temporary ones, and
does not visualize consistency constraints.

Constraint formalisms. Both version graphs and version threads only show a set
of existing configurations, rather than visualizing the set of possible config-
urations. In [Gul93], Bjørn Gulla presents a visualization of configuration
constraints using graphs. Nodes indicate configuration options, arrows im-
plications between options, diamonds stand for disjunctions and thick dot-

32 Structure Functionality

family Calculator
attributes

: : :
expression: expr type default infix;

end
physical

calc) (“Calculator.C”, “Calculator.h”);
expr) if expression = infix then

(“expr.C”, “expr.h”)
elsif expression = reverse polish then

(“rpn expr.C”, “rpn expr.h”)
endif ;

end
end

Figure 3.8: Mapping variability inPCL (from [TGC95])

ted lines represent mutually exclusive sets. Different abstraction levels are
obtained by defining new options as subexpressions (or subgraphs).

In figure 3.11 on page 35, users can choose between one of the mutually
exclusive optionsPM, X11, or SunView. After choosingX11, users have
the choice betweenHp9000, Dec, andSun3, while PM implies theIBM
machine just asSunView or Sparc imply theSun3 machine.

As no technique is fully satisfying, it is obvious that the work on visualiza-
tion of configurations is still in its infancy. As Gulla himself states, “this is a
first proposal that will probably need refinements and validation in an industrial
environment.”

3.6 Interfaces and Consistency

Selecting an arbitrary configuration from a collection of components does not
suffice; as stated in section 1.3, the configuration must be consistent. InSCM
systems, we find maintenance of external consistency (respective to some spec-
ification) and of internal consistency (the syntactic and static correctness of a
program).

3.6 Interfaces and Consistency 33

Figure 3.9: Version selection from aRCErevision graph (from [Xcc95])

3.6.1 External Consistency

External consistencyis consistency respective to a specification separated from
the software components. Typically, such a specification is coupled with the iden-
tification scheme; it can be expressed throughconsistency constraintsin the con-
figuration selection rule as discussed in section 3.3.

As consistency constraints usually apply to each possible configuration, they
are often separated from the actual selection rules. Each consistent configuration,
selected in a separate process, must satisfy these constraints. TheJASONsystem,
for instance, allows to specifyconfiguration constraintsas first-order boolean for-
mulas on version attributes including universal and existential quantifiers. The
scheme is general enough to specify module interconnection constraints like “No
resource is provided by more than one component”, as illustrated in figure 3.12
on page 36.

Another generic approach is found in theConfiguration Management Assis-
tant (CMA). In [PF89], Ploedereder and Fergany introduce the following relation-
ships to model source/target and consistency dependencies:

is-instance-of: Instance relationshipsare used to model dependencies between

34 Structure Functionality

1.2 2.1 1.0 1.11.0

1.1

1.2.1

1.2.2

1.3

1.3.1

2.0

1.3

1.5

2.3

1.1

1.2

1.3

1.4

1.2

Revision

Component A Component B Component C Component D

Figure 3.10: Version threads (after [Gul93])

source components (e.g. source code) and derived components (e.g. object
code).

is-consistent-to: Two components are said to be consistent with each other if
“they correctly operate together”.

is-compatible-to: Two versions of a component are calledcompatibleif
replacing one version with another still results in a consistent system.

Based on the semantics of the version attributes and these relationships, theCMA
can determine the consistency of a configuration. However, as in otherSCM sys-
tems, consistency largely relies on user specifications.

3.6.2 Internal Consistency

In some cases, consistency violations can be determined automatically when the
actual contents of the software components are taken into account. For instance,
violations of thestatic correctnessof a software system can be verified. The sim-
plest way to determine violations is to rely on the build tools and check for failing

3.7 Discussion 35

IBM PS/2

Hp9000

Dec

Sun3

X11

PM

SunView

Sparc

Figure 3.11: A constraint diagram (after [Gul93])

build attempts; in chapter 4, we discuss howSCM systems covering software
builds maintain the static correctness by determining the impact of a component
change and rebuilding all dependent components.

Besides this basic functionality, someSCM systems infer and useinterface
information for maintaining the static correctness for a configuration. Such an
approach is found in theIPSEN software development environment [ELN+92,
SS95]. Based on the module interfaces as specified in the components and the
inferred dependency graph,IPSENcan ensure the syntactic and static correctness
of a configuration. In the proposed versioning model for thePSGsystem [SGS91,
Sch95], such consistency violations can even be deduced for fine-grained changes
within components.

3.7 Discussion

The Composition Model extendsSCM from the component level to the system
level. The system structure is expressed in a system model. Developers op-
erate on configurations by first composing a system from its components and

36 Structure Functionality

Rule-2: constraint on (config: Configuration)
for-all comp-1, comp-2 in config.components:

comp-1 6= comp-2 implies
for-all resource in comp-1.provides:

not comp-2.provides(resource)

Figure 3.12: AJASONconstraint specification (from [Wie93])

then by selecting the desired version for each required component. Several se-
lection schemes exist, from pattern-matching search paths in the version graph
via first-order boolean formulas to full-fledged database queries. Consistency is
ensured through appropriate selection schemes or through additional constraints;
SCM systems tailored for specific programming languages may also check for
internal consistency.

The Composition Model does not support changes as individual entities, as
does the Change-Oriented Model. As such, the Composition Model does not
provide special construction or team facilities. These facilities shall be discussed
in the following chapters.

Mahler: Is a configuration a description
or is it the result of applying the description?

Audience: Yes! (Laughter)

— SUMMARY OF SVCC’88 PLENARY DISCUSSION [Win88]

Chapter 4

Construction Functionality

Building a software system requires a system model enhanced with build infor-
mation. The simplest of these system models is abuild command filecontaining
a procedural description of the processing steps to build all derived components
of a configuration from the source components. Through more advanced system
models, aSCM system can support automated incremental software construction
and perform management of derived components.

4.1 Component Dependencies
For large systems, building a system from scratch can be very expensive, espe-
cially, if the system must be completely rebuilt after each change. The solution
to that problem is to determine the components affected by a change in a source
component. In general, a componentA is said todependupon a componentB
if a change inB might require changes inA such thatA remains correct. Whit-
gift [Whi91] distinguishes four types of dependency:

1. An implementationof a component depends upon its specification.

2. A derived componentdepends upon its source components.

3. A software component depends upon the components whosefunctionality
it uses.

4. Documentationandprogramcode depend upon each other.

Most of these dependencies must be resolved manually after a change, but depen-
dencies of type 2 can be processed automatically throughincremental construc-
tion.

37

38 Construction Functionality

4.2 Incremental Construction

One of the first approaches for incremental software construction and probably
one of the most successful software tools ever written, was Feldman’sMAKE
tool [Fel79]. InMAKE, the system model is represented through aMakefile.The
Makefile declares the dependencies between source and derived components and
the processing steps to build derived components. At eachMAKE run, MAKE
checks the last modification date of all source and derived components. Each
derived component that does not exist or that is dependent on a younger source
component is rebuilt.

As an example, consider the simple Makefile shown in figure 4.1. Each de-
pendency is shown by a declaration of the formD: S1 S2 � � � Sn, meaning that the
derived componentD depends on then source componentsS1; : : : ;Sn. The actual
commands buildingD follow the dependency declaration. For instance, thetty.o
component depends on the source componentstty.c andcommon.h; to build it,
the commandcc -c tty.c is issued. For convenience,OBJECTS defines a list of
objects referenced as$OBJECTS.

OBJECTS = tty.o display.o
editor: $(OBJECTS)

cc -o editor $(OBJECTS)
tty.o: tty.c common.h

cc -c tty.c
display.o: display.c common.h

cc -c display.c

Figure 4.1: A simple Makefile

Should thetty.c component be changed after a build, thedisplay.o component
will not be rebuild, because it does not depend ontty.c. Only thetty.o andeditor
components will be rebuilt. Should thecommon.h component change, all objects
must be rebuilt, since all depend oncommon.h.

The problem withMAKE when used in anSCM context is thatMAKE does
not determine dependencies and that it does not know about component versions;
someMAKE extensions likeGNU MAKE at least include conditional evaluation
and automatic check-out fromRCSrepositories. Also, relying only on the mod-
ification date to determine changes may result in unnecessary rebuilds. These
problems were addressed by later build tools that allowed for automatic depen-
dency determination, versioned source access using the configuration selection
rules and for automatic identification of derived components with their prove-

4.3 Determining Dependencies Automatically 39

nance and build environment.

4.3 Determining Dependencies Automatically
With language-specific knowledge, build tools can automatically deduce depen-
dencies and the impact of changes. TheODIN system [Cle88, Cle93], for exam-
ple, can automatically deduce dependencies by scanning source components for
appropriate statements. This scanning is language-dependent; for instance, com-
ponents written in the C or C++ programming language are scanned for#include
directives.ODIN saves its derivation history across builds; this allows for deleting
intermediate components such as object files when the final system does not need
to be rebuilt.

Another language-specific approach is found in theRATIONAL software de-
velopment environment [FDD88, Mor88].RATIONAL can determine the impact
of changes toADA programs—for instance, a change applying to comments only
does not cause any rebuilds.

An elegant and language-independent method for determining dependencies
is undertaken inCLEARCASE. Through its virtual file system, discussed in sec-
tion 5.4.2, theCLEARCASE MAKE utility (called CLEARMAKE) monitors all file
accesses performed by the build commands and thus determines all dependencies
while the system is being built. For each derived componentC, each file accessed
is considered a source component thatC is dependent upon.

4.4 Versioned Software Construction

In all SCM systems supporting software construction, building a system is done
by specifying the desired configuration, as discussed in section 3.3. The main
problem is the identification of derived components, which must take the entire
build environment into account—that is, the versions of the source components
as well as the versions, parameters, and environment variables of the build tools.

In CLEARCASE, each derived component is tagged with abill of material
(also calledbound configuration threador BCT) describing the build environment.
The bill of material is determined automatically file access monitoring. The un-
fortunate side effect is that minor changes in the environment—for instance, the
change of an environment variable unrelated with software builds—may result in
an unnecessary rebuild.CLEARCASEthus allows to distinguish betweencritical
environment aspects (those that cause a change in the derived components) and
non-criticalaspects (whose change does not imply a rebuild).

In theSHAPEsystem, the user has a similar control about the settings that in-
fluence rebuilds. For each variant, the user can specify by whichMAKE variables

40 Construction Functionality

it is dependent upon. Hence, the change of a compilation flag may result in a re-
build, while the change of the installation directory may not. Similar approaches
have been undertaken by Kielmann [Kie92], who usesPROLOGfor software con-
struction.

4.5 Attribute Propagation
TheCAPITL system [RS91, AS95] uses a description logic calledPersistent ob-
jects with logic(POL) to identify components and to infer build plans.POL terms
are conjunctions ofname) valuepairs, calledattributes. Each component is
tagged with aPOL term denoting its attributes.

For the purpose of planning and building, six attributes are used:

code: a list of possible build expressions;

contents: the contents (e.g. source or object code) of the component;

provenance: the record of how the component was created;

form: its type when used as argument to a tool;

functionality: a description of what the component does; and

references: other components this component depends upon.

Through theprovenance attribute, each derived component is tagged with its
derivation historyand thus uniquely identified. Just as inSHAPE, users can con-
trol which attributes cause differing variants and how attributes are propagated
from tools and source components to derived components.

As an example for attribute propagation, consider the tool specification rule
in figure 4.2 on the next page. The specificationCc debug describes anexe-
cutable C compiler whosefunctionality is to generate anobject code from a
c source. Thefunctionality F, which matches an entirePOL term, is propagated
from the source component to the object component. However, thedbg sym and
opt attributes of the generated object codes differ. TheCc debug tool generates
debugging symbols and thus sets thedbg sym attribute toyes; as it does not op-
timize, theopt attribute is set tono. Using theCc opt tool, these attribute values
are just inverted.

By making attribute propagation explicit and through its underlying well-de-
fined attribute logic,CAPITL provides the most versatile identification scheme for
derived components found in today’sSCM systems. AsPOL terms can also be
denoted as graphs (an alternate name iscyclic terms), they also provide a means

4.6 Optimized Software Construction 41

Cc debug: obj(
form) executable,
functionality)

func(in) obj(form) c source, functionality) F),
out) obj(form) object code(dbg sym) yes, opt) no,

functionality) F),
contents) “hactual Cc executable codei”

),
Cc opt: obj(

form) executable,
functionality)

func(in) obj(form) c source, functionality) F),
out) obj(form) object code(dbg sym) no, opt) yes,

functionality) F),
contents) “hactual Cc executable codei”

)

Figure 4.2: Tool specifications inCAPITL (after [AS95])

to unify attributes and relationships: each relationX ! Y is represented by an
attribute inX with a value ofY and a name standing for the relation kind.

4.6 Optimized Software Construction

Most SCM repositories only store source components, since determining the dif-
ference between derived components (often binary files) does not lead to efficient
compression of the repository. ManySCM systems provide acachefor derived
components (also calledobject poolor binary pool), where frequently used de-
rived components are stored.

When components are unchanged across versions, building a derived compo-
nent can be avoided when the derived component is still cached as the result of a
previous build. Such techniques are found inSHAPEandCLEARCASE; of course,
the source components must not have changed in between. Besides caching de-
rived components,CLEARCASEgains additional speed through distributed and
parallel construction. The correctness criteria for such build optimizations have
been formalized by Gunter [Gun96].

42 Construction Functionality

4.7 Conclusion
Most SCM construction tools are descendants ofMAKE. Typical extensions in-
clude automatic generation of dependencies, versioned software construction that
propagate version identification from source components and tools to derived
components, and optimizations to reuse derived components from a central cache.

The more innocuous the modification appears to be,
the further its influence will extend

and the more the design will have to be redrawn.

— FYFE’S SECOND LAW OF REVISION

Chapter 5

Team Functionality

To allow for parallel work,SCM systems provide the notion of aworkspace,iso-
lating developers from each other’s changes.SCMsystems differ in the way work-
spaces are realized and in the specificcooperation strategy—that is, how changes
are propagated across workspaces.

5.1 Cooperation through Workspaces

One of the central functionality areas inSCM is team functionality.Team func-
tionality enables a team of developers to develop and maintain the software prod-
uct. The benefit of team functionality is that developers can work in parallel,
isolating individual developer’s changes from each other and coordinating the
propagation of changes.

The central concept in team functionality is theworkspace(also calledlong
transaction,due to a similarity with database transactions [EGLT76, Gra81]). A
workspace is the individual area of a developer, isolating him from changes made
by others, and isolating others from his changes. Any propagation of changes
across a workspace boundary is an explicitSCM operation.

A workspace is usually accessed as a file system. This is necessary because
the vast majority of software development tools cannot access its sources directly
from the repository, but requires sources in a file system instead. Hence, work-
spaces perform theintegrationof a SCM system into a software development en-
vironment.

Other aspects of team functionality arecooperation strategiesandconflict res-
olution. When developers work in parallel, theSCMsystem must ensure that their
changes do not conflict with each other. This is realized through a cooperation

43

44 Team Functionality

strategy that either relies on locking components against changes or on merging
parallel changes. Finally, theSCM system must provide support for projects that
span multiple sites.

5.2 Workspaces as Private Directories

The simplest workspace concept is that of a private file system (e.g. a user’s di-
rectory), copying versions from and to the central repository. This is the base of
the Checkin/Checkout Model, as discussed in chapter 2. Developers must copy
(or check out) components from the repository into their workspace (a private di-
rectory), work with them and copy them back (check in) into the repository after
changes have been made. Besides the components the developer wants to change,
the workspace must also contain all components required for compilation, testing,
or searching; these must be checked out as well.

This component-based approach can be extended to systems; in fact, most re-
pository-basedSCM systems following the Composition Model use this scheme.
TheCVS system, for instance, allows for checking out all components of a sys-
tem at once, creating a private copy of the entire system source for each developer.
CVSprovides an automatic scheme that exports all changes from the private work-
space to the central repository and vice-versa, synchronizing the workspace with
the repository.

This “to-and-fro copying” scheme has one advantage, its simplicity. It also
has several disadvantages.

Copying is waste.Giving each developer a private copy of the entire system may
require huge amounts of storage resources. Copying can be affordable for
medium-sized projects; in fact, theCVS developers state that the purchase
of additional mass storage for a new developer can be neglected when com-
pared to other work costs. But maintaining a copy for each developer is
unlikely for large systems with thousands and thousands of developers—
especially because every developer must build his own system copy.

Sharing is non-transparent. SomeSCM systems suited for large systems pro-
vide sharing mechanisms that allow developers to share environments. Un-
fortunately, sharing is non-transparent to the developers, who must take
additional care when accessing shared versions.

Components are copied away from version control.This is the central prob-
lem with copying schemes: a checked out component is no more under
SCM control. Neither can theSCM system save space by determining the

5.3 Workspaces through Application Interfaces 45

version differences, nor can one useSCM tools to determine the state of
a checked-out component, nor can build tools exploit equality of derived
components across workspaces. Developers can propagate changes and
component versions directly between workspaces, bypassing theSCM sys-
tem.

These problems have led to the development of methods that allow developer
tools to access the repository directly, without the need of copying to and from a
repository. Using these methods, workspaces are actually parts of the repository
and fully underSCM control.

5.3 Workspaces through Application Interfaces

The first approach to overcome to-and-fro copying was the development of “stan-
dard” repositories that could be accessed through an application programmer in-
terface (API). That is, all development tools must be extended such that they ac-
cess source components through the repository interface instead of the file system.

This approach has several advantages; in particular, it allows to overcome the
shortcomings of a file system, such as transaction insecurity, inappropriate object
identification, and so on. A developer’s workspace would consist of a configu-
ration rule, identifying the components and the respective versions. Developers
can share source components and derived components (which are stored in the
repository). For a survey of repository-based software engineering environments,
and the required repository techniques, see [BESS96].

The single, but fatal disadvantage of such encapsulated environments is that
still, a file system is the smallest common denominator between nearly all de-
velopment tools; the consequence is that even when using a standard repository,
users must still copy versions from and to the repository.

5.4 Workspaces through Virtual File Systems

The most successful approach to realize direct repository access is to provide a
virtual file systemmapping the repository into a file system. This ensures that
derived components are created within the workspace, placing them underSCM
control.

5.4.1 Explicit Version Access

On the component level, theSHAPEtoolkit provides a dynamically linked library
that interprets file names containingversion specifications. This allows arbitrary
programs to access theSHAPErepository directly, providing transparent version

46 Team Functionality

access. For instance, opening a virtual file likeprog.c:3.1 returns version 3.1 of
the fileprog.c. A similar approach is found theRATIONAL system.

A genericapproach is pursued in themultiple dimensional file system(n-
DFS), as discussed by Fowleret al. in [FKR94]. In then-DFS, arbitraryservices
can be attached to a file system. For instance, a versioning service may provide
direct repository access through means of virtual file names.

Instead of extending file names with versioning information,RCE provides
a library that hooks into theuser interface.RCE extends the standard file selec-
tion dialog with a version selection dialog, as shown in figure 3.9 on page 33.
Whenever a user selects a file for processing, he may also select a version to work
upon.

One problem is common to all these approaches: Versioning is explicit. There
is no way to switch between versions implicitly, without embedding the version
in the path name—or specifying the version in an interactive dialog. It may be
desirable, though, to access several components from a specific configuration,
without having to specify the version of each single component. This is realized
through implicit version access, as described below.

5.4.2 Explicit/Implicit Version Access

Instead of appending a version specification to a path name, theCAPITL exten-
sible file system (EFS) prependsthe version specification. Through changing
the current directory, acurrent versioncan be selected that applies by default:
Through changing the current directory to3.2.1:, all subsequent file accesses re-
fer to the respective 3.2.1 version. This method allows for both implicit version
access (using relative paths from a versioned directory) as well as explicit version
access (using absolute paths containing the version specification).

In theCLEARCASEsystem, explicit and implicit access are handled by differ-
ent methods.Explicit version access is achieved by appending the version spec-
ifier to the component name, as shown above. ACLEARCASEversion specifier
has the form “@@/”, followed by the path in the version graph. The color variant
of componentzbuf.c can thus be accessed under the namezbuf.c@@/color, for
instance.

Additionally, CLEARCASEallows versioned access to entire file systems via
configuration rules,discussed in section 3.3.5. If a component is accessed with-
out a version specifier, the version according to the configuration rules is selected.
Using this two-fold scheme,CLEARCASEallows explicit version access (by ap-
pending a version specifier) as well as implicit access (by specifying the config-
uration rule). ACLEARCASEworkspace is thus defined by a configuration rule,

5.4 Workspaces through Virtual File Systems 47

providing a specificview on the repository.
Another approach realizing both implicit and explicit version access is real-

ized in theSUN Network Software Environment (NSE) [Cou89], which realizes
the so-calledLong Transaction Model.In NSE, workspaces are also views on a
central repository. The workspace is mounted as a virtual file system in the user’s
directory; upon mounting, a specific configuration must be selected.NSE per se
thus allows only implicit version access; by mounting different configurations at
different places, explicit version access can be realized.

5.4.3 Realizing Virtual File Systems

To realize virtual file systems, three major approaches can be found.

Replace the system libraries.In the SHAPE AtFS, then-DFS, andRCE, virtual
file access is realized through extended variants of the system libraries.
That is, file accesses containing version specifications are diverted to access
the repository instead. Programs must be linked with the specialized library
in place of the system library; in case the operating system supports shared
libraries, replacing the shared system library will suffice for dynamically
linked programs.

The advantage of this approach is its good performance; the disadvantage
is that, depending on the operating system, some or even all programs must
be relinked to include virtual file system access. Another problem is that
process size is increased with repository access code.

Provide a specializedNFS server. TheNSEand theCAPITL EFSare realized on
top of a modifiednetwork file system(NFS) [SGK+85] server. NFS was
originally indented to allow network-wide file system access, but it can
also be used to create virtual file systems by modifying theNFSserver.

The advantage of theNFS-based approach is that any programs can access
the virtual file system without modification; theNFS server is easily in-
stalled and incorporated in existing heterogeneous environments. The dis-
advantage is thatNFS lowers performance significantly, especially in con-
trast to direct local file system access.

Extending the system kernel.The CLEARCASEsystem bypasses theNFS bot-
tleneck by extending the operating system kernel with specialized device
drivers, providing an abstract file system interface or directly replacing disk
device drivers.

48 Team Functionality

As all programs access their file systems through the kernel, the kernel ex-
tension approach allows for a wide range of system-specific optimizations.
TheNFSbottleneck for local file systems is also avoided. The drawback is
that realization and installation are non-trivial tasks.

5.5 Cooperation Strategies

When several people work in parallel, it is important that their changes be coor-
dinated such that one change does not, by accident, undo the effects of another
change. As this is a key element inSCM, eachSCM system realizes a specific
cooperation strategy.

5.5.1 Conservative Cooperation Strategies

Conservative cooperation strategies prevent conflicting changes using a simple
locking scheme.Developers working on a specific component version or con-
figuration can lock it against further changes. While a version or configuration
is locked, other developers are excluded from creating new revisions. They are
allowed, however, to create temporary variants, that is, a branch in the revision
history.

Explicit locking is the scheme followed byRCSandSCCS; it is also used in
systems using the Composition Model such asCLEARCASE. In CLEARCASE,
a workspace initially is read-only: to change a component, a developer must ex-
plicitly create a temporary variant and ensure that his configuration rule gives him
access to this variant. Besides explicit locking, this scheme has the benefit that
read-only components are shared across workspaces; hence, creating a workspace
in CLEARCASEdoes not require additional resources.

Locking a version or configuration is inappropriate when a developer makes a
major change over a long time, since this prevents other developers from making
quick fixes. Hence, developers are allowed to create temporary variants instead,
starting an individual development path. All changes made in this individual path
must eventually be integrated with the changes made in the original development
path, which may or may not be difficult.

5.5.2 Optimistic Cooperation Strategies

In contrast to conservative strategies, anoptimisticstrategy by default allows par-
allel changes; changes are integrated in a later stage. In an optimistic strategy,
each developer is assigned individual temporary variants to work upon. TheCVS

5.6 Merging and Conflict Resolution 49

andNSE systems, for example, realize optimistic cooperation strategies through
workspaces.

When aCVS or NSEworkspace is created, temporary variants are created for
all configuration components, resulting in a multitude of branches. This scheme
allows developers to perform changes to any component without further explicit
branching. Despite abundant branching and creation of temporary variants, opti-
mistic strategies need not be inefficient:NSEimplements a “copy-on-write” pol-
icy where unchanged components are shared between the originating version in
the repository and the derived workspace; a similar technique is found asview-
pathingin then-DFS.

Optimistic strategies are appropriate when the number of expected conflicts is
low—for instance because parallel development is made on disjunct subsystems,
making conflicting changes unprobable.

5.6 Merging and Conflict Resolution

In both conservative and optimistic cooperation strategies, parallel changes must
eventually be integrated ormerged.To see how this can be done, we take a look at
the conflict resolution strategies as found inSCM systems. Each of the following
strategies creates a so-calledmerged versionthat integrates the changes from two
or more temporary variants.

5.6.1 Textual Merging

The most frequently found mechanism for change merging istextual merging,
as realized in theUNIX tool DIFF3. The DIFF3 program performs a three-way
comparison between two temporary variantsV1 andV2 and their common ances-
torV0, the so-calledbase version.V1, V2, andV0 are scanned in parallel. Each text
fragment that occurs inV1 andV2 is included in the merged versionM. If a text
fragment differs betweenV1 andV2, then only the text fragment different fromV0

(that is, the changed one) is included inM. A text fragment different in all three
versionsV1, V2, andV0 indicates aconflict: the text fragment has been changed
both inV1 andV2. Such a conflict must then be resolved manually.

The principal limitation of textual merging is that the content of the text is not
considered. Whether two changes conflict or not is simply determined by size of
text fragments compared: the smaller the textual distance between two changes,
the higher are the chances that they be flagged as in conflict with each other.
Even if no conflicts are detected, the results of textual merging must be carefully
inspected.

50 Team Functionality

Base revisionV0

MODULE M;
VAR Colour: (White, Grey, Black);
BEGIN

Colour := White
END M.

Variant V1

MODULE M;
VAR Colour: (White, Grey, Black);
BEGIN

Colour := Grey
END M.

Variant V2

MODULE M;
TYPE ColourType = (White, Grey, Black);
VAR Colour: ColourType ;
BEGIN

Colour := Black
END M.

Merged revision M
MODULE M;
TYPE ColourType = (White, Grey, Black);
VAR Colour: ColourType ;
BEGIN

Colour := ?
END M.

Figure 5.1: Syntax-based merging (from [Wes91])

5.6.2 Syntax-Based Merging

Automatic merging becomes more effective if internal consistency is ensured, as
discussed in 3.6 on page 32. This requires knowledge about syntactical invariants
that must hold after merging operations.

In [Wes91], Westfechtel describes a generic merging algorithm working on
abstract syntax trees, realized in theIPSENsystem. Each node class (identifier,
structure, or list) is treated by a differentmerge rule.As an example, consider
figure 5.1. In variantV1, the assignment toColour was changed fromWhite to
Grey. In variantV2, a new typeColourType was introduced, the type of the
Colour variable was adapted, and theColour assignment was changed toBlack.

The merge rule for lists states that insertions in one variant be applied in the
merged versionM as well. Hence,M contains the new typeColourType intro-
duced inV2. Name changes applied in one variant only are also reflected inM;
hence the type change for theColour variable inV2 is propagated toM. Conflicts
may still occur if a substructure is changed in both variants. Hence, the third

5.6 Merging and Conflict Resolution 51

change inV2, the Colour assignment value conflicts with the change inV1 and
must be resolved manually. Using textual merging, all three changes would have
been in conflict because they are too close together.

Westfechtel’s syntax-based merging also ensures a certain amount of internal
consistency by preserving the context-free correctness and detecting context-free
conflicts. Besides the context-free syntax, it also takes the binding of identifiers
to their declarations into account, detecting anomalies and conflicts with respect
to binding changes. However, it relies on determining the differences between ab-
stract syntax trees, which is expensive, or on logs of tree manipulations generated
by the editor.

Westfechtel’s work has been extended by Schroeder in [Sch95], ensuring the
correctness of the statical semantics even for incomplete subtrees, usingPSGcon-
text relations [Sne91, SGS91]. Recent work in syntax-based merging includes
collaborative work in structure editors, as in theMJØLNER project [MAM93,
MA96], as well as the integration of incremental analysis with version manage-
ment [WG95]. Syntax-based merging programs that do not rely on an external
abstract syntax tree have also been presented [Buf95].

5.6.3 Semantics-Based Merging

While syntax-based merging guarantees the syntactic correctness of the merge re-
sult M, one still has no guarantee about how the executionbehaviorof M relates
to the execution behavior of the merged variantsV1 andV2. A first attempt, based
on denotational semantics, is found in [Ber94], but the first approach that per-
formed truesemantics-basedmerging was presented by Horwitz, Prins, and Reps
in [HPR89]. Their algorithm relies on the assumption thatbehavior differences,
rather than textual or structural differences, are significant and must be preserved
in M.

The algorithm works on aprogram dependency graph(PDG) representation
for the programs to be merged. Each node stands for a program statement; edges
indicate control and data dependence. Aprogram sliceis the subgraph of aPDG
that can reach a given component. To determine interference of changes, the
algorithm determines theprogram slicesin V1 andV2 that are changed from the
baseV0 and the slices that are unchanged fromV0. The changed and unchanged
slices are then merged, and if there is no interference, a merged programM is
produced from the merged slices. The algorithm ensures thatM captures the
changed behavior of bothV1 andV2 as well as the behavior that was unchanged
from the baseV0.

While the original algorithm [HPR89] had severe restrictions on the class of

52 Team Functionality

programs it could be applied upon, it was later refined by Binkley, Horwitz, and
Reps in [BHR95] and now constitutes a mature algorithm for multi-procedure
merging.

5.7 Multi-Site Development
SCMis not only a problem of several people working on multiple versions. Often,
these people also work atmultiple sites.This imposes another technical challenge
on SCM systems, as local version access must not be slowed down by low con-
nectivity between the sites.

DistributedSCM is a relatively new feature inSCM systems. We can distin-
guish four ways to realize distribution:

Use a central repository server.BothRCSandCVS have been extended for dis-
tribution. The resultingDRCS[OG90] andDCVS [HK92] tools rely on a
client/server relationship between localRCSor CVS clients and a central
repository server. For instance, if a local user checks out aRCSversion, the
localRCSclient fetches the version from the remote centralRCSrepository
server. The drawbacks ofDRCSandDCVS are that all operations depend
on the reachability of one single server and that traffic is huge since entire
versions (or configurations, as inDCVS) are transferred.

Propagate changes across sites.Communication overhead between sites can be
reduced if sites share a common baseline and transmit changes instead of
versions, as in the Change-Oriented Model. This approach has been un-
dertaken in theMISTRAL tool [Gad95], realizing distributedSCM in the
ADELE system. However, all difficulties of change propagation apply, as
discussed in section 2.7.

Assign each site an individual workspace.Another possibility to manage dis-
tributedSCM is to assign each site an individual workspace or temporary
variant. This is the base of theMULTISITE tool [AFK+95], which enhances
the CLEARCASE system with distributedCM. To maintain consistency,
each site has branches in its repository representing the other sites; these
branches are updated periodically. Each site can only modify its local
branch, but merge in changes made at other sites. This simple and real-
istic solution fits practical users needs, as the authors claim, but relies on
frequent merging.

Use a distributed repository. The most recent approach to distributedCM is the
usage of adistributed repositorythat allows to access versions transpar-

5.8 Process Functionality Areas 53

ently from arbitrary sites. On top of theNetwork for unified configuration
management(NUCM) prototype [vdHHW96], a variety ofCM models can
be realized through a combination of three generic models (storage, access,
and distribution). The initial implementation ofNUCM realizes a distrib-
uted, decentral repository using peer-to-peer relationships between local
CM repositories.

5.8 Process Functionality Areas

So far, we have discussed theteam-centeredaspects ofSCM. In contrast to these
more technical issues, theprocess-centeredfunctionality areas covermanage-
ment issues.As this is beyond the scope of this work, we only give a brief intro-
duction on each of these functionality areas, following Dart’s survey [Dar91].

5.8.1 Auditing Functionality

An important feature inSCM systems is anaudit trail or change historywhere
the SCM system logs all changes made to the developed product. Such an audit
trail usually includes achange comment,details on the reason and effects of the
change. EverySCMsystem that supports revisions maintains such audit trails and
provides simple tools to print, filter or analyze the trail.

5.8.2 Accounting Functionality

The accountingfunctionality area, as found inSCM systems, includes mecha-
nisms to record statistics about the product and the process. The questions that
accounting must answer include the current status of a component, whether a
change request (CR) has been approved by the configuration control board, which
component version implements a specificCR or how many faults per month are
detected and corrected.

5.8.3 Controlling Functionality

Controlling functionality assigns work to individual developers.Access control
means granting or revoking version access.Change controlprovides procedures
by which changes are requested, authorized, scheduled, and tracked. Change con-
trol includes on-line support forchange requests,a developer’s request to change
a component, andproblem reports,stressing the circumstances and consequences
of a fault, as well as procedures to propagate changes across different versions of a

54 Team Functionality

product (e.g. from an experimental version to the released version). Finally, con-
trolling functionality also must track faults and report how, when, and by whom
they are dealt with.

5.8.4 Process Functionality

The functionality areas discussed so far can be subsumed asprocess functionality.
Process functionality is the significant area of all non-technicalSCM functional-
ity. In short, SCM systems should support the life cycle model and policies of
the user’s organization; identify tasks to be done, how and when they are com-
pleted; as well as basic facilities to direct information about relevant events to the
appropriate people and facilities for documenting the product knowledge.

5.9 Conclusion
The centralSCM concept to realize cooperative work is the notion of awork-
space,preventing developers from interfering with one another’s work. A work-
space usually comes as a file system and thus integrates theSCM system into the
software development environment. Various concepts for the realization of work-
spaces exist, the most advanced being a virtual file system with both explicit and
implicit version access.

To coordinate changes,SCM systems either provide conservative cooperation
strategies that rely on version locking, or optimistic cooperation strategies that
rely on a later conflict resolution between parallel changes. Conflict resolution is
realized through merging of changes, where textual merging is the most versatile
and semantics-based merging the most secure approach.

RecentSCM systems also support development at geographically distributed
sites with low connectivity. The pragmatic approach is to assign each site a sepa-
rate workspace; future repositories may be realized in a distributed manner.

Besides the technical, team-centered functionality, process functionality areas
cover the management part ofSCM, which is not discussed in this work.

While process management and control are necessary
for a repeatable, optimized development process,

a solid configuration management foundation for that process is essential.

— DAVID W. EATON, Configuration Management Frequently Asked Questions

In any case, it must be borne in mind that,
tools can be encapsulated whilst users can not.

— JACKY ESTUBLIER and RUBBY CASALLAS,
The ADELE Configuration Manager

Chapter 6

Future SCM Requirements

There can be no doubt that today’sSCM systems largely satisfy Dart’s require-
ments onCM functionality [vdHHW95]. For each functionality, we have iden-
tified a large number ofSCM concepts as realized in one or moreSCM systems.
Some commercialSCM systems, such asCLEARCASE, provide satisfactory solu-
tions for each requiredCM functionality.

Since Dart’s survey, new requirements and problems have emerged. We iden-
tify five major problems in currentSCM systems, which also constitute require-
ment areas for futureSCM systems.

6.1 Improved Support for Variant Sets

SCM still has poor support for manipulating sets of configurations, or abstract
configurations. As a simple example, consider the editing of multiple versions.
The number one technique for variation in the small, the C preprocessor (CPP)
fails when variance becomes too large. As Gentlemanet al. state in [GMSW89],

Code containing conditional compilation directives becomes quite
unreadable when variants associated with different factors interact.

In fact, large variance leads to a lose-lose situation. Either commonality between
variants is exploited, then theCPPdirectives become too complex, or commonal-
ity is not exploited, then code duplication follows:

Interleaved directives are incomprehensible, and the code expansion
of conditional compilation directives can be intolerable.

55

56 Future SCM Requirements

The alternate technique, change propagation from a single variantX to the re-
maining variantsY as discussed in section 2.7, is still considered inferior than
“classical” approaches such as preprocessing. In [Whi91, p. 44], Whitgift states:

This approach is better than revising bothX andY manually, but it
only works well whenX andY are very similar. Even then the tech-
niques described in the next two subsections [CPPand multi-variant
editors] are a more reliable way of managing similar permanent vari-
ants.

The only consequence can be to keep the number of permanent variants as small
as possible. Not only can they seldom be handled bySCM systems. More even,
common software engineering principles like abstraction, parameterization, gen-
eralization, and localization are far better ways to keep software variable than
to introduce variants for every new environment. But these techniques can only
apply to permanent,plannedvariance, not to temporary variance as it may re-
sult anytime during parallel development. Hence, the need to manipulate several
variants at once is still present, and insufficiently covered by todaysSCM sys-
tems [Mah94].

6.2 Consistency of Abstract Configurations

Another problem ofSCM systems regarding abstract configurations is the lack of
determining theirconsistency.As Schmerl and Marlin point out in [SM95a], this
is especially important in the domain of dynamically composed systems (DCS):

DCSare composed incrementally, and therefore some of the compo-
nents may not yet be bound (meaning that it is a partial configura-
tion). It is still desirable to analyse this partially bound configuration
so that we can answer questions about what comprises the system,
and whether or not the partially bound configuration is inconsistent.

Unfortunately, today’sSCM systems rely on completely bound configurations to
determine consistency. Even where ambiguity is allowed, as inADELE configu-
ration rules, heuristics to find the single “best-fitting” variant are applied to make
the configuration bound.

6.3 Beyond Version Graphs

Lack of support for abstract configurations may be founded in inadequate ver-
sioning models that do not tolerate ambiguity. Among the fewSCMconcepts that

6.4 Unified Versioning Models 57

in principle tolerate ambiguity is the Change-Oriented Model, as it allows to ap-
ply changes to several versions at once. The advantages of the change-oriented
model are the disadvantage of the version-oriented models and vice versa:

Change-oriented models: the drawback of flexibility. The strength of change-
oriented models is that arbitrary change combinations are possible—that
is, all change combinations that do not result in a conflict. This strength is
also its major weakness, as users cannot ensure that the change application
results in a consistent configuration.

Version-oriented models: few change combinations.Version-oriented models
focus on the creation of versions, instead of changes. Hence, the number
of actually existing versions is much smaller. Each change resulting in
the creation of a new revision implies all previous changes leading up to
that revision, thus ensuring change consistency. But this rigidity also has
its drawbacks: creation of versions including arbitrary changes is always
explicit, as is the application of changes to multiple versions at once.

Unfortunately, both models cannot be used to simulate each other. In the
change-oriented models, recent approaches likeHICOV [Mun96] have begun to
introduce consistency constraints. But it is still unclear how a “classical” version
graph would be realized through these constraints. On the other side, simulating
the Change-Oriented Model through version-oriented models reveals the weak-
ness of the version graph paradigm, since the arbitrary combination of changes
results in a much larger number of potential versions than could possibly be
maintained through revision graphs. Moreover, it is still an open question how
revisions and changes are to be integrated with logical and cooperative version-
ing [EC95].

6.4 Unified Versioning Models
The divergence of change-oriented and version-oriented models is the largest dif-
ference betweenSCM versioning models, but by far not the only one.SCM in
general suffers from a multitude of incompatible versioning models, as Conradi
and Tryggeseth complain in [Est95, p. 80]:

Is the versioning model linked to the data model, the product model
(schema), the transaction model (uni-version subdatabases), or is it
independent? At what granularity are “deltas” expressed, computed
and merged—on the base of whole files, text lines, or syntactical
entities? And how is versioning combined with e.g. inheritance and

58 Future SCM Requirements

parameterization? Does basic versioning only apply to atomic and
textual objects, and not to composites or to the entire database?

How to version relationships, and thus configurations? How to ex-
press intentional version selection, and how to express constraints,
defaults and preferences for such selections? Is the selection based
on symbolic attribute values, that together constitute a version space?
Can the constraints and attribute domains evolve over time? Given a
system model with objects and relationships: is the product selection
(AND-closure) done before the version selection within each group
(OR-choices), or vice versa, or intertwined?

It is also symptomatic that hardly no visualization techniques beyond version
graphs exist. To summarize, citing Gulla from [Gul93]:

The lack of proper conceptual models and visualization techniques
is a serious draw-back that limits the use and usefulness of current
tools.

6.5 Flexible Process Support

The multitude of versioning models may be the effect of the multitude ofSCM
processes and models as they are realized inSCM systems. In his survey on con-
figuration management models in commercial environments [Fei91a], Peter H.
Feiler closes with:

CM capabilities can be found not only inCM tools and environment
frameworks, but also in development tools. Integration of such tools
into environments raises the need for differentCM models to inter-
operate. Therefore, it is desirable to evolve to a unifiedCM model
that encompasses the full range ofCM concepts and can be adapted
to different software process needs.

Things have not much changed since Feiler’s study, except that the problem is
generally accepted. In the fifth international workshop on software configuration
management [Est95, p. 136], Jacky Estublier states:

There is a large consensus, includingSCM designers and vendors,
thatSCMmust include, in one way or another, some process support.
This is a major change in relationship to previous workshops, where
most industrials considered this topic as academic.

6.6 Improved SCM System Architectures 59

CM Policy
Quality assurance, CM Process, etc.

CM Protocol
Transactions, workspaces, etc.

CM Primitives
Tool primitives, Operating system operations, etc.

Figure 6.1: Three levels ofCM services (from [BDFW91])

Estublier also points out that almost all today’sSCMsystems ignore other process
tools, and that only a few, includingEPOSandADELE, provide a layer on top of
which process support tools can be built. He concludes with:

Most think the major challenge for futureSCM tools will be the
process dimension. In the future, it is expected anSCM tool will be
selected based on its ability to support processes. The current state
of practice is pretty far away from ideals.

6.6 Improved SCM System Architectures

Good process support means a flexible process support. This flexibility must be
obtained through the architecture ofSCM systems.

In their report on the state and future of automated configuration manage-
ment, Brownet al. suggest afederated architecturefor SCM systems, as shown
in figure 6.1. Each service domain represents a virtual machine layer of ser-
vices [BDFW91]:

CM Primitives layer. TheCM primitives layer provides a set of primitive oper-
ations that would be supported in a particularCM tool, or provided as part
of an environment framework. For example, basic versioning capabilities,
data object locking, and access control are typical of the services at this
level.

60 Future SCM Requirements

CM Protocol layer. TheCM protocol layer supports one or more of theCM con-
cepts and models. At this level the operations are independent of underly-
ing implementation techniques. For example, operations of check in/out of
data items from workspaces, transaction management, and coordination of
change sets would be provided.

CM Policy layer. TheCM policy layer makes use of theCM protocol operations
to encode some procedures specific to an organization. For example, these
could be company standards for handling change requests, quality assur-
ance procedures, and so on.

As Brownet al. state,

The advantage of using three layers of service domains in providing
CM support is that many of the issues that are often confused can be
drawn out in isolation, and the relationships between different ele-
ments more clearly expressed.

In [vdHHW95], van der Hoek, Heimbigner, and Wolf recognize that most of
today’sSCM systems follow this architecture. But they also state that there is an
increasing lack of flexibility, the higher the level considered:

CM systems allow some restricted flexibility at the low level (e.g.,
one can choose to useRCS, a file system, or aDBMS), and even less
flexibility at the middle level (e.g. the naming and locking mech-
anisms are usually fixed). At the high level of process, second-
generationCM systems either provide no explicit support for express-
ing policies or they provide particular processes for a specific task,
such as change control. (ADELE is a notable exception to this.)

Van der Hoeket al. conclude that the lack of flexibility at the lower architectural
levels is the cause for bad process support, and that alternative architectural views
might lead to novelCM solutions.

6.7 A Unified SCM Model
For Brownet al., the key to flexibility inSCM lies in the combination of a feder-
ated architecture and a unifiedCM model. As they summarize in [BDFW91],

We believe that progress will have to be made in three areas in order
that futureCM support as outlined in our federated vision can be
realized in practice.

6.7 A Unified SCM Model 61

First, the spectrum of concepts and the four conceptual models have
to be integrated into a unifiedCM model whose semantics are well-
defined. This will result in a common set of interfaces toCM services.

Second, the service-based approach of the federated environment ar-
chitecture can provide a migration path from the current state of
CM services (being provided in a fragmented manner byCM tools,
environment frameworks, andCASE tools) toward the notion of a
common repository and shared environment framework services, but
still accommodating heterogeneity in software development environ-
ments.CM will be a key component of such a federated environment
architecture by being a service domain in the form of a set of proto-
cols, which are derived from the unifiedCM services model.

Third, the set ofCM services reflected in the unified model will pro-
vide a virtual machine layer on top of which process adaptation can
be performed. Process adaptation results in encoding elements of the
software process in a software development environment, in this case
those aspects of the software process that relate toCM.

These are the issues we have addressed in this work.

Although there is a bunch of appropriate techniques
and powerful tools, none of them is sufficient

for solving all involved problems.

— AXEL MAHLER, Variants

Part Two

Feature Logic

63

Chapter 7

A SCM Foundation

In chapter 6, we have found that “the major challenge for futureSCMtools will be
the process dimension” and that a flexibleCM policy can only be attained through
flexibility at the lowest levels, notably aunified configuration management model.
This unifiedSCMmodel, as postulated by Brownet al. [BDFW91]must integrate
all four conceptualSCM models as discussed by Feiler[Fei91a]and have a well-
defined semantics.

In this chapter, we try to determine aformal foundationfor such a unified
SCM model. We discuss the properties of such a unifiedSCM model, using the
requirements of chapter 6 and their implications, and identifySCM foundations
fitting these properties.

7.1 First Foundation: Sets

As stated in section 6.1, most of todaysSCM systems lack support for manipulat-
ing variant sets. But also configuration sets, that is,abstract configurations,lack
properSCM support. Generally, version and configuration sets play an important
role in three areas:

Inheritance. Abstract configurations can be used as templates for further refine-
ment. See section 3.3.6 for details.

Ambiguity support. Abstract configurations and version sets allow manipulat-
ing several versions and configurations at once. See theCPPconcepts in
section 2.6.1 and theambitionconcept in section 2.7 for a discussion.

65

66 A SCM Foundation

Consistency. In dynamically composed systems, inconsistency in configurations
must be detected even if the configuration is incomplete. See section 6.2
for an example.

We conclude that a unifiedSCM model should beset-orientedrather thanobject-
oriented1, as manipulating sets generalizes manipulating single objects. For in-
stance, editing a set of versions or checking a set of configurations for consistency
subsumes editing a single version or checking a single configuration. Conse-
quently, the unifiedSCM model should support version and configuration sets as
first-class objects.

7.2 Second Foundation: Attribution
Attributes and relationships play an important role inSCM versioning models.

Identification. All of the selection schemes discussed in section 3.3 rely on that
either versions or changes be tagged with attributes. Attribution is one of
the few techniques common to the wholeSCM area. We recognize attri-
bution as a key element for identification and selections in a unifiedSCM
model.

Propagation. As anySCMidentification scheme must include composed and de-
rived objects as well, there should be a well-defined relationship between
the attributes of a simple component version and the attributes of a set of
objects. This includes the propagation of attributes from versions to com-
ponents, from components to configurations, from source components to
derived components, and from changes to change sets.

Relationships. To handle propagation, the unifiedSCM model must allow de-
scribing the relationships between components, such asis-instance-ofre-
lationships to model derivation oris-a-part-of relationships to model com-
position.

The most advancedSCM system in this field is theCAPITL system, discussed in
section 4.5; its attribution and propagation schemes should be considered in a
unifiedSCM model. It also shows how attribution can be generalized to include
relationships, provided the underlying attribution model is rich enough.

We conclude that the unifiedSCM model should be attribute-oriented: at-
tributes should be used for identification and selections. It should also describe
how attributes propagate between components, using the component relation-
ships.

1Pun intended.

7.3 Third Foundation: Unification 67

7.3 Third Foundation: Unification
In SCM, attribute expressions are used for both identification and selection. This
duality is illustrated by theCPPandJASONsystems:

Strong identification, weak selection.Across allSCM systems,CPP, the C pre-
processor, realizes the most generalidentification scheme.Arbitrary logical
and arithmetic expressions involving attributes are used for variant identifi-
cation; see section 2.6.1 for details. Version selection inCPPis done using
a conjunction of attributes.

Strong selection, weak identification.The most generalselection schemeis re-
alized in theJASONsystem, which uses full first-order logic over attribute
expressions, as discussed in section 3.6.1. InJASON, individual versions
are identified by a conjunction of attributes.

It is remarkable that strength in identification comes with weakness in selection,
and vice versa. Such restrictions are necessary to keep selection decidable.2 Un-
less we decide to ignore variant set support such as provided byCPP, the unified
SCMmodel should support the smallest common superset of both approaches and
thus rely onunification techniques to match selection terms with identification
terms.

7.4 Putting it all Together
We have found that the unifiedSCM model should be

set-oriented: Supports manipulating consistent sets of versions and configura-
tions.

attribute-oriented: FollowsSCMconventions for the identification and selection
of objects and allows for predictable identification of composed and derived
objects.

unification-oriented: Encompasses the largest possible common subset ofSCM
identification and selection schemes.

We now discuss adequate foundations to express the semantics of our unified
SCM model. Basically, there are three candidates for thisSCM foundation,each
with its own pros and cons.

2If we combined the strength of both systems, we would be challenged by general arithmetical
problems; for instance, whether a version identified by theCPPexpressionn > 2 is matched by the
JASONselection term9a;b;c2 N(an

+bn
= cn

). Such problems are undecidable in general, although
some of them may be eventually proved [Wil95].

68 A SCM Foundation

7.5 First Candidate: First-Order Logic
The first candidate for anSCM foundation is very general and widely known.
Booleanfirst-order logicis the base of severalSCM selection schemes, includ-
ing JASON’s; evenCPP’s arithmetic version identification may be replaced by
boolean first-order terms without much loss. First-order terms may be used for
both identification and selection, usingboolean unification[Boo47, BJSS90] to
match identification and selection terms.

The expressive power of first-order logic is no doubt sufficient for describing
the semantics of a unifiedSCM model. But first-order logic is far too general; it
lacks the central property of being attribute-oriented. As we have already seen
how important attributes are in theSCM area, this implies that allSCM function-
ality like selection through attributes, attribute propagation, or inheritance of ab-
stract configurations requires explicit formalization using first-order axioms and
rules. We would have to set up another formal layer in terms of first-order logic
in order to describe these attribute fundamentals.

7.6 Second Candidate: Description Logics
As an alternative to first-order logic, there are several formalisms that denote sets
of objects by their attributes (calledroles), subsumed under the termdescription
logics or terminological logics.Their most important domains are:

Knowledge representation. In the domain of knowledge representation,con-
cept descriptions,also calledframes[BL84, Neb90, NS89], are used to
represent sets of objects by attribute/value combinations.

Configuration of technical systems.To configure technical systems,termino-
logical configuration systemslike CLASSIC[BMPS+91a, BMPS+91b],K-
REP[MDW91], BACK [Pel91],LOOM [Mac91], orKRIS [BH91, BFH+94]
are more and more preferred to domain-specific configuration systems like
XCON [McD82, McD84] or customizable systems likePLAKON [CGS91].
These terminological systems rely on description logic as a semantic foun-
dation to identify component properties as well as to express configuration
constraints.

All these description logics combine attribute descriptions with full boolean set
semantics, including set union (disjunction) and set complement (negation). This
makes them ideal choices forSCMselection and identification schemes—and last
but not least, they already have been used to describe and solve configuration
problems. However, attribute propagation from components to composites must
be explicitly stated for each single role.

7.7 Third Candidate: Feature Logics 69

7.7 Third Candidate: Feature Logics
A special subset of description logics arefeature logics.Here, attributes are called
features. In contrast to roles, features arefunctional: each feature of a compo-
nent can have only one value. The features of composite objects are implicitly
determined from the unified features of their components. Typical applications of
feature logics are:

Language analysis.In the semantic analysis of natural language [KB82, Kay84,
SUP+83], feature logics are used to represent and propagate grammatical
information—for instance, how the features of a sentence are determined
by the features of its verb.

Programming. In programming languages, attribute/value combinations are fre-
quently used inrecord structures.Aı̈t-Kaci was the first to study such
structures mathematically, calling themψ-terms [AK86]. The resulting
ψ-term calculus is the formal foundation of thePROLOG-like program-
ming languagesLOGIN [AKN86] and LIFE [AKP91], usingfeature uni-
fication[SAK90] instead ofPROLOG’s syntactic unification. A variant of
LOGIN, calledCONGRESS, is the base of theCAPITL build planner dis-
cussed in section 4.5.

The advantage of feature logics is that they provide a natural way of attribute
propagation from components to composites—a property that already has been
successfully exploited in theSCM domain. The disadvantage of the feature log-
ics listed is that onlyconjunctionsof attribute/value combinations are supported;
negations or disjunctions are not allowed. This restriction would severely con-
strain identification and selection schemes, not to speak ofCPParithmetic expres-
sions, or quantifiers inJASON.

7.8 Conclusion
For theSCM domain, we need the best of three worlds:

Boolean operationsas in first-order logic. This is a must for modellingSCM
identification and selection schemes.

Attribute descriptions and set operations as in description logics. These for-
malisms are needed for identifying versions according to their properties.

Attribute propagation and unification as in feature logics. This is needed to
describe the features of derived and composed objects.

70 A SCM Foundation

Fortunately, there is a special feature logic that includes quantification, disjunc-
tion, and negation over attribution terms, forming a full boolean algebra while
preserving the functional nature of features and describing how features propa-
gate from components to composites. This logic, described by Smolka in 1992,
and simply calledfeature logic,is presented in chapter 8.

I was to learn later in life
that we tend to meet any new situation

by reorganizing;
and a wonderful method it can be

for creating the illusion of progress
while producing confusion, inefficiency, and demoralization.

— PETRONIUS ARBITER

Chapter 8

Feature Logic

After a short excursion into the evolution of feature logic, we give an informal
overview. For a deeper understanding, we present the formal syntax and seman-
tics of feature logic, based on[Smo92].

8.1 The Evolution of Feature Logic

Feature descriptions and feature logic have two sources. The first source is ori-
ented towards boolean formulae, providing for the declaration and specification
of linguistic knowledge. Thelexical-functional grammar[KB82], of Bresnan
and Kaplan, as well as Shieber’sPATR-II formalism [SUP+83] and Johnson’s
attribute-value logic[Joh88] use boolean combinations of features, constants, and
variables.

The second source is oriented towards set-denoting feature expressions, called
feature termsin this work, used in programming languages and knowledge rep-
resentation. This includes Kay’sfunctional unification grammar[Kay84], Aı̈t-
Kaci’s ψ-term calculus[AK86, SAK90], and the logic of Kasper [KR86] and
Rounds [MR87]. These feature terms also have much in common withconcept
descriptionsused in knowledge representation [BL84, Neb90, NS89].

In [Smo92], Smolka unified these two approaches and showed that the dif-
ferent feature descriptions can be embedded into first-order predicate logic with
equality.

We have chosen Smolka’s feature logic as aSCM foundation. Not only does
it provide a simple and clear semantics, but it also allows us to describeSCM
concepts by attribution without losing the expressiveness of boolean first-order
logic.

71

72 Feature Logic

8.2 Feature Logic in a Nutshell

We begin with an informal overview of feature logic.Feature termsdenote sets
of objects characterized by certain features. Afeatureis a functional property
or attribute of abstract objects. In their simplest form, feature terms consist of a
conjunction of(feature:value)-pairs, calledslots,where each feature represents
an attribute of an object. Feature values include literals, variables, and (nested)
feature terms.

As an example, consider the following feature termT, which expresses the
linguistic properties of a natural language fragment:

T =

2
664

tense:present;
predicate: [verb:sing;agent:x;what:y] ;
subject: [x;num:singular;person: third] ;
object:y

3
775

This term says that the language fragment is in present tense, third person sin-
gular, that the agent of the predicate is equal to the subject, and so on. In other
words,T denotes the sentence template “x singsy”.

The syntax of feature terms is summarized in table 8.1 on the facing page,
where we denotevariablesby x, y, z; featuresby f , g, h; constantsby a, b, c; and
feature terms denoted byS, T, andU . Feature terms are constructed using the
well-known boolean set operationsintersection, union,andcomplement.Each
of these set operations may also be interpreted as logical constraint on the object
features, representing the set of objects satisfying this constraint. For instance, let
S= [f :a], the set of all objects whose featuref has the valuea, andT = [g:b],
the set of all objects whose featureg has the valueb. Then,SuT = [f :a;g:b]
may be read as the intersection ofS andT as well as the set of objects whose
featuref is a andwhose featureg is b. Similarly,StT = f f :a;g:bg is the union
of S andT as well as the set of objects whose featuref is a or whose featureg
is b. As feature terms form a boolean algebra, all boolean transformations like
distribution, de Morgan’s law etc. hold for feature terms as well.

Feature terms have two important properties which make them especially suit-
able in the context ofSCM.

Each feature of an object may have only one value.This property is due to the
functional nature of features. For instance, the term[os:dos;os:unix] is
equivalent to?, the empty set. This property is useful for selection and
consistency checking.

8.3 Features and Feature Algebras 73

Notation Name Interpretation
> (also []) Top Ignorance
? (also fg) Bottom Inconsistency
a Atom
x Variable
f :S Selection The value off is S
f :> Existence f is defined
f" Divergence f is undefined
f #g Agreement f andg have the same value
f "g Disagreement f andg have different values
�S Complement Sdoes not hold
SuT (also [S;T]) Intersection Both SandT hold
StT (also fS;Tg) Union Sor T holds
S! T Implication If Sholds, thenT holds
S$ T Equivalence Sholds if and only ifT holds
9x(S) Quantification There is anx such thatSholds

Table 8.1: Syntax and interpretation of feature terms

Feature terms always allow for further specialization. Every feature term can
be refined by specifying further features, like subclasses in object-oriented
models. This property allows for attribute propagation and abstract config-
urations.

In this chapter, we give a formal definition of features and feature terms,
closely following Smolka’s definitions in [Smo92] and further clarified by Fischer
in [Fis93]. For each operator in table 8.1, we give its denotational semantics and
show its respective properties.

8.3 Features and Feature Algebras

The definition of features as functional properties implies that we can model fea-
tures aspartial functionsthat, applied to abstract objects, result in a singlefeature
value. For instance, the featureosof a componentX may beos(X) = unix. The
functional nature of features also implies that each feature of an object may have
only one value.

74 Feature Logic

We now define these properties of features formally, introducingfeature alge-
brasas interpretations of feature descriptions.

Definition 8.1 (Feature algebra, Feature)A feature algebraI is a pair(DI ; �I)
consisting of a nonempty setDI , called thedomainof I , and aninterpretation
function �I assigning to every atoma an elementaI 2 DI and to every featuref a
set of ordered pairsf I � DI �DI such that the following conditions are satisfied:

1. If (d;e) and(d;e0) are in f I , thene= e0 (features are functional),

2. If a 6= b, thenaI 6= bI (unique-name assumption),

3. If f is a feature anda is an atom, then there exists nod 2 DI such that
(aI ;d) 2 f I (atoms are primitive). 2

The first condition captures the functional nature of features; the third definition
restricts the application of features to non-primitive objects.

For the denotation of variables, we introduceI -assignments:

Definition 8.2 (Assignment) Let I be a feature algebra. AnI -assignmentis a
mapping from the set of all variables to the domain ofI . 2

The set of allI -assignments is denoted as ASS[I].

8.4 Syntax and Semantics of Feature Terms
We now introducefeature terms,a denotation for sets in feature algebras. For
each construct, we give its syntax, followed by itsdenotationSI

α � DI , whereI is
a feature algebra, andα 2 ASS[I] anI -assignment.

8.4.1 Top and Bottom

Top denotes the entire universe of objects, bottom the empty set.

Definition 8.3 (Top) The symbol> denotes the entire domain of the feature al-
gebraI :

>I
α = DI

2

Definition 8.4 (Bottom) The symbol? denotes the empty set:

?I
α = /0

2

8.4 Syntax and Semantics of Feature Terms 75

8.4.2 Atoms and Variables

The primitives of feature logic are atoms and variables.

Definition 8.5 (Atom) An atoma is a primitive object for which no features are
defined. An atom denotes a singleton set containing itself:

aI
α = faIg

2

Definition 8.6 (Variable) A variablex is a placeholder for some feature term. Its
denotation is the term it stands for:

xI
α = fα(x)g

2

A variable is calledfree if it is not bound by any quantifier.

8.4.3 Selection

The basic operation of feature logic isselection,denoting the objects where a
feature has a specific value.

Definition 8.7 (Selection)The termf :Sdenotes the set of all objects whose fea-
ture f has a valueS:

(f :S)I
α = fd 2 DI j 9e2 SI

α:(d;e) 2 f Ig

2

For instance, the feature termtested: truedenotes all objects whose featuretested
has a value oftrue.

In feature logic, there is no distinction between objects and feature values.
Hence, feature values may be feature terms again, denoting other objects. As an
example, considerexistence.As follows from definitions 8.3 and 8.7, a termf :>
(Existence) denotes all objects for which the featuref is defined with an arbitrary
value:

(f :>)I
α = fd 2 DI j 9e2 DI :(d;e) 2 f Ig

76 Feature Logic

Note that the suggestivef :? doesnot stand for all objects whose featuref is
undefined, but for the empty set instead. As follows from definitions 8.4 and 8.7,
f :?=? holds for allI andα:

(f :?)I
α = fd 2 DI j 9e2 ?I

α:(d;e) 2 f Ig

= fd 2 DI j 9e2 /0:(d;e) 2 f Ig

= /0

=?I
α

Hence, we need an alternate construct to capture undefined features.

8.4.4 Divergence

A feature may beundefinedon certain objects.

Definition 8.8 (Divergence)The setf" is the set of all objects whose featuref
is undefined:

(f")I
α = fd 2 DI j 8e2 DI :(d;e) 62 f Ig

2

8.4.5 Agreement and Disagreement

Special notations exist for sets of objects whose features have equal or unequal
values.

Definition 8.9 (Agreement) The setf # g is the set of all objects for which the
featuref has the same value as the featureg:

(f #g)I
α = fd 2 DI j 9e2 DI :(d;e) 2 f I \gIg

2

Definition 8.10 (Disagreement)The setf "g is the set of all objects for which
the featuref has another value than the featureg:

(f "g)I
α = fd 2 DI j 9e;e0 2 DI :(d;e) 2 f I ^ (d;e0) 2 gI ^e 6= e0g

2

Assuming that we classify compilers by their host and target architectures, we
may thus specify a cross-compiler ashost-arch" target-arch. Note that agreement
and disagreement imply that both featuresf andg be actually defined.

8.4 Syntax and Semantics of Feature Terms 77

8.4.6 Complement

The set complement respective to> is denoted by the complement sign�.1

Definition 8.11 (Complement) The set�S denotes all objects other than those
denoted byS:

(�S)I
α = DI �SI

α

2

When speaking of features rather than objects, the term�Smay also be read
asnegation.Hence, the termT = operating-system:�windowsdenotes all objects
whose featureoperating-systemis not windows. This must not be confounded
with the termT 0 =�operating-system:windows, which consists of the objects of
T as well as of the objects whose featureoperating-systemis undefined.

The definition implies that the well-known equivalences2 for set complements
apply:

�>=?

��S= S

8.4.7 Intersection

Intersections are used to denote objects by several features.

Definition 8.12 (Intersection) We writeSuT for the intersection ofSandT:

(SuT)I
α = SI

α\TI
α

2

When speaking of features instead of objects, terms likeSu T may also
be read asconjunction. As an example, the termT = author:zelleru status:
experimentaldenotes all objects whose author is Zellerand whose status is ex-
perimental.

Feature conjunctions occur very frequently. We thus introduce the more con-
venientmatrix notationfor feature terms, which traces back to the very roots of

1Smolka [Smo92] uses the: symbol.
2See definition 8.25 on page 85 for a formal definition of equivalence.

78 Feature Logic

feature logic [Kay79]. In matrix notation, conjunctions are surrounded by square
brackets, such that the following equivalences hold:

[]�>

[S]� S

[S1;S2; : : : ;Sn]� S1uS2u �� �uSn

Hence, the feature termT = age:30umood:happymay also be written asT =
[age:30;mood:happy].

Definition 8.12 implies associativity, commutativity, and idempotency of in-
tersection:

(SuT)uU = Su (T uU)

SuT = T uS

SuS= S

The neutral element respective to intersection is>; the zero element respective to
intersection is?.

Su>= S

Su?=?

Intersection with a complement is the empty set:

Su�S=?

Intersections and complements as feature values can belifted to the top level:

[f :(SuT)] = [f :S]u [f :T]

[f :�S] = [f :>]u�[f :S]

8.4.8 Union

Unions are used to denote alternatives.

Definition 8.13 (Union) The termStT denotes the union ofSandT:

(StT)I
α = SI

α[TI
α

2

8.4 Syntax and Semantics of Feature Terms 79

Again, when speaking of features instead of objects, the union operator has
the meaning of a booleandisjunctionoperator. As an example, consider the term
T = operating-system:dost operating-system:unix, denoting all objects whose
operating system isDOSor UNIX.

In matrix notation, conjunctions are surrounded by curly braces, such that the
following equivalences hold:

fg � ?

fSg� S

fS1;S2; : : : ;Sng � S1tS2t �� �tSn

Hence, the termT = status:proposedt status:experimentalmay also be written
asT = fstatus:proposed;status:experimentalg or, according to definition 8.13, as
T = status:fproposed;experimentalg.

Again, we can deduce associativity, commutativity, and idempotency:

(StT)tU = St (T tU)

StT = T tS

StS= S

Respective to union, the neutral element is?; the zero element is>.

St?= S

St>=>

Union with a complement is the universe.

St�S=>

Regarding unions and intersections, distribution and absorption rules apply:

(StT)uU = (SuU)t (T uU)

(SuT)tU = (StU)u (T tU)

St (SuT) = S

Su (StT) = S

De Morgan’s laws apply as well.

�(SuT) =�St�T

�(StT) =�Su�T

80 Feature Logic

Unions as feature values can also be lifted to the top level:

[f :(StT)] = [f :S]t [f :T]

8.4.9 Implication

The implicationS! T is a short-hand notation for�StT:

Definition 8.14 (Implication) The termS!T denotes all objects which are inT
or not inS:

(S! T)I
α =

�
DI �SI

α
�
[TI

α

2

All rules for implications are deduced from the equivalence

S! T =�StT

The following absorption rules have practical relevance:

(S! T)uS= T

(S! T)u�T =�S

8.4.10 Equivalence

The equivalenceS$ T is a short-hand notation for(S! T)u (T! S):

Definition 8.15 (Feature equivalence)The termS! T denotes the objects that
are either inSandT or in neitherSnorT:

(S$ T)I
α =

��
DI �SI

α
�
[TI

α
�
\
��

DI �TI
α
�
[SI

α
�

2

All rules for equivalences are deduced from

S$ T = (S! T)u (T! S)

which can also be expressed as

S$ T = (SuT)t (�Su�T) :

8.4 Syntax and Semantics of Feature Terms 81

8.4.11 Quantification

The final element in the syntax of feature terms is existential quantification.

Definition 8.16 (Existential quantification) The term9x(S) defines the union
of all setsSwherex is instantiated by some object:

�
9x(S)

�I
α =

[

d2DI

SI
α[x d]

2

Here, the termα[x d] stands for theinstantiationof x with d: If α is an I -
assignment andd 2 DI , thenα[x d] denotes theI -assignment obtained fromα
by mappingx to d rather than toα(x).

Again, 9x(S) may be interpreted as denoting features rather than objects: a
term9x(S) then denotes all objects where there exists anx such thatS is satisfied.

Our presentation of the syntax and semantics of feature terms is now com-
plete. As a summary, consider table 8.2 on the following page: Given a feature
algebraI and aI -assignmentα, thedenotationof a feature termS in I underα is
a subset ofDI defined inductively as shown.

8.4.12 An Interpretation Example

As a simple example for the interpretation of feature terms, let

DI = fBICYCLE;CAR;TRUCK;ONE;TWO;FOUR;SIXg

be some domain, letWHEELS andPASSENGERSbe features, and let�I be an interpre-
tation function such that

wheelsI = WHEELS

=
�
(BICYCLE;TWO);(CAR;FOUR);(TRUCK;SIX)

	
and

passengersI = PASSENGERS

=
�
(BICYCLE;ONE);(CAR;FOUR);(TRUCK;TWO)

	
:

Furthermore, let us interpret the atoms 1;2;4;6 as 1I = ONE, 2I = TWO, 4I = FOUR,
and 6I = SIX.

82 Feature Logic

>I
α = DI

?I
α = /0

aI
α =

�
aI	

xI
α =

n
α(x)

o
(f :S)I

α =
�

d 2 DI j 9e2 SI
α:(d;e) 2 f I	

(f")I
α =

�
d 2 DI j 8e2 DI :(d;e) 62 f I	

(f #g)I
α =

�
d 2 DI j 9e2 DI :(d;e) 2 f I \gI	

(f "g)I
α =

�
d 2 DI j 9e;e0 2 DI :(d;e) 2 f I ^ (d;e0) 2 gI ^e 6= e0

	
(�S)I

α = DI �SI
α

(SuT)I
α = SI

α\TI
α

(StT)I
α = SI

α[TI
α

(S! T)I
α =

�
DI �SI

α
�
[TI

α

(S$ T)I
α =

��
DI �SI

α
�
[TI

α
�
\
��

DI �TI
α
�
[SI

α
�

�
9x(S)

�I
α =

[

d2DI

SI
α[x d]

Table 8.2: Formal denotation of feature terms

The denotation of the feature termS= [passengers:2] under the feature alge-
braI = (DI ; �I) and someI -assignmentα is then determined as

SI
α = [passengers:2]Iα

=
�

d 2 DI j 9e2 2I
α:(d;e) 2 passengersI

	
=
�

d 2 DI j 9e2 fTWOg:(d;e) 2 PASSENGERS
	

=
�

d 2 DI j (d;TWO) 2 PASSENGERS
	

= fTRUCKg :

The termT = 9x[passengers:x;wheels:x] is interpreted as

TI
α = 9x[passengers:x;wheels:x]Iα

=
[

d2DI

[passengers:x;wheels:x]Iα[x d]

8.5 Properties of Feature Terms 83

= � � � [[passengers:x;wheels:x]Iα[x FOUR][�� � :

We focus upon the assignment ofx with FOUR, giving

TI
α = � � � [

�
[passengers:x]Iα[x FOUR]\ [wheels:x]Iα[x FOUR]

�
[�� �

which reduces to

TI
α = � � � [

�n
d 2 DI j 9e2 xI

α[x FOUR]:(d;e) 2 passengersI
o
\ �� �

�
[�� �

= � � � [
��

d 2 DI j 9e2 fFOURg:(d;e) 2 passengersI
	
\ �� �

�
[�� �

= � � � [
��

d 2 DI j (d;FOUR) 2 PASSENGERS
	

\
�

d 2 DI j (d;FOUR) 2 WHEELS
	�
[�� �

= � � � [
��

d 2 DI j (d;FOUR) 2 PASSENGERŜ (d;FOUR) 2 WHEELS
	�
[�� �

This leaves only theCAR element as possible interpretation:

TI
α = � � � [

�
fCARg\fCARg

�
[�� �

All other assignments forx result in the empty set, giving

TI
α = /0[

�
fCARg\fCARg

�
[/0

= fCARg :

Existential quantification9x(S) in feature terms, as in the example above,
imposes some decidability and complexity problems. Existential quantification is
thus often implicitly expressed through equivalent agreement and disagreement
terms. The termT = 9x[passengers:x;wheels:x] can be expressed through the
equivalentT = passengers#wheels, for instance. The algorithms discussed in
this work all require that their feature terms be free of existential quantifiers.

8.5 Properties of Feature Terms
8.5.1 Redundant Forms

Smolka observes that most of the introduced feature term forms are redundant
and may be reduced to six primitive forms.

84 Feature Logic

Definition 8.17 (Primitive feature term) A feature term is calledprimitive if it
contains only the formsa, x, f :S, SuT,�S, and9x(S). 2

Proposition 8.18 Every feature term can be rewritten in linear time to an equiv-
alent primitive feature term by using the following equivalences:

f"=�(f :>) ?= xu�x
f #g= 9x(f :xug:x) >=�?

f "g= 9x(f :xug:�x) StT =�(�Su�T)
S! T =�(Su�T) S$ T =�(Su�T)u�(Tu�S)

PROOF.Follows from definitions. 2

8.5.2 Special Feature Terms

We now introduce the notions ofclosed, quantifier-free, basic,andsimplefeature
terms.

Definition 8.19 (Closed feature term)A feature term is calledclosedif it has
no variables. 2

Definition 8.20 (Quantifier-free feature term) A feature term isquantifier-free
if it contains no quantifications9x(S). 2

Definition 8.21 (Basic feature term) A feature term isbasic if it is quantifier-
free and contains only complements of the from�a or�x. 2

Every quantifier-free feature term can be transformed into a basic feature term,
where negations occur only at the atom and variable level.

Proposition 8.22 Every quantifier-free feature term can be rewritten in linear
time to an equivalent basic feature term by using the following equivalences:

� f :S= f"t f :�S �?=>

� f"= f :> �>=?

� f "g= f"tg"t f #g �(SuT) =�St�T
� f #g= f"tg"t f "g �(StT) =�Su�T
��S= S S! T =�StT

S$ T = (�StT)u (�T tS)
PROOF.Follows from definitions. 2

8.5 Properties of Feature Terms 85

Definition 8.23 (Simple feature term) A feature term issimpleif it is basic and
contains no unions. 2

Definition 8.24 (Disjunctive normal form) A feature term is indisjunctive nor-
mal form (DNF) if it has the formS1t �� � tSn, where allS1; : : : ;Sn are simple
feature terms. 2

8.5.3 Equivalence

The meaning of an expressionS= T is the intuitive one.

Definition 8.25 (Term equivalence)Two feature termsSandT are calledequiv-
alent (written S=I T or S= T where unambiguous) ifSI

α = TI
α for every feature

algebraI and anI -assignmentα.3 2

Using this equivalence notion, we find that feature terms constitute a boolean
algebra.

Proposition 8.26 Let f be the set of feature terms, as defined in section 8.4. Then
(f ;t;u;�;?;>) is a boolean algebra under the equivalence=I .
PROOF.All properties required for boolean algebras (commutativity, associativity,
idempotency, absorption, distribution, etc.) apply. 2

8.5.4 Subsumption

In our SCM context,subsumptionis frequently needed for eliminating redundant
feature terms and to express implications.

Definition 8.27 (Subsumption) A feature termS is said to besubsumedby a
feature termT (writtenSvT or T wS) if SI

α�TI
α holds for every feature algebraI

and everyI -assignmentα.4 2

The following propositions hold for all feature termsS, T, U :

Sv S (8.1)

Sv T uT v S) S= T (8.2)

Sv T uT vU) SvU (8.3)

3Smolka [Smo92] writesS� T instead ofS= T.
4Smolka [Smo92] says thatS is includedby T, written S4 T.

86 Feature Logic

as well as

SuT v S f:Sv f :T , Sv T Sv>
Sv StT �Sv�T , T v S ?v S :

As subsumption is reflexive (8.1), antisymmetric (8.2), and transitive (8.3), it im-
poses apartial orderon feature terms—for instance, we have>w [fruit:apple]w
[fruit:apple;color:green]w [fruit:apple;color:green;wormy:no]w �� � w ?. This
order constitutes a lattice structure in the set of feature terms.

Proposition 8.28 The set of all feature termsf and subsumption constitute a
subsumption lattice(f ;v) with a supremum ofStT and an infimum ofSuT for
all S;T 2 f .
PROOF.Follows from proposition 8.26 on the page before. 2

8.5.5 Consistency

The notion ofconsistentfeature terms is important for defining the consistency
of a configuration.

Definition 8.29 (Consistency)A feature termS is called coherent orconsistent
if there exists a feature algebraI and anI -assignmentα such thatSI

α 6= /0. A
feature term is called incoherent orinconsistentif it is not consistent. 2

Definition 8.30 (Mutual consistency)Two feature termSandT are calledcon-
sistent with each otherif their intersection is consistent—that is, ifSuT is con-
sistent. 2

Definition 8.31 (Disjointness)Two feature termsS andT are calleddisjoint if
their intersection is inconsistent—that is, ifSuT is inconsistent. 2

Both deciding subsumption and equivalence can be tracked down to deciding
consistency.

Proposition 8.32 Consistency, subsumption, and equivalence of feature terms
are linear-time reducible to each other:

Sinconsistent, S=? (8.4)

Sv T , Su�T inconsistent (8.5)

S= T , Sv T ^T v S (8.6)

PROOF.Follows from definitions. 2

8.6 Conclusion 87

8.6 Conclusion
Feature logic combines boolean formulas with attribute descriptions. Its basic
notions arefeatures,functional properties or attributes of abstract objects, and
feature terms,denoting sets of objects by their features. Feature logic has a con-
venient and natural set notation, describes objects by attributes, and provides a
suitable notion of consistency. Feature logic thus fulfills our requirements for a
SCM foundation, as discussed in chapter 7.

In this work, we always interpret feature terms as sets of objects, unless oth-
erwise specified. “Traditional” set notation will not be required, with one single
exception: We writejSj to express thecardinality (the number of elements) of a
set denoted by the feature termSunder a given interpretation. All other required
notation is already provided by feature logic, as introduced above. Having pro-
vided the necessary foundation, we now apply feature logic in the context ofSCM,
developing a layer ofCM primitives on top of feature logic.

In the first place, Herodotus,
you must understand what it is that words denote,

in order that by reference to this
we may be in a position to test opinions, inquiries, or problems,

so that our proofs may not run untested ad infinitum,
nor the terms we use be empty of meaning.

— EPICURUS, Diog. Laert, Epicurus, X, 37

Part Three

The Version Set Model

89

Chapter 9

Versions and Components

Let us now return to theSCMdomain. In this part, we show how feature logic can
be used to describeSCM tasks and concepts, and how a unifiedSCM model can
integrate the common fourSCM models.

We begin with theSCM primitives layer, that is, basic versioning and access
capabilities. We introduce the concept ofversion sets,sets of component versions
denoted by feature terms. We show how the features of components are modeled
as alternatives over the features of the individual versions, and demonstrate how
specific versions are selected by intersection.

9.1 Identifying Versions

According with theSCM standards, as stated in section 1.3, we consider that the
object of interest inSCM is a family ofsoftware products.Each of these software
products breaks down in severalcomponents,each of which may exist in sev-
eralcomponent versions.A component version is an unbreakable, unambiguous
configuration item.

In our setting, a component is aset of component versions and thus identifi-
able by a feature term. Each of the individual component versions is identified by
a singleton subset. To bind these component versions together, we must assume
at least one common feature across all component versions. Hence, we assume
that each component can be identified uniquely via anobject feature assigning
each component a simple (unambiguous) component identifier.

Definition 9.1 (Component) A componentis a setK v [object:k], wherek is a
simple feature term uniquely identifying the component. 2

91

92 Versions and Components

For instance,[object:printer] denotes a component, but[fruit:apple] does not.
A component versionis uniquely identified by a singleton component. As a

matter of convenience, we use the same name for singleton sets and the object
they denote. Hence, acomponent versionmeans both a singleton set and the
object contained in that set.

Definition 9.2 (Component version)A component versionis a componentK
with K v [object:k] andjKj = 1, wherek is a simple feature term uniquely iden-
tifying the component. 2

Definition 9.3 (Abstract component) A componentK is called generic orab-
stractif it occurs in more than one version, i.e.jKj> 1. 2

As an example, let

printer1 = [object:printer;print-language:postscript]

printer2 = [object:printer;print-language:ascii]

denote versions of aprinter component, distinguished by their input language
(PostScript orASCII). The term[object:printer] then denotes an abstract compo-
nent, since it occurs in (at least) two versions.

Definition 9.4 (Bound component)A componentK is called unambiguous or
boundif it occurs in exactly one version, i.e.jKj= 1. 2

Following our example, if both component versionsprinter1 and printer2 are
bound, the abstract component[object:printer] comes in exactly two versions.

We now abstract from components and speak of versions alone. A collection
of arbitrary components in arbitrary versions is called aversion set. We still
assume that aobjectfeature exists.

Definition 9.5 (Version set) A version setis any setV v [object:>]. 2

For consistency, aversionis a singleton version set. This implies that a compo-
nent version is both a component and a version.

Definition 9.6 (Version) A version is any version setV v [object:>] such that
jVj= 1. 2

9.2 Selecting Versions 93

The features of a component are modeled asalternativesover the features
of each component version. That is, a component is theunion of its individual
component versions:

Definition 9.7 (Components vs. Component versions) A componentK exist-
ing in n component versionsV1;V2; : : : ;Vn, is determined as the union of allVi :

K =V1tV2t �� �tVn =
G

1�i�n

Vi : (9.1)

2

FeaturesF of the component itself (as[object:k]) are the same across all com-
ponent versions, and hence can be factored out through(F uV1)t (F uV2) =
F u (V1tV2).

As an example, reconsider our printer setting. Theprinter component itself is
determined as the union ofprinter1 andprinter2:

printer= printer1tprinter2

=
�
object:printer;print-language:fpostscript;asciig

�
:

The termprinter can be read either as union of the component versionsprinter1
andprinter2, or as the features of theprinter component, which is “the printer
language is PostScript orASCII”.

9.2 Selecting Versions
To retrieve individual versions of a version set, the version set is intersected with
a selection termcontaining the desired features. For any version setT and a
selection termS, we can identify the versions satisfyingSby calculatingT 0 = Tu
S—that is, the version set that is a subset ofSas well as a subset ofT. If T 0 =?,
selection fails—T 0 does not denote any existing version.

For instance, consider the printer example from section 9.1. In figure 9.1 on
the following page, we have represented some version sets using the well-known
Venn diagrams;each curve represents a set enclosing the denoted objects. We
see that selectingS= [print-language:postscript] from printer returnsprinter1,
sinceprinter1 is a subset ofS(that is,printer1 v S), while printer2 is not (that is,
printer2v�S).

Formally, we haveprinteruS= (printer1t printer2)uS= (printer1uS)t
(printer2uS) = printer1t? = printer1. Here,printer2uS= ? holds since the
print-languagefeature may have only one value.

94 Versions and Components

�
object:printer;
print-language:ascii

� �
object:printer;
print-language:postscript

�

[object:printer]

[print-language:postscript]

Figure 9.1: Selecting component versions

The selection term may be an arbitrary feature term. For instance, we may
select any printer exceptprinter1, by selecting

S=�printer1
=�[object:printer;print-language:postscript]

=�[object:printer]t�[print-language:postscript]

Obviously, we haveprinteruS= printer2, since(printer1tprinter2)u�printer1
= printer2 holds.

Due to the semantics of feature logic, there is a potential danger in selec-
tions. Since every non-existing feature must be specified as explicitly as every
existing feature, a selection with non-specified, orthogonal features may result in
counter-intuitive results. For instance, selectingS= [colors:4] from printer =
printer1tprinter2 would result in the entireprinter set, although thecolors fea-
ture is neither defined nor undefined in eachprinter1 andprinter2. Which is even
worse,printeruS results in a new termaugmentedwith thecolors feature from
S:

9.3 Making Selections Unambiguous 95

printeru [colors:4]

=
�
object:printer;print-language:fpostscript;asciig;colors:4

�
Although this behavior makes sense in a set-theoretic context, it is undesirable for
SCM selection purposes. Fortunately, this behavior can easily be avoided in an
implementation by disallowing non-orthogonal selection terms. In section 19.5,
we discuss techniques for safe interactive exploration of the version space.

To conclude, the ability to use boolean expressions for both identification and
selection complies with the requirement forunificationas stated in section 7.3. It
allows our model to encompass attribute-oriented identification schemes as well
as attribute-oriented selection schemes. Alas, the expressiveness of feature logic
comes with the cost ofN P-completeness, which implies exponential time com-
plexity for selections in the worst case. Fortunately, all of today’sSCM tasks can
be realized efficiently, as we discuss in chapter 14.

9.3 Making Selections Unambiguous
As our selection scheme is set-oriented, the result of each selectionT 0 of a se-
lection T 0 = T uS is just another version set and may thus be ambiguous. To
make our selection unambiguous, we may give a second selection termS0 and se-
lect T 00 = T 0uS0, give a third selection termS00, and so on, narrowing the choice
set incrementally until a singleton set is selected, containing the desired version.
Such techniques can be used to explore the configuration space interactively, nar-
rowing and extending the selection as desired. We discuss such interactive tools
in section 19.5.

As discussed in section 3.3, mostSCM tools make their selection unambigu-
ous as soon as possible, usingconfiguration rulesto express preferences and de-
faults. The semantics of such complex selection schemes can be described on
top of feature logic, by definingpreference operatorsanddefault operatorswhich
handle ambiguity and inconsistency.

Definition 9.8 (Preferences and defaults)The preference operator“and-then”
and thedefault operator“or-else” are defined as

S1and-thenS2 =

(
S1 if S1 is unambiguous (i.e.jS1j= 1),

S1uS2 otherwise

S1or-elseS2 =

(
S1 if S1 is non-empty (i.e.S1 6=?),

S2 otherwise

96 Versions and Components

where the equivalencesT u (S1and-thenS2) = (T uS1and-thenT uS2) andT u
(S1or-elseS2) = (T uS1or-elseT uS2) hold. 2

Using “and-then” and “or-else”, we can express preferences and defaults in
our selection terms. For instance,S=

�
[current:>]or-else[fixed: true]

�
first se-

lects the current version, and, if there is none, a “fixed” current version. The se-
lectionS=

�
[os:unix]and-then[unix-flavour:bsd]

�
selects theUNIX version and,

should this choice be ambiguous, theBSD variant.
Another practical extension are additional constraints, for instance quantifica-

tion, arithmetic constraints or function interfaces. Such constraints can be handled
as additional constraints in Smolka’s feature unification algorithm when deciding
about the inconsistency of simple feature terms; they can be evaluated as soon as
their variables (features) are instantiated [Sne91]. Well-known constraint solving
systems like the Simplex Method or language-specific consistency checkers, as
discussed in section 3.6.2, may help to decide about inconsistence. Such con-
straints are discussed in section 18.5.

Users must be aware, however, that the usage of preferences or additional con-
straints may lead to unresolved constraints due to undecidability. Such unresolved
constraints can be avoided by using extensions either only for version identifica-
tion or only for version selection, making preferences and additional constraints
useful extensions in many environments.

9.4 Dynamic Version Creation
So far, we have thought of components as a union over a finite set of versions.
But it is also conceivable that specific versions aredynamically created and in-
stantiatedjust as they are requested. As an example, consider a component
network-interfacethat can be customized with a specific network address. As the
number of network addresses is (in theory) infinite, thenetwork-interfacecompo-
nent is the union over an infinite set of possible versions. Hence, the features of
network-interfacebecome

network-interface= [object:network-interface;address:>]

which means that for any version (subset) ofnetwork-interface, theaddressfea-
ture must be defined. ASCM system may now be set up such that a selection
network-interfaceu [address:127:0:0:1] would actually instantiatethe generic
network-interfacecomponent with a version for the address 127:0:0:1, creating
versions on-the-fly as needed. In practice, this specific example would probably
not be implemented via aSCM system, but through some run-time configuration
mechanism (which may again realize the version set model).

9.5 Assigning Features to Versions 97

As a moreSCM-specific example, considerchange sets,as discussed in sec-
tion 2.7. As (more or less) arbitrary combinations of change sets are possible, an
SCM system should be set up such that these versions are created only when re-
quested. A selection term like[change-41:>;change-42:>], for instance, would
result in the creation of a version with the changes 41 and 42 applied. We fur-
ther discuss this idea of representing change sets and dynamic version creation in
chapter 11.

9.5 Assigning Features to Versions

We close this chapter by discussing the question which features of components
and versions are significant and how these should be modeled in feature logic.
The specific attribution methodology is part of higherSCM layers (notably the
protocol and policy layers); in order to maintain flexibility at these layers, we do
not impose more meaning than necessary on specific features.

There are only few existing attribution methodologies; we have already dis-
cussed theCAPITL methodology in section 4.5; another frequently-cited scheme
is faceted classification[PD87, OHPDB92]. However, we can supply some gen-
eral guidelines imposed by feature logic.

9.5.1 Variants must be Disjoint

Definition 9.2 requires that each component version be singleton and thus un-
ambiguous. This implies that the intersection of any two different component
versionsVi andVj must be empty, orVi uVj = ?. For instance, consider the
following terms:

screen1 = [object:screen;depth:1]

screen2 = [object:screen;x-resolution:1024;y-resolution:1024]

screen1 and screen2 do not identify two distinct component versions, as their
intersection is non-empty:

screen1uscreen2
= [object:screen;depth:1;x-resolution:1024;y-resolution:1024]

is the set of all screens with depth 1 and a resolution of 1024�1024 pixels. To
havescreen1 andscreen2 denote two unambiguous variants,screen1 must include
resolution features, andscreen2 must include adepthfeature.

98 Versions and Components

9.5.2 Feature Values keep Versions Disjoint

A simple way to keep versions disjoint is to assign each of them a common feature
with differing values. For instance, two variants for theUNIX andWINDOWS
operating systems would be easily distinguished via anoperating-systemfeature:

os1 = [object:os;operating-system:dos]

os2 = [object:os;operating-system:unix]

As all features,operating-systemcan have only one value. Hence, selecting
the UNIX variant [operating-system:unix] automatically excludes theDOS vari-
ant[operating-system:dos] and vice versa.

The alternative, introducingdosandunixfeatures, is less convenient, since the
alternative operating system must be excluded explicitly; this would only make
sense if we expected some future version to support bothUNIX andDOSvariants.

9.5.3 Features Model Variance Dimensions

Re-consider thescreenexample. Let us assume that in fact, arbitrary combina-
tions of depth and resolution are possible. In this case, both depth and resolution
constitute orthogonal variance dimensions and should be modeled by different
features. With dynamic version creation, each of these instantiations of depth and
resolution could be created on-the-fly, making thescreencomponent a union over
an infinite number of possible component versions, or

screen= [object:screen;depth:>;x-resolution:>;y-resolution:>] :

9.5.4 Alternatives may Denote Multiple Features

Sometimes, a single version supports several alternatives. Letsmart-printerbe
a specific printer component may determine automatically the language of its
printer data and thus support several languages at once. This can again be mod-
eled asalternative,for instance as:

smart-printer=
�
object:printer;print-language:fascii;pcl;postscriptg

�
wheresmart-printeris a singleton set; thus, the selections

smart-printeru [print-language:ascii] ;

smart-printeru [print-language:postscript] ;and

smart-printeru [print-language:pcl]

all return the same component version.

9.6 Discussion 99

9.5.5 Constraints Exclude Feature Combinations

It is often easier to specify thenon-existenceof certain feature combinations
rather than to specify all existent combinations. This is especially true for dy-
namic version creation. Suchfeature constraintsare best modeled as common
features of the component. A screen with one plane, for instance, is monochrome:
it can only show either black or white pixels. This general constraint can be ex-
pressed through an implication

C = (planes:1! colors:2) =�[planes:1]t [colors:2] ;

stating that the screen has either more than one plane (strictly spoken, any other
number of planes than one) or two colors. This constraint may become part of the
common features of thescreencomponent:

screen= (planes:1! colors:2)u (screen1t �� �tscreenn)

which makes the relationship betweenplanesandcolorsexplicit and saves users
from specifying it in each term denoting the component versions.

9.6 Discussion
Using feature terms for both identification and selection of version sets constitutes
an expressive and general scheme. By handling version sets instead of individual
versions, we allow ambiguity as well as dynamic creation of versions. Through
preference and default operators, we can model disambiguation as found inSCM
systems.

Flexibility has its drawbacks. Using complex terms for identification as well
as for selection may result in exponential time complexity. Selection with orthog-
onal terms leads to counter-intuitive results. Finally, there are only few attribution
methodologies that would help classifying versions according to their features.
All three issues must be and can be addressed at the higherSCM layers.

When you have mastered numbers,
you will in fact no longer be reading numbers,

any more than you read words when reading books.
You will be reading meanings.

— HAROLD GENEEN, Managing

Chapter 10

Composing Configurations

Having discussed how individual components are versioned, we can now turn to
collections of components, orconfigurations.We discuss how features propagate
from components to configurations, and how the features of a configuration are
determined by the common features of its component versions. We show how
common features are used as a means to determine consistency, and discuss how
configurations integrate with other versioning concepts discussed so far.

10.1 Extrinsic and Intrinsic Features
In chapter 9, we have seen how features propagate from versions to components:
Each feature of a component version becomes an alternative feature in the compo-
nent itself. The next questions are: how do features propagate from components
to configurations, and how do these features interact with each other? Basically,
there are two alternatives.

Feature unification. The features of the configuration are determined by the
common (i.e. unified) features of the component versions; these common
features determine the component versions. For instance, adding a[os:dos]
version to a configuration makes[os:dos] a feature of the entire configura-
tion, excluding all non-DOSversions in other components.

Feature union. The features of the configuration are determined by the united
features of the component versions; component features do not interact. For
instance, when composing a configuration from two componentsvector=
[object:vector] andmultiset= [object:multiset], the features of the configu-
ration should be[object:fvector;multisetg]—that is, the objects arevector
andmultiset.

101

102 Composing Configurations

A solution to this dilemma is to distinguish betweenextrinsicfeatures, which are
unified, andintrinsic features, which are not.

Definition 10.1 (Extrinsic and intrinsic features) Features of a component ver-
sion are eitherextrinsic or intrinsic. A dependent orextrinsic feature of a com-
ponent is a feature that determines the features of other components in a configu-
ration. An independent orintrinsic feature is a feature that is not extrinsic. 2

Extrinsic features are typically features that must be common across all com-
ponents, for instanceoperating-system customer, or bug-fix-377. Intrinsic fea-
tures are often process-driven and used for identifying purposes only, likeauthor,
date, or change-log. Theobjectfeature is also an intrinsic feature.

We first discuss the treatment of extrinsic features, including a larger example,
and than turn to the integration of intrinsic features.

10.2 Unifying Extrinsic Features

In chapter 9, we have seen that in our model, feature terms may be used for
identification as well as for selection purposes. Until now, we have identified a
component version by its intrinsic features. But we may also use the feature term
of a component version to specify the features of its environment, notably the
features ofothercomponent versions—that is, extrinsic features.

As an example, consider a simple portableCD-ROMplayer built from ascreen
and adrive component. Each comes in two versionsscreen= screen1t screen2
anddrive= drive1tdrive2, where

screen1 = [object:screen; resolution:high;drive-speed:high]

screen2 =
�
object:screen; resolution:medium;

drive-speed:fhigh;medium; lowg
�

drive1 = [object:drive;drive-speed:high]

drive2 = [object:drive;drive-speed:medium] ;

that is, screen1 is a high-resolution screen, which requires a high-speed drive,
andscreen2 is a medium-resolution screen, which also works with medium- or
low-speed drives.

Indeed, the version set model does not make a distinction betweenprovid-
ing andrequiring features. In thescreencomponent, thedrive-speedfeature is
required; in thedrive component, thedrive-speedfeature is provided. The only

10.3 A Unification Example 103

statement we can make is that any configuration of thescreenanddrive compo-
nents should excludedrive2 if screen1 is included. This leads us to the general
idea that each configuration shouldinherit the features of its components, and
that the common features of the components determine the features of the config-
uration:

Definition 10.2 (Configuration features) Let C be a configuration ofn compo-
nents with the extrinsic featuresK1;K2; : : : ;Kn. Then,C has the features

C = K1uK2u �� �uKn = G
1�i�n

Ki : (10.1)

2

As a simple configuration example, consider theCD-ROM drive. The config-
uration ofscreenanddrivehas the features

C=
�
[resolution:high;drive-speed:high]

t [resolution:medium;drive-speed:fhigh;medium; lowg]
�

u
�
[drive-speed:high]t [drive-speed:medium]

�
= [resolution:high;drive-speed:high]

t [resolution:medium;drive-speed:high]

t [resolution:medium;drive-speed:medium] ;

that is, actually three possible configurations with different resolutions and drive
speeds.

Even without handling of intrinsic features, we already see that a configura-
tion will again be represented as a set and may be possibly ambiguous. We also
see that composing a configuration is very much like selection: each component
in the configuration imposes its constraints on the other components. This scheme
can be used for checking consistency with regard to the features, as discussed in
the next section.

10.3 A Unification Example
As a larger example for illustrating configuration consistency, consider figure 10.1
on the next page. We see three source components of a text editor, where each
component comes in several variants. We can choose between two operating sys-
tems (dosandunix), four screen types (ega, tty, x11andnews), and two screen de-
vice drivers (dumbandghostscript). Thedumbdriver assumes that the screen type

104 Composing Configurations

[os: dos,
 screen-type: {ega, tty},
 concurrent: false]

[os: unix,
 screen-type: {x11, news, tty}]

[screen-type: ega,
 screen-data: bitmap]

[screen-type: tty,
 screen-data: ascii]

[screen-type: x11,
 screen-data: bitmap]

[screen-type: news,
 screen-data:
 {postscript, bitmap}]

[screen-device: dumb,
 data: D,
 screen-data: D]

[screen-device: ghostscript,
 data: postscript,
 screen-data: bitmap,
 concurrent: true]

S
cr

ee
n

de
vi

ce
S

cr
ee

n
ty

pe
O

pe
ra

tin
g

sy
st

em

Figure 10.1: Consistent configurations in a text/graphic editor

can handle the data directly (expressed through the variableD); the ghostscript
driver is a separate process that can convert postscript data into a bitmap. The
component features imply that at most one version of each component can be
included in a bound configuration.

Let us now compose a consistent configuration from these three source com-
ponents. We begin by selecting the operating system, and choose thedosversion.
This implies that we cannot choose thex11 or newsscreen types, since (in our
example),dosdoes not support them: Formally,�

os:dos;screen-type:fega; ttyg
�
u
�
screen-type:fx11;newsg

�
=?

due to the differingscreen-typefeatures—we cannot usex11ornewsscreen types.
We can, however, chooseegaor tty screen types, as indicated by plain lines.

As final component, we must choose a screen device driver.ghostscriptcan-
not be chosen, since it requiresconcurrentto be true, which is not the case under
dos. Thedumbdriver remains;D is instantiated tobitmapor ascii, depending on
the screen type, making our choice complete:editorcan be built in aegaand atty
variants, inheriting the features of its source components. As an alternative, con-
sider the choice[os:unix], as indicated by dashed lines. Again, each path stands
for a consistent configuration.

10.4 Handling Intrinsic Features 105

The ability of treating component features as configuration constraints al-
lows for arbitrarylocalizationof configuration constraints: components can be
tagged with constraints regarding their usage, but global constraints regarding
(sub-)systems are permitted as well. The drawback is that one single language
must be used to specify constraints, to specify the component features, and to
select component versions. With feature logic, we hope having chosen a well-
established foundation with sufficient richness of expression.

10.4 Handling Intrinsic Features
We now show how to propagate intrinsic features in configurations. As stated
in the introduction, it makes perfectly sense for intrinsic features likeauthor or
status, to differ across components;objectfeatures even differ by definition. To
keep these intrinsic features from constraining other component versions, we lo-
calize them, that is, we make them depend on the specific component.

A possible approach to localize intrinsic features is to prefix all intrinsic fea-
tures f with the component namek. This would result in orthogonal features like
tty-authoror screen-status. A more elegant alternative is to express this depen-
dency explicitly in feature logic, using implications[object:k]! T that enforce
the versionT whenever the componentk is required. The idea is to create a
configuration termwith these implications that automatically selects the desired
version(s) from each component.

To construct such implications, we define a specialaggregation operator.The
operator “+uI ” is similar to “u”, but has a special handling of intrinsic features:
instead of unifying them, it makes them dependent on the specific component;
objectfeatures are stripped altogether.

Definition 10.3 (Aggregation) Let I = f f1:>; f2:>; : : : ; fn:>g be a feature term
denoting intrinsic features. LetSandT denote components with

S= [object:s]uS0uS00 and

T = [object:t]uT 0uT 00 ; (10.2)

such thatS00;T 00 v I denote the intrinsic features, andS0;T 0 6v I denote extrinsic
features. Theaggregationof SandT, writtenS+uI T, is then defined as

S+uI T = S0uT 0u
�
[object:s]! S00

�
u
�
[object:t]! T 00

�
: (10.3)

2

Every aggregationS+uI T selects version subsets from[object:s] and[object:t]:

106 Composing Configurations

Proposition 10.4 Let Sv [object:s] andT v [object:t] denote components, and
I denote intrinsic features, as described above. Then,

[object:s]u (S+uI T)v S (10.4)

holds.
PROOF. Let T = [object:t]uT 0 uT 00, as in (10.2), satisfying the requirements of
definition 10.3 on the preceding page. Then, we have

U = [object:s]u (S+uI T)

= [object:s]u
�
S0uT 0u

�
[object:s]! S00

�
u
�
[object:t]! T 00

��
: (10.5)

We reduce the first sub-formula, following the patternAu (A! B) = AuB:

[object:s]u
�
[object:s]! S00

�
= [object:s]u

�
�[object:s]tS00

�
= [object:s]uS00 (10.6)

as well as the second, following the patternAu (�A! B) = A:

[object:s]u
�
[object:t]! T 00

�
= [object:s]u

�
�[object:t]tT 00

�
= [object:s] (10.7)

and can reformulate (10.5) using (10.6) and (10.7) to

U = [object:s]u (S0uT 0uS00)

=
�
[object:s]uS0uS00

�
uT 0

= SuT 0 :

Hence,U = [object:s]u (S+uI T) = SuT 0 v S, which was to be shown. 2

Using the aggregation operator, we can extend definition 10.2 withobjectfea-
tures and intrinsic features and formally define how all kinds of features propagate
from components to configurations.

Definition 10.5 (Configuration vs. components)If we have a configurationC
composed ofn componentsK1;K2; : : : ;Kn with Ki v [object:ki], and a termI de-
noting the intrinsic features, the configurationC is identified by

C= [object:k1tk2t �� �tkn]uK1 +uI K2 +uI � � � +uI Kn

= [object:k1tk2t �� �tkn]u +G
1�i�n

I Ki ;
(10.8)

10.4 Handling Intrinsic Features 107

[object: iterator] [object:container]C

[access:sequential]

[author: tom] [author: lisa]

Figure 10.2: Creating a configuration from two components

that is,object features are united, intrinsic features are made dependent on the
respective component, and all other features are unified. 2

As an example, consider two components

container=
�
object:container;author: lisa;access:fsequential; randomg

�
iterator= [object: iterator;author: tom;access:sequential] :

Let I = [author:>] be the set of intrinsic features. According to definition 10.5
on the preceding page, the configurationC containingcontaineranditerator is

C =
�
object:fcontainer; iteratorgu (container+uI iterator)

�
=
�
object:fcontainer; iteratorg;access:sequential;

(object:container! author: lisa);(object: iterator! author: tom)
�
:

Not only does the termC unify the extrinsic features ofcontaineranditerator
to [access:sequential]. As illustrated in figure 10.2, it also ensures that whenever
thecontainercomponent is selected, Lisa’s version is returned:

Cu [object:container]v [author: lisa]

108 Composing Configurations

and that whenever theiterator component is required, Tom’s version is returned:

Cu [object: iterator]v [author: tom] :

Likewise, requesting Tom’s version returns theiterator component:

Cu [author: tom]v [object: iterator] :

10.5 Properties of Configurations

We can now define some properties of configurations formally, according to defi-
nition 10.5 on page 106.

Definition 10.6 (Configuration) A configurationis a setCv [object:c], wherec
is a feature term identifying the set of configuration components. 2

Definition 10.7 (Consistent configuration)A configurationC is calledconsis-
tent with respect to its features ifC 6=?—that is, if the number of possible con-
figurations is non-zero. 2

Definition 10.8 (Bound configuration) A configurationC is called unambigu-
ous orboundif it is an aggregation of component versions; formally,C is bound
if it is a setCv [object:c] such thatjCj= jcj holds. 2

Definition 10.9 (Abstract configuration) A configurationC is called ambigu-
ous, dynamic, orabstract,if it is not bound; that is,jCj> jcj holds. 2

Definition 10.10 (Generic configuration) A configurationC is called partially
bound orgenericif it is abstract and a true subset of the configuration universe;
that is,jcj< jCj< j[object:>]j holds. 2

We see that the informal definitions given in section 3.3 can now be put more
precisely through well-founded formal definitions.

10.6 Configurations and Ambiguity

As configurations are again ordinary version sets (albeit containing several com-
ponents), all selection properties for component versions apply, as discussed in
chapter 9. A configuration can be dynamically created, for example; but it can

10.6 Configurations and Ambiguity 109

also occur in multiple versions. We have already seen how ambiguity in a compo-
nent propagates to all configurations containing this component. But ambiguity
may also affect the actual set of components contained in the configuration.

As a simple example, consider a problem occurring in the 4.1 release of the
SunOSoperating system. The system librarylibc comes in two versions: one
dynamic version for dynamically linked programs, and one static version for sta-
tically linked programs. Both libraries are identical, except for one minor differ-
ence: Thestrerror() function is only contained in the dynamic library. This means
that programs using this function must include their ownstrerror component if
compiled statically, and omit this component if compiled dynamically.

For simplicity, let us assume a program with only one componentprogram,
and without any specific features. Using version sets, the alternative configura-
tionsC are modeled as

C= [object:program;�linkage:static] (10.9)

t [object:fprogram;strerrorg; linkage:static]

= [object:program]

+uI ([object:strerror; linkage:static]t�[linkage:static])

= [object:program] +uI (linkage:static! object:strerror) : (10.10)

The disjunctive form in (10.9) shows what the actual configurations look like.
The implication constraint in (10.10), however, explicitly states that whenever
static linkage is required, thestrerror object must be contained as well. These
two possibilities of expressing alternatives—enumeration or constraints—will be
discussed further when dealing with revisions and changes in chapter 11.

As the components of a configuration may be configurations again, we can
describe a full system model by compositions (+uI) and alternatives (t), similar
to AND/OR graphs discussed in section 3.2.1. Through transformations of the
configuration term according to the rules of feature logic, arbitrary interchanged
selection and composition stages are possible. Additionally to compositions and
alternatives, complements may be used to express that a specific version setnot
be included in a selection—for instance,S0 = Su�T contains all configurations
of S that do not containT. As versions, components, and configurations are all
modeled by version sets, all version set operations can be applied equally, making
configurations first-class objects.

110 Composing Configurations

10.7 Features of Derived Components
Closely related to the composition of configurations is thederivationof compo-
nents from a set of source components, as discussed in chapter 4. To determine the
features of derived components, we use a variation of definition (10.8). Again, de-
rived components must be consistent, which implies that thesource configuration
be consistent as well. To ensure consistency across multiple derivation stages,
each derived component must inherit the extrinsic features of its source compo-
nents, just as a configuration inherits the extrinsic features of its components.

Definition 10.11 (Derivation) Let a componentK v [object:k] be derived from
nsource componentsK1;K2; : : : ;Kn, and let a termI denote their intrinsic features.
K is then identified by

K v [object:k]uK1 +uI K2 +uI � � � +uI Kn

v [object:k]u +G
1�i�n

I Ki ;
(10.11)

The termK1 +uI � � � +uI Kn is calledsource configurationof K. 2

The explicit setting of theobject feature removes all implications generated
by the aggregation operator—only extrinsic features remain to be unified. As an
example, consider the editor example from figure 10.1 on page 104. Let us denote
the three components by

os= [object:os;author: tom] ;

screen-type= [object:screen-type;author: lisa] ;and

screen-device= [object:screen-device;author: john] ;

respectively; let the intrinsic features beI = [author:>]. If we derive aneditor
component from aDOS/EGA configuration, it is identified by

K v [object:editor]

u
�
[object:os;author: tom;screen-type:fega; ttyg;concurrent: false]

+uI [object:screen-type;author: lisa;

screen-type:ega;screen-data:bitmap]

+uI [object:screen-device;author: john;

screen-device:dumb;data:D;screen-data:D]
�

v [object:editor;screen-type:ega;concurrent: false;

screen-data:bitmap;screen-device:dumb;data:bitmap] ;

10.8 Discussion 111

that is, theobject features and intrinsic features of the source components are
stripped, and all extrinsic features are unified.

10.8 Discussion

By raising the version set model from components to configurations, we have
supplied a uniform denotation for components and systems with uniform query
mechanisms. In our model, configurations are full first-class objects; in fact, a
component is just the special case of a configuration with a single component.
Ambiguity is allowed in configurations just as in components; even the set of
components can depend on other features. Extrinsic features are propagated to
configurations as well as to derived components, while intrinsic features remain
dependent on the specific component.

Our configuration setting also has some drawbacks. While feature propaga-
tion from versions to components was simple and smooth, feature propagation
from components to configurations is much less elegant, due to the variety of
feature interactions in configurations. With the distinction between intrinsic and
extrinsic features, and the special handling ofobject features, we hope having
supplied solutions for modeling the large majority of feature interactions.

Uniting object features has the desired effect of excluding all components
which are not part of the configuration. But using a union for what should ac-
tually be a set value has some unfortunate side-effects, notably when talking
about ambiguous configurations. For instance, how shall a configurationC =
[object:fa;b;cg] be interpreted: as a configuration of three componentsa, b, and
c; or as an ambiguous configuration involving eithera, b, or c?

To solve this problem, the best solution for that problem would be a feature
logic enhanced with set values. Smolka [Smo92] discusses such an extension
of feature logic, generalizing feature terms toconcept descriptions,using set-
valued features calledroles. objectcould then be represented as role instead of
a feature, allowing multipleobjectvalues. Unfortunately, Smolka does not give
a consistency notion for concept descriptions, let alone a consistency-checking
algorithm like feature unification. In [Man94], Manandhar presents an alternative
feature logic whose consistency notion encompasses set values. But Manandhar’s
logic has no complement operator and hence no negation. The integration of
set-valued features or roles in a feature logic including a consistency-checking
constraint system remains an open problem.

In the absence of roles, there is anad hocsolution forSCMsystems interpret-
ing feature terms: always use thewidenest possible set.In our case, this results
in C being interpreted as set of three objects, as was our intention. Ambiguity is

112 Composing Configurations

still possible as soon as other features are involved. For example, consider

C0 =
��

device:x11;object:fa;b;cg]; [device:win;object:fa;bg
�	

:

GivenC0, anSCM system would interpret the outer union as alternative, because
the united version sets are disjunct; there is no unambiguous widenest possible
set. The inner unions, however, can be interpreted as set values, as inC.

As is often the case,
providing information about the system as a whole

implies properties of individual components.

— DEBORAH L. McGUINNESS, LORI ALPERIN RESNICK and CHARLES ISBELL,
Description Logic in Practice

Interchangeable parts won’t.

— LAWS OF ASSEMBLY, II

Chapter 11

Changes and Revisions

We shall now turn fromplannedversions, that is, versions as they occur in the
final product, tounplannedversions, that is, versions as they occur during soft-
ware development and maintenance. In this chapter, we show how to model re-
visions and changes through feature logic. The basic idea is to identify revisions
by the applied changes, as in the change-oriented models. By expressingrevi-
sion constraints, we constrain the versioning space by disallowing specific change
combinations—up to revision graphs as in the version-oriented models.

11.1 Revision Graphs

In section 2.7, we discussed the Change-Oriented Model, where revisions are the
result of changes applied to a baseline. In our model, we also assume that new
revisions are created by applying changes on existing revisions. In contrast to the
Change-Oriented Model, we still focus on versions and do not treat changes as
separate entities. However, weidentify revisions by the changes applied and the
changes not applied.

Let us denote the revisions of a version set byR0;R1;R2; : : : , and so on;
δ1;δ2;δ3; : : : denote individual changes. Each revisionRi is created by applying
a changeδi to some originating revisionsRj ; : : : ;Rk—for instance, the changeδ1

results in revisionR1. The exception to the rule is thebaselineR0, which has no
associated change.

A simple way to illustrate the relationships between revisions and changes is a
version graph,as discussed in section 2.2. In this chapter, we shall use arevision
graphwhere each derivation between revisions is annotated with the associated

113

114 Changes and Revisions

δ2
δ1

δ3 δ4

δ5R1
R3 R4

R2
R5

R6
δ6

R0

Figure 11.1: A revision graph

change. In short, an edge

Ri
δ j
�! Rj

between two revisionsRi and Rj means thatRj was created by applying the
changeδ j onRi . Since this implies thatRi is older thanRj , revision graphs repre-
sent the evolution of a version set in time.

As an example of a revision graph, consider figure 11.1. Most revisions have
one single origin—for example, revisionR1 was created by applyingδ1 on the
baselineR0. But there is also a case ofmultiple origins: RevisionR5 was created
from R2 andR4 by applying the changeδ5.

Individual revisions can be uniquely identified by the included and excluded
changes. For instance, revisionR1 includes the changeδ1, and excludes all others.
RevisionR4 includesδ1, δ3, andδ4, and excludesδ2, δ5, andδ6. RevisionR6

includes all changes exceptδ5.
But why should one care about identifying revisions by their changes? The

answer is: if there aren changes, there might be up to 2n revisions—that is, one
revision for each combination of included and excluded changes. Assigning revi-
sion numbers is convenient for a small set of revisions, but if there is a large num-
ber of changes that can be applied independently, any linear numbering scheme
for revisions soon runs out of numbers.

With a given revision graph, it suffices to state only a few of the included and
excluded changes to identify individual revisions. Let us take a look at figure 11.1.
To identify revisionR6, it suffices to state that the changeδ6 should be included.
Likewise, to selectR3, we only need to state thatδ3 should be included and thatδ4

should be excluded.
This simplification is possible because revision graphs expressimplications

between changes. For instance, applying theδ4 change implies that theδ3 change
be applied as well—there is no revision includingδ4 and excludingδ3. Hence,
when selecting a revision that includes the changeδ4, we do not need to specify
that the implied changesδ3, δ2, andδ1 are to be included as well. Likewise,

11.2 Identifying Revisions 115

excluding the changeδ4 means that the changes implyingδ4 are excluded as
well—that is,δ5 andδ6, since they implyδ4 to be applied.

In this chapter, we show how to identify revisions just by stating included
and excluded changes, and how to use implications between changes to structure
revision graphs.

11.2 Identifying Revisions
We now formally define the notions of changes and revisions. We begin with
introducingdelta features, which we use to identify changes.

Definition 11.1 (Delta feature) A delta featureis an identifierδi denoting the
application of some changeδi . 2

Delta features are convenient for grouping revisions into version sets, called
delta sets.

Definition 11.2 (Delta set)A delta set∆i = [δi : >] is the set of objects where
the changeδi has been applied. 2

In figure 11.1 on the facing page, the delta set∆4 containsR4, R5, andR6; the
delta set∆6 containsR6 alone; and the delta set∆1 contains all revisions exceptR0.

Since we want to identify revisions by the excluded changes as well, we in-
troduce a short-hand notation for the complement of a delta set:

Definition 11.3 (Nabla set)The complement of a delta set is callednabla set,
written as∇i =�∆i = [δi"]. It denotes the set of objects where the changeδi has
not been applied. 2

In figure 11.1, the nabla set∇1 identifiesR0 alone, while∇5 contains all revi-
sions exceptR5.

To ensure that each revisionRi is associated with a delta set∆i and a nabla
set∇i , we define∆0 and∇0 accordingly.

Definition 11.4 (∆0;∇0) We define∆0 => and∇0 =�∆0 =?. 2

Intersections of delta and nabla sets are useful for identifying revisions.

Definition 11.5 (Revision features)For a given revision graph, the features of
each revisionRk are

Rk = (∆1u �� �u∆k)u (∇k+1u �� �u∇m)

u (∇m+1u �� �u∇j)u (∇j+1u �� �u∇n) (11.1)

116 Changes and Revisions

where each∆i is a change leading up to a revisionRi :

� R1; : : : ;Rk�1 are ancestors ofRk.

� Rk+1; : : : ;Rm are direct descendants ofRk.

� Rm+1; : : : ;Rj are indirect descendants ofRk—that is, descendants of the
direct descendantsRk+1; : : : ;Rm.

� Rj+1; : : : ;Rn are neither ancestors nor descendants ofRk. 2

For the revision graph in figure 11.1, definition 11.5 yields the following re-
vision features:

R0 = ∇1 u ∇2 u ∇3 u ∇4 u ∇5 u ∇6

R1 = ∆1 u ∇2 u ∇3 u ∇4 u ∇5 u ∇6

R2 = ∆1 u ∆2 u ∇3 u ∇4 u ∇5 u ∇6

R3 = ∆1 u ∇2 u ∆3 u ∇4 u ∇5 u ∇6

R4 = ∆1 u ∇2 u ∆3 u ∆4 u ∇5 u ∇6

R5 = ∆1 u ∆2 u ∆3 u ∆4 u ∆5 u ∇6

R6 = ∆1 u ∇2 u ∆3 u ∆4 u ∇5 u ∆6

(11.2)

Figure 11.2 on the next page illustrates the relationship between delta sets
and revisions for the revision graph given in figure 11.1. We see that each delta
set contains exactly those revisions where the change has been applied; likewise,
each revision is contained in the delta sets denoting its changes.

If we create arevision set,a version set containing revisions (aRCSor SCCS
repository,for example), we can select individual revisions by stating the ex-
cluded or included changes. As an example, let us create a revision setR con-
taining the revisionsR0; : : : ;R6, as determined in (11.2). According to (9.1),R is
determined as

R= R0tR1tR2tR3tR4tR5tR6 :

Arbitrary version sets can now be selected fromR by specifying a conjunction
of applied and non-applied changes, denoting paths in the revision graph. For
instance, the selectionRu∆4 denotesR4 and its descendantsR5 andR6, as they
all include theδ4 change (formally,R4tR5tR6vRu∆4); sinceR0; : : : ;R3 do not
include theδ4 change (R0u�� �uR3v∇4), they are excluded (R0tR1tR2tR3v

Ru∇4). The selectionRu [∆2;∇5] returns the single revisionR2, sinceR5, the
only other revision including the changeδ2, also includes the changeδ5 and is
thus excluded by∇5 = [δ5"].

11.2 Identifying Revisions 117

∆6

∆4 ∆3 ∆1

R0

R2R5R3 R6 R4

∆5

R1

∆2

Figure 11.2: Changes and revisions

Generally, to select a single revision, it suffices to include the change lead-
ing up to that revision and to exclude the changes leading up to its immediate
descendants.

We conclude with a few formal definitions regarding revision sets. In a re-
vision setR, we call a revisionRj an ancestorof Ri if R contains no revision
including the changeδi while excludingδ j—that is,∆i v ∆ j holds.

Definition 11.6 (Ancestor, Descendant)In a revision setR, consider a pair of
revisionsRi vRandRj vR. If i 6= j holds andRu (∆i u∇j) is inconsistent,Rj is
calledancestorof Ri andRi is calleddescendantof Rj . 2

An immediate ancestor is calledorigin; an immediate descendant is called
successor.

Definition 11.7 (Origin, Successor)In a repositoryR, let Rj ; : : : ;Rk be the an-
cestors of a revisionRi . EachRl v Rj t �� � tRk is calledimmediate ancestoror
origin of Ri if there is no changeδm 6= δl such thatRm is a descendant ofRl and
an ancestor ofRi ; revisionRi is calledimmediate descendantor successorof Rl .

2

118 Changes and Revisions

11.3 Revisions and Variants

The introduction of delta features allows us to distinguish revisions from variants
formally. Basically, a revision is a version set that cannot be refined any further
by specifying more delta features in a selection term. For instance, the feature
termR= [object: foo;∆47] denotes a revision ifR= Ru∆i = Ru∇i holds for all
i 6= 47.

Likewise, a variant is a version set that cannot be refined any further by spec-
ifying any more non-delta features in a selection term. For example, the term
V = [object:bar; tested: true] denotes a variant ifV =V u [f :>] =V u [f"] holds
for all featuresf such thatf 6= objectand f 6= testedand f is not a delta feature.

Neither variants nor revisions are necessarily singleton: A variant may still
come in multiple singleton revisions, and that a revision may come in multiple
singleton variants. If a version set can no more be refined, we have a singleton
version,following definition 9.6 on page 92.

Here come the formal definitions, beginning with refinement. A termT refines
a termS if T uS is different fromSand non-empty. Like cardinality, refinement
can only be determined for some given interpretation.

Definition 11.8 (Refinement)A feature termT is said torefinea feature termS
if SuT 6= SandSuT 6=? hold. 2

If a version set cannot be refined by stating more delta features, we call it a
revision.

Definition 11.9 (Revision set, Revision)A revision setis a version setR that is
a subset of some delta or nabla set. A revision setS is called arevisionif there is
no revision setRsuch thatR refinesS. 2

If a version set cannot be refined by stating more non-delta features, we call
it a variant.

Definition 11.10 (Variant set, Variant) A variant setis a version setR that is
not a revision set. A variant setS is called avariant if there is no variant setV
such thatV refinesS. 2

Note that a versionV may be a revision as well as a variant:

� If V is distinguished from another version via a delta feature only,V was
created by applying a change and is thus a revision.

11.4 Revision Constraints 119

� If V is distinguished from another version via a non-delta feature only,V is
a variant.

� If V is distinguished via delta features as well as via other features, there
was a change that affected other features as well;V is a revision as well as
a variant.

In section 12.5, we will further investigate the relationships between delta
features and other features.

11.4 Revision Constraints

In (11.2), we have seen that the termsRi denoting the individual revisions may
become quite large—each ofR0; : : : ;Rn containsn primitives. If we represent the
features of the revision setR in DNF, as stated in (11.2),R contains(n+1)�n=
n2+n primitives, resulting in quadratic time behavior for any repository accesses.

In this section, we discuss an alternate representation forR, using an inter-
section ofrevision constraints,that is, implications between delta sets. Using
revision constraints, the revision setR from (11.2) can be expressed as

R= (∆2! ∆1)u (∆3! ∆1)u (∆4! ∆3)u (∆5! ∆2)u (∆5! ∆4)

u (∆6! ∆4)u (∆2u∆3! ∆5)u (∆2u∆6!?) ; (11.3)

that is, one single implication for each edge in the revision lattice as well as one
single implication for each integration. Not only does such a representation save
much space, it also immediately reflects the structure of the revision graph. Be-
sides that, the constraint representation is much easier to maintain when new re-
visions are added, since all we have to do is to intersectR with an additional
constraint.

When selecting revisions fromR, all revision features are created by applying
revision constraints—every revision constraint inR is reduced to some delta or
nabla set. As an example, consider the selectionRu∆5, which should returnR5,
as defined in (11.2). Following the general scheme

(∆i ! ∆ j)u∆i = (∇i t∆ j)u∆i = ∆i u∆ j ; (11.4)

we begin with intersecting the constraints involving∆5 in (11.3) and obtain

(∆5! ∆2)u∆5 = ∆2u∆5

(∆5! ∆4)u∆5 = ∆4u∆5 ;

120 Changes and Revisions

that is,Ru∆5 v ∆2 andRu∆5 v ∆4 hold. Consequently, we can intersect the
other constraints with∆2 or ∆4 to eliminate alternatives:

(∆2! ∆1)u∆2 = ∆1u∆2

(∆4! ∆3)u∆4 = ∆3u∆4

and find thatRu∆5v ∆1 andRu∆5v ∆3 hold. Ru∆5v ∇6 also holds:

(∆2u∆6!?)u∆2 = ∇6u∆2 :

The remaining constraint is trivially reduced to

(∆2u∆3! ∆5)u∆5 =>u∆5 :

We obtainRu∆5 as

Ru∆5 = (∆1u∆1u∆3u∆2u∆4u∆4u>u∇6)u∆5

= ∆1u∆2u∆3u∆4u∆5u∇6

= R5 :

As another example, consider the selectionRu∇1, which should returnR0, as
defined in (11.2). We now rely on a variant of (11.4), namely

(∆i ! ∆ j)u∇j = (∇i t∆ j)u∇j = ∇i u∇j ; (11.5)

in order to reduce revision constraints to revision features. Intersecting the first
two constraints in (11.3) with∇1 yields

(∆2! ∆1)u∇1 = ∇2u∇1

(∆3! ∆1)u∇3 = ∇3u∇1 ;

that is,Ru∇1 is a subset of∇2 and∇3. Hence,Ru∇1 = Ru∇1u∇3 holds, and
we can intersect the other constraints with∇3 to obtain further features:

(∆4! ∆3)u∇3 = ∇4u∇3

(∆5! ∆4)u∇4 = ∇5u∇4

(∆6! ∆4)u∇4 = ∇6u∇4

11.5 Constraints and Lattices 121

w

w

w w

w∆0 ∆1
∆3 ∆4

∆2
∆5

∆6
w

w

?

Figure 11.3: A revision graph as subsumption lattice

The last two constraints are easily reduced to>:

(∆2u∆3! ∆5)u∇2 =>u∇2

(∆2u∆6!?)u∇2 =>u∇2

We obtain

Ru∇1 = (∇2u∇3u∇4u∇5u∇5u∇6u>u>)u∇1

= ∇1u∇2u∇3u∇4u∇5u∇6

= R0 :

11.5 Constraints and Lattices
How does one obtain these revision constraints? Revision constraints are deduced
from therevision lattice.The revision lattice is the subsumption lattice obtained
from the subsumption relation between delta sets. If∆i v∆ j holds, requesting the
changeδi implies thatδ j be applied as well. Using (8.4) and (8.5), we have

∆i v ∆ j , ∆i u∇j =? :

Consequently, if∆i v ∆ j holds, there is no revision such thatδi is applied, but
δ j is not.

These subsumption relations between delta sets can be visualized in a graph.
The revision lattice for our example is shown in figure 11.3. In the revision lattice,
the supremum of any two revision sets∆i and∆ j is the set of ancestor revisions
∆i t∆ j ; their infimum is the (possibly empty) set of integrated revisions∆i u∆ j .

We see that the revision lattice is isomorph to the revision graph, as shown in
figure 11.3; the only difference is that we have added a? element to complete the
lattice. The structure similarity does not surprise—the revision graph is structured
by change implicationsδi ! δ j , which correspond to the subsumption relations
∆i w ∆ j in the revision lattice.

Using the revision lattice, we can computerevision constraints.

122 Changes and Revisions

Definition 11.11 (Revision constraint)For any two delta sets∆i and∆ j in a re-
vision lattice, let∆i; j w (∆i t∆ j) be their lowest common ancestor (supremum),
and let∆i; j v (∆i u ∆ j) be their (possibly empty) highest common descendant
(infimum) in the revision lattice. Therevision constraintCi; j is defined as

Ci; j = (∆i t∆ j ! ∆i; j)u (∆i u∆ j ! ∆i; j) (11.6)

2

In the common case of changes that imply each other (that is,∆i w ∆ j), revi-
sion constraints take a much simpler form:

Corollary 11.12 If ∆i w ∆ j holds, the revision constraintCi; j is

Ci; j = ∆ j ! ∆i (11.7)

PROOF.We have∆i; j = ∆i and∆i; j = ∆ j . Consequently,

Ci; j = (∆i t∆ j ! ∆i; j)u (∆i u∆ j ! ∆i; j)

=
�
(∇i u∇j)t∆i

�
u
�
(∇i t∇j)t∆ j

�
= (∇j t∆i)u>

= ∆ j ! ∆i ;

which was to be shown. 2

Constraints involving∆0 are trivial.

Corollary 11.13 For all j, Cj ;0 =C0; j => holds.
PROOF.Because of (11.7),Cj ;0 =C0; j = ∆ j ! ∆0 = ∆ j !>=>. 2

As an example of revision constraints, consider the revision graph in fig-
ure 11.3 on the page before, where we have

C2;4 = (∆2t∆4! ∆1)u (∆2u∆4! ∆5)

as well as

C2;6 = (∆2t∆6! ∆1)u (∆2u∆6!?) :

The conjunction of all revision constraints in a revision graph is calledcon-
straint representationof the revision graph.

11.6 An Equivalence Result 123

Definition 11.14 (Constraint representation) Given a revision lattice with delta
sets∆1; : : : ;∆n, theconstraint representationC of a revision graph is defined as
the conjunction

C = G
1�i�n
1< j<i

Ci; j ; (11.8)

where each revision constraintCi; j is defined according to (11.6). 2

It now turns out that this conjunction of constraints, as defined in (11.8), is
equivalent to the union of revisions, as defined through (9.1), and thus constitutes
a suitable representation for revision graphs, as demonstrated in section 11.4. The
proof is given in section 11.6.

11.6 An Equivalence Result

In this section, we show that the conjunction of constraintsC, as defined in (11.8),
is equivalent to the union of revisionsR, as defined through (9.1). The road map
to the proof is as follows:

� In lemma 11.15 on the following page, we show that a selection inC stating
the included and excluded changes actually contains the desired revisions.

� In lemma 11.16 on page 125, we show that this selection does not return
any other revisions.

� Proposition 11.17 on page 127 combines lemmas 11.15 and 11.16 and
states that we can select a single revisionRk from C by specifying the in-
cluded and excluded changes.

� Lemma 11.18 on page 127 applies proposition 11.17 to revision sets and
shows that we can select a revision and all its descendants fromC.

� Finally, theorem 11.19 on page 128 applies lemma 11.18 toR0, showing
thatR=C holds.

We begin with some selection results. First, we show that we can select a
revision Rk from C by stating the change leading up toRk and excluding the
changes leading up to its descendants. Lemma 11.18 on page 127 states thatRk is
at least a subset of such a selection.

124 Changes and Revisions

Lemma 11.15 LetC be a constraint representation, as defined in (11.8), andR=
R0t�� �tRn be a union of revisions. For all revisionsRkvRn with 0� k� n, we
have

Rk vCu∆ku G
k+1�l�m

∇l ; (11.9)

whereRk+1; : : : ;Rm are the immediate descendants ofRk.
PROOF.According to (8.5), (11.9) holds if and only ifU , defined as

U = Rku�(Cu∆ku∇k+1u �� �u∇m)

is inconsistent. We apply de Morgan’s laws, obtaining

U = Rku
�
�Ct�(∆ku∇k+1u �� �u∇m)

�
:

Because of (11.1),Rk v ∆ku∇k+1u �� �u∇m holds. Hence, we have

U = Rku�C

and we see that (11.9) holds if and only ifRk v C holds. We replaceC by its
definition (11.8) and obtain

U = Rku�(C1;2u �� �uCn;n�1)

= Rku (�C1;2t �� �t�Cn;n�1)

= (Rku�C1;2)t �� �t (Rku�Cn;n�1) ;

that is,U is inconsistent if everyRk u�Ci j is inconsistent. For each pairi; j,
using (11.6), we evaluateRku�Ci; j to

Rku�Ci; j = Rku�
�
(∆i t∆ j ! ∆i; j)u (∆i u∆ j ! ∆i; j)

�
= Rku

��
(∆i t∆ j)u∇i; j

�
t
�
∆i u∆ j u∇i; j

��
=
�
Rku (∆i t∆ j)u∇i; j

�
t
�
Rku∆i u∆ j u∇i; j

�
LetU 0 = (∆i t∆ j)u∇i; j andU 00 = (∆i u∆ j)u∇i; j such thatRku�Ci; j =U 0tU 00

holds. We distinguish four cases:

1. Rkv∆iu∆ j . Due to (11.1),Rkv∆i; j must hold as well, which impliesRku

U 0 v ∆i; j u∇i; j =?. As Rk is the integration ofRi andRj or a descendant,
we haveRk v ∆i; j and thusRkuU 00 v ∆i; j u∇i; j =?.

11.6 An Equivalence Result 125

2. Rkv∇i u∆ j . RevisionRk inherits the features ofRj and all of its ancestors.
As in case 1,Rkv∆i; j must hold as well;RkuU 0=? holds. SinceRkv∇i ,
RkuU 00 v ∇i u∆i =? holds.

3. Rkv ∆i u∇j . Same as case 2, above.

4. Rk v ∇i u∇j . We haveRkuU 0 v (∇i u∇j)u (∆i t∆ j) v ?; as in case 2,
RkuU 00 =? holds.

In all four cases,Rku(U 0tU 00) =Rku�Ci; j =? holds for each pairi; j, resulting
in U = Rk u�C = ?. SinceU is inconsistent, (11.9) holds, which was to be
shown. 2

Lemma 11.16 states thatRk is also a superset of the same selection.

Lemma 11.16 Let C andR be defined as in lemma 11.15 on the preceding page.
For all revisionsRk v Rn with 0� k� n, we have

RkwCu∆ku G
k+1�l�m

∇l ; (11.10)

whereRk+1; : : : ;Rm are the immediate descendants ofRk.
PROOF.As stated in (8.5), (11.10) holds if and only ifU , defined as

U =�RkuCu∆ku∇k+1u �� �u∇m

is inconsistent.Rk takes the general form

Rk = (∆1u �� �u∆k)u (∇k+1u �� �u∇m)

u (∇m+1u �� �u∇j)u (∇j+1u �� �u∇n) ;

where all∆i and∇i are defined according to definition 11.5 on page 115. The
inverted form is

�Rk = (∇1t �� �t∇k)t (∆k+1t �� �t∆m)

t (∆m+1t �� �t∆ j)t (∆ j+1t �� �t∆n) ;

such thatU evaluates to

U =
�
(∇1t �� �t∇k)t (∆k+1t �� �t∆m)

t (∆m+1t �� �t∆ j)t (∆ j+1t �� �t∆n)
�

uCu∆ku∇k+1u �� �u∇m :

126 Changes and Revisions

We shall now show that none of the alternatives in�Rk can be satisfied. We
begin with the alternatives∇kt∆k+1t �� �t∆m. These are explicitly excluded by
the selection term∆ku∇k+1u �� �u∇m and we obtain

U =
�
(∇1t �� �t∇k�1)t (∆m+1t �� �t∆ j)t (∆ j+1t �� �t∆n)

�
uCu∆ku∇k+1u �� �u∇m :

We continue with eliminating the ancestor alternatives. SinceR1; : : : ;Rk�1

are ancestors ofRk, we have∆i;k = ∆i for 1 � i � k� 1. Consequently,C v
Ci;k = ∆k! ∆i holds andCu∆k v ∆i for 1� i � k�1. Hence, the alternatives
∇1t �� �t∇k�1 cannot be satisfied and may be omitted, resulting in

U =
�
(∆m+1t �� �t∆ j)t (∆ j+1t �� �t∆n)

�
uCu∆ku∇k+1u �� �u∇m :

We continue with the descendant alternatives. The same applies to the indirect
descendants ofRk. SinceRk+1; : : : ;Rm are direct descendants ofRk, we have∆i;l =
∇i for k+1� i �m andm+1� l � j. As above,CvCi;l = ∆l ! ∆i = ∇i ! ∇l

holds and thusCu∇i v∇l for k+1� i �mandm+1� l � j. This removes the
alternatives∆m+1t �� �t∆ j , resulting in

U = (∆ j+1t �� �t∆n)uCu∆ku∇k+1u �� �u∇m :

We close with the remaining alternatives. The revisionsRj+1; : : : ;Rn are nei-
ther ancestors nor descendants ofRk. For eachRi with j +1� i � n, let us check
if Ri andRk integrate:

� If Ri andRk integrate in some revisionRl , we have∆i;k = ∆l . Then,Cv
Ci;kv (∆i u∆k! ∆l) holds, and we haveCu∆k = ∆i! ∆l = ∇l !∇i . But
Rl is a descendant of∆k. As shown above, this implies thatCu∇k+1u�� �u

∇mv ∇l and we haveCu∆ku∇k+1u �� �u∇mv ∇i .

� If Ri andRk do not integrate, we have∆i;k = ?. In this case,Cv Ci;k v

(∆i u∆k!?) = ∇i t∇k holds, and we haveCu∆kv ∇i .

In either case,Cu∆ku∇k+1u �� �u∇mv ∇i holds for all j +1� i � n—and this
eliminates the remaining∆i alternatives.

U =?uCu∆ku∇k+1u �� �u∇m

=? :

Hence,U is inconsistent and (11.10) holds, which was to be shown. 2

11.6 An Equivalence Result 127

Proposition 11.17 combines lemma 11.15 and lemma 11.16. It states that we
can select a revisionRk from C by including the change leading up toRk and
excluding the changes leading up to its descendants.

Proposition 11.17 Let C andR be defined as in lemma 11.15 on page 124. For
all revisionsRk v Rn with 0� k� n, we have

Rk =Cu∆ku G
k+1�l�m

∇l ; (11.11)

whereRk+1; : : : ;Rm are the immediate descendants ofRk.
PROOF.Follows from (11.9) and (11.10) via (8.6). 2

Proposition 11.17 implies that the selectionCu∆i returnsRi and all its de-
scendants.

Lemma 11.18 Let C andR be defined as in lemma 11.15 on page 124. For all
revisionsRkv Rn with 1� k� n, we have

Cu∆k = RktRk+1t �� �tRn ; (11.12)

whereRk+1; : : : ;Rn are the descendants ofRk.
PROOF. We prove (11.12) via structural induction. IfRk has no descendants,
(11.12) holds because of (11.11). Otherwise, letRk+1; : : : ;Rm be the direct de-
scendants ofRk and let us assume that (11.12) holds forRk+1; : : : ;Rm. Starting
with (11.11), we obtain

Rk =Cu∆ku G
k+1�l�m

∇l

This can be expanded to

Rkt

G

k+1�l�m

Cu∆l

!
=

Cu∆ku G

k+1�l�m

∇l

!
t

G

k+1�l�m

Cu∆l

!

By applying (11.12) for all∆k+1; : : : ;∆m on the left-hand side, we get

Rkt �� �tRn =

Cu∆ku G

k+1�l�m

∇l

!
t

G

k+1�l�m

Cu∆l

!

=Cu

∆ku G

k+1�l�m

∇l

!
t

G

k+1�l�m

∆l

!!
:

128 Changes and Revisions

Applying the absorption rule yields

Rkt �� �tRn =Cu

∆kt

G

k+1�l�m

∆l

!
:

EachRl in k+ 1 � l � m is a descendant ofRk. Because of (11.7), we have
Cv ∆l ! ∆k and thusCu (∆kt∆l) =Cu∆k, which results in

Rkt �� �tRn =Cu∆k :

We have shown that (11.12) holds for anyRk without descendants, and for
anyRk if it holds for its descendants. Hence, (11.12) holds for allRk. 2

Lemma 11.18 on the page before also states that the the two revision set rep-
resentations are equivalent.

Theorem 11.19A revision setR can be represented as union of all revisionsRk,
as defined in (11.1), or as intersection of revision constraintsCi; j , as defined
in (11.6). Both representations are equivalent:

R=
G

0�k�n

Rk = G
1�i�n
1< j<i

Ci; j (11.13)

PROOF.Follows from (11.12):C =Cu∆0 = R0tR1t �� �tRn = R. 2

11.7 Discussion
In section 6.3, the integration of change-oriented models and version-oriented
models turned out as a majorSCM research issue. We have seen that feature
logic is descriptive enough to model ordinary revision histories, as in the version-
oriented models; arbitrary change combinations, as in the change-oriented mod-
els are still possible. By submitting changes to revision constraints, the version
set model captures the entire range of temporal versioning—from the rigid revi-
sion graphs of versions-oriented models to the loosely structured change space of
change-oriented models.

Revision constraints are easily constructed from the revision graph. Their in-
tersection is equivalent to the union of all revisions. This equivalence, as stated in
theorem 11.19, again shows the expressive power of feature logic: besides sim-
ple constraints such as stating unique feature values, we can express implications

11.7 Discussion 129

between features that are sufficiently complex to model entire revision graphs. In
chapter 12, we further discuss revision constraints, especially their maintenance
in repositories and their integration with variants and configurations.

There was general agreement
that end-users of applications were not interested in a version model

but were interested in the changes made in previous versions
and, at a more abstract level,

in the features offered by different versions of the system.

— IAN SOMMERVILLE, Sixth International Workshop
on Software Configuration Management

Chapter 12

Constraints and Repositories

Having considered the static aspects of revision graphs, we now turn to some
dynamicaspects, answering questions like: How does a repository representation
change when a new revision is added? How does it change, should an old revision
be removed? As illustrated in this chapter, maintaining the revision constraints is
no more complicated than in “classical”SCM systems. Furthermore, we discuss
the integration of revision constraints with variants and configurations.

12.1 Creating Revisions with a Single Origin

We begin with the problem of adding a single revision to a repository. According
to (9.1) and (11.1), adding a new revisionRi to a repositoryR results in tagging
the old revisions with∇i and adding the new revisionRi , resulting in a new repos-
itory R0:

R0 = (Ru∇i)tRi (12.1)

But this straight-forward approach again leads us to an inefficient representation
of R0, since the constraint form ofR is lost and the termRi can be quite long.
The constraint structure ofRcan be conserved, however, if we know the revisions
Rj ; : : : ;Rk from whichRi originates; or, in other words, which changesδ j ; : : : ;δk

are implied byδi .
As a simple example, consider adding a new revisionR7 to the revision graph

shown in figure 11.1 on page 114. In our setting, revisionR7 is a descendant of
R6; the resulting new revision graph is shown in figure 12.1 on the next page.

131

132 Constraints and Repositories

δ2
δ1

δ3 δ4

δ5R1
R3 R4

R2
R5

R6
δ6

R0

R7
δ7

Figure 12.1: Adding a revisionR7 with a single originR6

Starting from (12.1), we have

R0 = (Ru∇7)tR7

= (Ru∇7)t (R6u∆7)

= (Ru∇7)t (Ru∇2u∆6u∆7)

= Ru
�
∇7t (∇2u∆6u∆7)

�
= Ru (∇7t∇2)u (∇7t∆6)u (∇7t∆7)

= Ru (∇7t∇2)u (∇7t∆6)u>

= Ru (∇7t∆6)u (∇7t∇2)

= Ru (∆7! ∆6)u (∆2u∆7!?) ;

which is exactly the constraint form we should expect from theorem 11.19 on
page 128.

We conclude that anSCM system adding a new revisionRi with one single
origin Rj need do no more than to add one additional constraint(∆i ! ∆ j) to
the representation of the repository term. If the integration ofRi and some other
revision does not exist, the appropriate constraints must be updated as well—as
in our example, where the old constraint(∆2u∆6!?) is subsumed by the new
constraint(∆2u∆7!?).

12.2 Adding Revisions with Multiple Origins

Adding a revisionRi with multiple originsRj ; : : : ;Rk is more complicated, as it
results in theremovalof constraints, namely those constraints which previously
prohibited the integration of the changesδ j ; : : : ;δk.

As an example, assume revisionR7 were based onR5 as well asR6, as il-
lustrated in figure 12.2 on the next page. In this case, the termR0 can no more
contain the constraint(∆2u∆6!?). Let R00 hold all other constraints fromR
such thatR= R00u (∆2u∆6!?). Adding revisionR7 to the repositoryRwould

12.2 Adding Revisions with Multiple Origins 133

δ2
δ1

δ3 δ4

δ5R0 R1
R3 R4

R2
R5

R6
δ6

δ7 R7

Figure 12.2: Adding a revisionR7 with two originsR5 andR6

then result in

R0 = (Ru∇7)tR7

= (Ru∇7)t (R
00u∆5u∆6u∆7)

= (R00u (∇2t∇6)u∇7)t (R
00u∆5u∆6u∆7)

= R00u
��
(∇2t∇6)u∇7

�
t (∆5u∆6u∆7)

�
= R00u

�
(∇2t∇6)t (∆5u∆6)

�
u
�
(∇2t∇6)t∆7

�
u
�
∇7t (∆5u∆6)

�
= R00u (∇2t∇6t∆7)u

�
∇7t (∆5u∆6)

�
= R00u (∆2u∆6! ∆7)u (∆7! ∆5u∆6)

= R00u (∆2u∆6! ∆7)u (∆7! ∆5)u (∆7! ∆6) ;

that is, the old constraint(∆2u∆6!?) is replaced by(∆2u∆6! ∆7) and two
new constraints(∆7! ∆5) and(∆7! ∆6) are added.

We deduce a general scheme for the incremental maintenance of revision con-
straints:

Proposition 12.1 (Incremental maintenance of revision constraints)
The general scheme for adding a revisionRi to a repositoryR is:

1. For each originRj , add a constraintCi; j = ∆ j ! ∆i to R.

2. For each pairj;k of ancestor revisionsRj ;Rk, replace the old constraint
∆ j u∆k!? in Rby ∆ j u∆k! ∆i .

3. For each ancestorRj and any non-integrating revisionRm, replace the con-
straint∆ j u∆m!? in R by ∆i u∆m!?.

PROOF. Added constraints: The new constraints added are an immediate conse-
quence of theorem 11.19 on page 128: step 1 adds the constraints forRi and its
origins, step 2 adds constraints forRi as new descendant, and step 3 adds con-
straints forRi and non-integrating revisions. All remaining revisionsRk are non-
origin ancestors ofRi ; the constraintsCi;k are subsumed byCi; j added in step 1
and the unchanged constraintCj ;k.

134 Constraints and Repositories

Removed constraints: The constraints removed in step 2 are no more ade-
quate, as the descendant ofRj andRk now exists asRi . The constraints removed
in step 3 are subsumed by their replacement constraint in conjunction with the
implications added in step 1. 2

We see that maintaining the revision constraints is no more difficult than main-
taining a revision graph in “classical”SCM systems.

12.3 Removing Revisions
Although removal of revisions is seldom desirable in anSCM context, it consti-
tutes another example on the usage of revision constraints. The straight-forward
approach to removing a revisionRi from a repositoryR is to intersectR with the
complement ofRi , resulting in a new repositoryR0:

R0 = Ru�Ri (12.2)

From (12.2), we can immediately deduce an appropriate constraint representation.
Remember thatRi is selected fromR by specifying the change∆i and excluding
all later changes∆ j ; : : : ;∆k leading up to the immediate descendants ofRi, namely
Rj ; : : : ;Rk. Hence, we can transform (12.2) to:

R0 = Ru�(Ru∆i u∇j u �� �u∇k)

= Ru (�Rt∇i t∆ j t �� �t∆k)

= Ru (∆i ! ∆ j t �� �t∆k) ;

that is, we simply add a new constraint stating that, whenever the change∆i is to
be included, one of the later changes∆ j ; : : : ;∆k is to be included as well.

As an example, reconsider figure 11.1 on page 114. Removing revisionR3

from the repositoryR would result in a new repositoryR0 with an additional con-
straint

R0 = Ru (∆3! ∆4) ;

ensuring that, whenever theδ3 change is requested, theδ4 change is included as
well—and vice versa, as the old constraint(∆4! ∆3) is still part ofR.

12.4 Orthogonal Changes
So far, we have only considered “classical” version graphs, where changes imply
each other more or less rigidly. In the Change-Oriented Model, this setting is

12.4 Orthogonal Changes 135

w

w

w

w

w

∆1

∆2

∆3

∆4

∆5

∆2u∆3

∆1u∆2

>

: : :

: : :

: : :

?

Figure 12.3: Orthogonal changes

different: arbitrary combinations of changes are allowed, unless they result in a
conflict. We call these changesorthogonal,since they are independent from each
other.

The versions resulting from the possible change combinations cannot all be
depicted, due to their large number. In figure 12.3, we see five changesδ1; : : : ;δ5,
each resulting in a set∆1; : : : ;∆5 where this change has been applied. All versions
resulting from change combinations are identified by an enumeration of included
and excluded changes. The only restriction in our example is that the changesδ4

andδ5 cannot be integrated; hence,∆4 and∆5 are not orthogonal, but disjoint.
How is such a version set represented? Following (11.6), each constraintCi; j

with 1� i � 5 andi < j < 5 is

Ci; j = (∆i t∆ j ! ∆i; j)u (∆i u∆ j ! ∆i; j) ;

but since∆i; j = ∆i t∆ j and∆i; j = ∆i u∆ j holds for alli; j in R, we have

Ci; j =>

except forC4;5, which is

C4;5 = (∆4u∆5!?)

= ∇4t∇5

Hence,R= C4;5 = ∇4t∇5 is the only constraint required to represent the set of
all versions as shown in figure 12.3.

Obviously, a repository dealing with orthogonal changes would use dynamic
version creation, as discussed in section 9.4. The repository would create versions

136 Constraints and Repositories

w
∆1

∆2
w

w
[bsd-regex:>]

[sysv-regex:>]

w

w
[object: regex] ?

Figure 12.4: Combining delta features and variant features

as required by integrating the requested changes and applying them to a baseline;
this is also the wayRCSrepositories are organized internally.

We see that revision constraints can be used to model both the safe, but
rigid version-oriented models as well as the flexible, but unsafe change-oriented
models. The higher the number of specified constraints, the lower the number
of remaining change combinations—from the flexibility of the Change-Oriented
Model with virtually no constraints to the rigidness of the version-oriented mod-
els with a small set of versions easily enumerated and tested. In our model, both
models are just two extremes in a wide range between safety and flexibility.

12.5 Changes and Other Features
So far, our examples have only covered delta features, modeling historical ver-
sioning through changes. How would other features modeling relationships, vari-
ance, or workspaces be integrated? The answer is simple: they are used just like
delta features, with implications expressing constraints—but not only implica-
tions between changes, but between values of arbitrary versioning dimensions.

As an example, consider theGNU REGEX library used for compiling and
searching regular expressions. The initial versions ofGNU REGEX came with
a BSD UNIX interface, while the later versions came with aPOSIX UNIX inter-
face. Unfortunately, there is no version supporting both interfaces, and both are
maintained individually, as illustrated in figure 12.4—the changeδ1 applies to the
BSD versionbsd= [object: regex;bsd-regex:>] only, while the changeδ2 applies
to thePOSIXversionposix= [object: regex;posix-regex:>] only.

Obviously,∆1 and∆2 are disjoint, as are their respective supersetsbsd-regex
andposix-regex. According to theorem 11.19 on page 128, this disjointness can
be expressed through the constraintsC with

C = (∆1! bsd)u (∆2! posix)u (bsduposix!?)

= [object: regex]u
�
∆1! [bsd-regex:>]

�
u
�
∆2! [posix-regex:>]

�
u
�
[bsd-regex"]t [posix-regex"]

�
= [object: regex;bsd-regex:>;posix-regex";∇1;∇2]

12.6 Changes and Configurations 137

t [object: regex;bsd-regex:>;posix-regex";∆1;∇2]

t [object: regex;bsd-regex";posix-regex:>;∇1;∇2]

t [object: regex;bsd-regex";posix-regex:>;∇1;∆2] ;

that is, [object: regex] comes in four variants, depending on whether theBSD or
POSIXinterface is chosen and whether the respective change has been applied or
not.

We now create aREGEXversion supporting both thePOSIXand theBSD in-
terface. To do so, we apply a changeδ3 to bothbsd-regexandposix-regex, inte-
grating both versions. The resulting subsumption lattice is identical to figure 12.4;
only? is replaced by∆3. The version set itself is described as

C= (∆1! bsd)u (∆2! posix)u (bsduposix! ∆3)

u (∆3! bsd)u (∆3! posix) :

12.6 Changes and Configurations
Just as ordinary variant features can be used instead of delta features in subsump-
tion lattices, delta features can be used instead of ordinary variant features to
express the features of configurations—notably, ambiguity in configurations.

As an example, re-consider the discussion on configurations and ambiguity in
section 10.6, where thelibc library came in two variants: the static variant im-
plied that thestrerror object be contained in the configuration, while the dynamic
variant implied thatstrerror not be contained.

Instead of having twolibc variants distinguished by different values of the
linkage feature, we might as well have twolibc revisions distinguished by a
change applicationδ1. Then, thestrerror component would only be contained
in the configuration ifδ1 had not been applied:

C= [object:program] +uI (∇1! object:strerror)

We may also use both thelinkageand delta features to describe the configu-
ration. For instance, ifδ1 had changed the linkage oflibc from static to dynamic,
we may write

C = [object:program] +uI (linkage:static! object:strerror)

u (∆1! linkage:dynamic)

which leaves thelinkagefeature in the configuration term and makes the nature
of the changeδ1 explicit.

138 Constraints and Repositories

To conclude, we see that it makes no difference whether we identify versions
and configurations by the applied changes or by other features. We can thus
generalize revision constraints toconfiguration constraints,allowing us to express
implications between arbitrary versioning dimensions.

12.7 Maintaining Configuration Constraints
We close this chapter by discussing some useful techniques involving revisions
and changes.

12.7.1 Revision Tagging

Rather than having changes imply features, one may also have features implying
certain changes. In section 2.3.2, for instance, we discussed theCLEARCASE
identification scheme: Users can assign names to edges in the version graph and
select revisions through a disjunction of name patterns. Such naming of changes
is easily expressed through an implication between the name and the respective
delta feature, as discussed in section 9.5.5.

As an example, tagging can be used for classifying versions by theirstatus.
For instance, we may wish to classify versions in three categoriesexperimental,
proposed, andpublished. An implication like

�
[status:proposed]! (∆5u∇6)

�
as configuration constraint can then ensure that whenever aproposedversion is
required,R5 is returned.

12.7.2 Maintaining Currency

Tagging is also useful for maintainingcurrency. In our model, we cannot sim-
ply devise some revision as “current”, because currency may differ across vari-
ants; currency constitutes a part of theSCM protocol, expressed through means
of theSCM primitives layer—that is, using features. A simple scheme to denote
the current versions is to use a set[current:>] that contains the current variants
by implying certain revisions. An implication

�
[current:>;os:unix]! [∆2;∇5]

�
ensures that whenever the currentunix variant is requested, the revisionR2 is
returned. In section 13.1.3, we give an example of using currency in workspaces.

12.7.3 Extrinsic and Intrinsic Changes

Regarding our discussion of extrinsic and intrinsic features in section 10.1, the
question may arise whether delta features are intrinsic or extrinsic features. The
answer is: if the change affects other components, it is extrinsic, and so is the
delta feature; if the change does not, it is intrinsic, and so is the delta feature as
well.

12.8 Conclusion 139

12.8 Conclusion
The maintenance of revision constraints in a repository is no more difficult than
maintaining a “classical” revision graph: for any new revision, a simple constraint
is added just as a new edge is added to the revision graph. Orthogonal changes
impose no special problems.

Revision constraints can be generalized to configuration constraints, express-
ing implications between arbitrary versioning dimensions. The role of configura-
tion constraints in structuring the configuration space cannot be over-emphasized.
Through configuration constraints, we can identify, select, and revise arbitrary
configurations, regardless of their specific versioning dimensions, and ensure their
consistency with respect to the configuration constraints. In chapter 13, we show
how configuration constraints are used to model cooperation techniques.

If a program is useful, it will have to be changed.

— LAWS OF COMPUTER PROGRAMMING, III

Chapter 13

Cooperation Techniques

Having discussed the concepts of logical and historical versioning, as modeled
through feature logic, we now examine the third and last versioning dimension,
which is cooperative versioning.We introduce the notion of aworkspace,con-
fining all user operations to a specific configuration and isolating users from each
other’s changes. Through dedicated workspaces, users can publish and propa-
gate their changes. Using two cooperation scenarios, optimistic and conservative,
we demonstrate how changes propagate across workspaces and show how work-
spaces integrate with the versioning concepts discussed so far.

13.1 Working in Workspaces

13.1.1 Context and Confinement

In the context ofSCM, the work of an individual developer can be described as a
series ofoperations—operations likereading,that is, examining components, or
writing, that is, changing components. Each operation affects a specific configu-
ration of component versions. Often, many subsequent operations affect the same
configuration. Hence, it is desirable to specify this common configuration only
once and toconfineall subsequent operations to that configuration:

Definition 13.1 (Context, Confinement)An operation isconfinedto a configu-
rationC (calledoperation contextor simply context) if it only affects a subset
of C. 2

Formally, such a confinement can be enforced as follows: Given a contextC,
an operation on a componentK is confined to the setK uC. That is, if K v

141

142 Cooperation Techniques

[user: john][user: tom] [user: lisa]

Figure 13.1: Disjoint write contexts

C holds, the operation will succeed; ifK v �C holds, the operation will fail;
otherwise, only the subsetKuC will be affected by the operation.

In practice, different operations can be confined by different contexts imposed
by the SCM system, realizingaccess control.For instance, a system-imposed
read contextmay define the component versions a user can examine, while the
write contextdefines the component versions a user can change. By assigning
each developer an individual write context disjoint from other write contexts, the
SCMsystem can ensure that changes made by one developer do not interfere with
changes made by another developer.

The easiest way to realize disjoint write contexts is to use some common fea-
ture with a different value for each user, and to make the write context a subset
of this feature term. For instance, we may use auser feature having the user
identification as value: formally, each write contextW of a userU is a context
Wv [user:U], whereU is some feature term uniquely identifying the user. Since
theuserfeature may have only one value, all write contexts are disjoint, as illus-
trated in figure 13.1.

Making write contexts disjoint is a necessity for keeping individual changes
apart. In practice, users may also choose to keep their read contexts disjoint
such that they do not see the changes made by others. Likewise, users may wish
to work on a specific configuration only, confining their changes to that config-
uration. We thus introduce the notion of a user-definable working context or
workspaceconfiningall user operations in addition to the read and write contexts
imposed by theSCM system.

Definition 13.2 (Workspace) A workspaceis a user-definable context confining
all user operations. 2

13.1 Working in Workspaces 143

>

w

w

w

[user: lisa]

[object: tty]

[user: tom]

w ∆5 w
?

Figure 13.2: Changes and workspaces

For instance, let us assume Lisa has chosen her write context[user: lisa] as
workspace. If Lisa applies a changeδ5 to thetty object, this change is confined to
her workspace. That is,∆5 is subsumed by[user: lisa]; thetty component is iden-
tified by the additional configuration constraint

�
∆5! [user: lisa]

�
, as illustrated

in figure 13.2.
Let us assume that Tom also has chosen his write context[user: tom] as work-

space. In this case, Tom cannot access Lisa’s change as his view is subsumed
by [user: tom]; formally, user: tomv �[user: lisa] v ∇5 holds. Hence, both Tom
and Lisa can operate without interfering with each other—until their changes are
integrated into some production version.

The confinements imposed by the read and write contexts still apply, regard-
less of the workspace choice. Hence, if each userU has a write context of
[user:U] and a read context of>, Tom can set his workspace to> and thus ex-
amine Lisa’s current work; but his write context keeps him from changing them.

13.1.2 Operations in Workspaces

By adding additional constraints to their workspaces, users can choose to confine
their work to specific configurations only. In figure 13.3 on the following page,
Tom has chosen his workspace as[user: tom;os:mac]. Let us choose this example
to illustrate the effects of operations in his workspace:

Reading versions.Reading a component versionK in a workspaceW returns
KuW only.

Tom does not see the non-macversions (like[os:windows] or [os:plan-9])
nor does he see the changes of other users (like[user: lisa]). Components
whoseuseror os feature is unspecified are included nonetheless in Tom’s
view because the components are the same across alluseror osvalues.

What we have criticized in section 9.2 now comes out as a virtue: overspe-
cialization or orthogonal features in the workspace do not hinder version
selection.

144 Cooperation Techniques

[user: tom;os:mac][user: tom] [os:mac]

Figure 13.3: Workspaces and configurations

Writing versions. Writing a component versionK in a workspaceW changes
K uW only.

All changes Tom makes in his workspace are automatically confined to the
[user: tom;os:mac] variants of the components. The features of the com-
ponents stay the same, but the[user: tom;os:mac] variant will incorporate
Tom’s changes, while the�[user: tom;os:mac] variant seen by the other
users will not incorporate Tom’s changes.

Creating versions. Creating a component versionK in a workspaceW creates
K uW only.

SinceK must not be visible outside ofW, the component versionK u�W
does not exist; this is expressed by constraining the features of the compo-
nent to�(K u�W) = �K tW = (K !W), which expresses thatK is a
subset ofW.

If Tom creates a new component in his workspace, this component must
remain unaccessible to other users. Hence, any such component inherits the
features of Tom’s workspace. If Tom creates anmac-specific component
active-help, it will be identified as

[object:active-help;user: tom;os:mac] :

The additional constraint

�
[object:active-help]! [user: tom;os:mac]

�

13.1 Working in Workspaces 145

ensures that theactive-helpwill not be visible to other users (formally,
�[user: tom] v �[object:active-help] holds) or be included in other oper-
ating systems (�[os:mac]v�[object:active-help]).

Removing versions.Removing a component versionK in a workspaceW re-
movesKuW only.

If Tom deletes a component in his workspace, this component must remain
accessible to others. Consequently, a deleted components is assigned with
an additional feature, namely thecomplement�W of Tom’s workspaceW.

Let us assume that all users see the same version of the[object:keyboard]
component. If Tom deletes thekeyboardcomponent from themacversion,
thekeyboardcomponent will be identified as�

object:keyboard;�[user: tom;os:mac]
�
;

such that it will be no more visible in Tom’s workspace. Outside of Tom’s
workspace, thekeyboardcomponent will still be visible.

13.1.3 Maintaining Currency

Even when their individual workspace is confined to a specific configuration or
revision, users may find it convenient to distinguish versions in “current” and
“non-current” (i.e.outdated) versions, as discussed in section 12.7. Outdated
versions may be identified by[current"], for instance, and hidden by making the
selection[current:>] part of the workspace. Rather than re-setting the workspace
to the latest version after every change, users could then simply tag outdated
components with[current"] and access only the most recent version.

Definition 13.3 (Outdating) To make the changeδi current within the work-
space[user:U], and to outdate all versions that where the changeδi has not been
applied, make the set[user:U;current:>] a subset of∆i . 2

Using the constraint representation to express subsumption relations, this means
replacing any constraint �

[user:U;current:>]! S
�

by �
[user:U;current:>]! ∆i) :

Here is an example, illustrated in figure 13.4 on the next page. In Lisa’s
workspace, revision∆5 is the current revision, which is expressed by a constraint

146 Cooperation Techniques

)

∆6 [current:>][current:>][user: lisa] [user: lisa]∆5 ∆5

Figure 13.4: Changing currency in a workspace�
([current:>]! ∆5)u (∆5! [user: lisa])

�
in all components changed by Lisa.

After applying a changeδ6, Lisa decides to make the∆6 components current;
this is done by adding another constraint

�
[current:>]! ∆6

�
to the components

where theδ6 change was applied.
Lisa’s workspace always remains the same, namely(user: lisa;current:>);

rather than changing her workspace, she changes the features of the components
such that she always sees the current versions. None of these constraints is visible
outside of Lisa’s workspace, as they are all subsumed by[user: lisa].

13.1.4 Working in Teams

Just as auserfeature is useful to keep user workspaces disjoint, other features can
be appropriate to confine changes within larger entities.

Multiple teams. Besides theuser feature, ateam feature may be appropriate
to organize several people working on one task. For instance, all users
in the [team:microkids] workspace could work on the soul of a new ma-
chine, allowing each other to access their changes; but users working in the
[team:hardyboys] workspace would not see their changes and vice versa.
Sub- or superteams can be modeled likewise.

Multiple projects. Besides teams, users may work in different projects, which
could be kept disjoint as well by introducing aprojectfeature. For instance,
in the setting illustrated in figure 13.5 on the facing page, user Kidder is
assigned to two projectseclipseandnova, which is expressed by setting
Kidder’s workspace to

�
user:kidder;project:feclipse;novag

�
. Kidder may

refine his workspace to one of these projects and switch workspaces as
needed.

13.2 Conservative Cooperation Techniques 147

[user:kidder]

�
project:feclipse;novag

�[project:eclipse] [project:nova]

Figure 13.5: Users and projects

Multiple sites. In section 5.7, we discussed techniques for realizing development
in multiple sites. If a distributed repository likeNUCM is not available, dis-
tribution can be made explicit by assigning each development site a specific
value of asitefeature. Just as with teams, users, and projects, users at a par-
ticular site can only change the local components. However, read access to
the changes made at other sites can be realized by regular updates as real-
ized in theMULTISITE tool.

13.2 Conservative Cooperation Techniques

In section 5.5, we have discussed cooperation strategies that prevent against ac-
cidental loss of changes. In this section, we discuss the first group of these
strategies, namelyconservative cooperation strategiesthat prevent against par-
allel changes through alocking mechanism.

13.2.1 Locking Versions

In a conservative cooperation strategy, a user can change a component if and only
if it has not been locked by another user; before changing the component, the user
must explicitly lock it.

Using feature logic, we can distinguish locked from unlocked versions using
an additionallockedfeature and thetaggingtechnique introduced in section 12.7.
For a componentK, each versionV v K locked by a userU is expressed through
a locking constraint

K v
��

V u [locked:>]
�
! [user:U]

�
(13.1)

148 Cooperation Techniques

The SCM system must ensure that only locked versions may be changed—for
instance, by setting the write context to a subset of[locked:>].

As a simple example, assume that Tom has locked revision∆25 of a screen
component. Thescreencomponent then has the features

screenv
�
(∆25u [locked:>])! [user: tom]

�
If Lisa wishes to access a locked revision∆25 of screenfor writing, this will fail:

screenu∆25u [locked:>]u [user: lisa] =? ;

since∆25u [locked:>] implies[user: tom].
Lisa may access an unlocked version for reading, however:

screenu∆25u [user: lisa] = screenu∆25u [user: lisa]u [locked:"]

since (13.1) can also be formulated as

K v
�
�[user:U]!

�
�V t [locked"]

��
;

consequently,[user: lisa]u∆25 implies[locked:"].
We deduce two operations for locking and unlocking component versions:

Definition 13.4 (Locking) To lock a version setV for a userU , makeV a subset
of
��

V u [locked:>]
�
! [user:U]

�
. To unlockV, makeV a subset of[locked"].

2

TheSCM system must ensure that a version setV can only be locked when it
was previously unlocked and vice versa.

13.2.2 Propagating Changes

While the locking mechanism prevents users from making parallel changes to
a version set, we need an additionalpropagationmechanism that propagates
changes across workspaces.

As an example of propagation, reconsider figure 13.2 on page 143, where
Lisa has applied a changeδ5 to thetty object in her workspace. Tom wishes to
propagate this change to his workspace as well. He invokes theSCM system such
that Lisa’s version[object: tty;user: lisa;∆5] is copied into a new version oftty
named[object: tty;user: tom;∆5]. As illustrated in figure 13.6 on the facing page,

13.2 Conservative Cooperation Techniques 149

>

w

w

w

[user: lisa]

[object: tty]

[user: tom]

w

∆5 w

w
[object: tty;user: lisa;∆5]

[object: tty;user: tom;∆5]

Figure 13.6: Propagating changes across workspaces

this makes∆5 a subset of both Tom’s and Lisa’s workspaces; the features of the
tty component become

ttyv [object: tty]u
�

∆5!
�
user:ftom; lisag

��
:

Tom may now make the∆5 version current and thus determine how Lisa’s
change affects his current work. Any changes Tom makes in his workspace are
still invisible to Lisa—unless she propagates them into her workspace.

We conclude with a general definition of apropagateoperation that propa-
gates changes across workspaces:

Definition 13.5 (Propagate)Let δi be a change. To propagateδi from a work-
space[user:U] to a workspace[user:U 0], make∆i a subset of[user:U 0] as well as
of [user:U]. 2

Using the constraint representation to express subsumption relations, this means
replacing the constraint

�
∆i ! [user:U]

�
by
�
∆i ! [user:fU;U 0g]

�
.

13.2.3 Controlling Change Propagation

Propagating changes across workspaces helps individual users tosynchronize
their work, that is, to make their workspaces identical (or at least, less divergent).
To keep divergence small is an important issue inSCM, because the more work-
spaces diverge, the more likely changes are to conflict with each other, making
the construction of the final product a difficult task.

For several users, change propagation must be organized in a special way to
ensure that all workspaces are synchronized with each other. A simple way to
ensure synchronization is to establish a notion of a commonmain development
line, representing the published or end user’s view of a product; workspaces are
temporary variants of this main development line, as discussed in section 5.5.2.
Before publishing changes, users must synchronize their own workspace with the
main development line. Hence, this scheme prohibits excessive divergence of
user workspaces and encourages frequent synchronization.

150 Cooperation Techniques

commit update
[user: tom] [user: lisa][user:production]

[current:>]

Figure 13.7: Propagating changes through a production workspace

In our model, such a main development line can be realized as follows. To
keep the main development line isolated from other’s changes, it must be dis-
joint from all user workspaces. Hence, we can establish the main development
line as a dedicated workspace, calledproduction workspace,which represents the
published view of the product and which is disjoint from all user workspaces.

In this setting, users are discouraged from propagating changes between user
workspaces. Instead, changes are propagated from the production workspace to
user workspaces, and vice versa, using two operationsupdateandcommit. As
illustrated in figure 13.7, theupdateoperation propagates the current changes
from the production workspace to the user’s workspace, and thecommitopera-
tion propagates the current changes from the user’s workspace to the production
workspace. Both operations also make the propagated changes current in the des-
tination workspace.

Before defining theupdateand commitoperations, we define a more gen-
eralpropagate-currentoperation which propagates the current changes between
workspaces and makes them current in the destination workspace.

Definition 13.6 (Propagate-current) To propagate the current changes from the
workspace[user:U] to the workspace[user:U 0], propagate all changes subsuming
[current:>] in [user:U] to [user:U 0], and make them current in[user:U 0]. 2

In the constraint representation, propagating the current changes means the fol-
lowing: For each changeδi such that∆i w [user:U;current:>] holds, replace the
constraint

�
∆i ! [user:U]

�
by
�
∆i ! [user:fU;U 0g]

�
and add a new constraint�

[user:U 0;current:>]
�
! ∆i .

Bothupdateandcommitcan now be defined usingpropagate-current:

Definition 13.7 (Update) To update a user workspace[user:U], propagate the
current changes from[user:production] to [user:U]. 2

13.2 Conservative Cooperation Techniques 151

Definition 13.8 (Commit) To commit the current changes from a user workspace
[user:U], propagate the current changes from[user:U] to [user:production].

2

13.2.4 A Conservative Scenario

As an example of change propagation through a production workspace, we have
illustrated a simple scenario in this section. In figure 13.8, we see a produc-
tion workspace[user:production] containing the end user’s view of some prod-
uct. The product comes in two variants, a demonstration variant[demo:>] and a
full-fledged variant�[demo:>] = [demo"]. The set[current:>] encompasses the
current versions of both variants.

[user:production]

[demo:>] [current:>]

Figure 13.8: A production workspace

Both users Tom and Lisa have established their workspaces[user: tom] and
[user: lisa] as temporary variants of the current production workspace; as illus-
trated in figure 13.9, each of them can access both the demonstration and the
full-fledged variant.

create create

[demo:>] [current:>]

[user: tom]

[demo:>] [current:>]

[user: lisa][user:production]

Figure 13.9: Creating user workspaces

Tom wishes to apply a change to the current version. He locks the current
version, making[current:>] a subset of[locked:>]. Lisa cannot access the locked
versions, since[locked:>]v [user: tom] and thus[user: lisa; locked:>] =? holds,
as shown in figure 13.10 on the following page.

152 Cooperation Techniques

[locked:>] [current:>]

Figure 13.10: Locking the current version

Tom applies his changeδ1 to the current version. Both product variants are af-
fected by the change;∆1 is thus orthogonal to[demo:>]. After testing his change,
Tom makes∆1 current—that is,[current:>] is now a subset of∆1, illustrated in
figure 13.11. Still,∆1 is locked, as it is a subset of[locked:>].

[current:>]∆1

Figure 13.11: Changing a locked version

Tom’s work is done; he releases his lock and commits his changeδ1 to the
production workspace, making it current there as well. The workspace state is
shown in figure 13.12.

[current:>]

commit

[current:>]∆1 ∆1

Figure 13.12: Committing changes to the production workspace

Now is the time for Lisa to make her changes. First, Lisa updates her work-
space with Tom’s changes, as shown in figure 13.13 on the next page. Tom’s
changeδ1 is now current in Lisa’s workspace as well.

Lisa works on the demonstration variant only; she locks the current version,
making[locked:>] a subset of[demo:>;user: lisa]. Selecting the current demon-

13.2 Conservative Cooperation Techniques 153

update

[current:>]∆1

Figure 13.13: Updating a workspace from the production workspace

stration variant now implies that the locked version be selected, as shown in fig-
ure 13.14.

[current:>][locked:>]

Figure 13.14: Locking a variant

Since the demonstration variant is locked by Lisa, other users can no more
lock and change it. Its complement, the non-demonstration variant, is still un-
locked and may be locked and changed by other users. Just like Tom, Lisa per-
forms a changeδ2 on the demonstration variant. The∆2 set is now current, i.e. a
subset of[current:>], as shown in figure 13.15.

∆2

Figure 13.15: Changing a variant

As final step, Lisa commits her change to the production workspace, releasing
her lock. This final state is illustrated in figure 13.16 on the following page: In
the production workspace, both Tom’s changeδ1 and Lisa’s changeδ2 have been
applied and are both included in the current version.

154 Cooperation Techniques

commit

∆2 [current:>] [current:>]∆2

Figure 13.16: Committing variant changes

13.3 Optimistic Cooperation Techniques

13.3.1 Synchronizing Workspaces

Conservative cooperation strategies, as illustrated in section 13.2, have both the
advantage and disadvantage that only one developer at a time can work on a par-
ticular version of a component. Using an optimistic cooperation strategy, as dis-
cussed in section 5.5.2, users are allowed to work in parallel, each on a tempo-
rary variant. Here, it is essential that developerssynchronizetheir workspaces
frequently—that is, catch up with other changes such that the individual work-
space is more similar to other workspaces. For this purpose, the changes of other
users must first be made visible in the workspace, and then bemergedwith the
individual changes.

As an example of merging, consider figure 13.17, where Tom has applied
a changeδ1 in his workspace[user: tom]. Before committing that change back
to the production workspace, he updates his workspace by making the parallel
changeδ2 available. The changeδ2 is then merged into his current version, creat-
ing a merged version∆1u∆2. This combined change may now be committed to
the production workspace.

The versions to be merged can easily be determined automatically. As dis-
cussed in section 5.6, automated merging of two versions relies on knowing their
commonbase version.Using version sets, the common base versionV0 of two
versionsV1 andV2 is the lowest common ancestor in the subsumption lattice, ex-

w

w ∆2

∆1[user: tom]

[user:production]

>

w

w w ∆1u∆2

?
w

Figure 13.17: Merging changes from the production workspace

13.3 Optimistic Cooperation Techniques 155

cluding any changes leading up toV1 orV2. In our example,V1 = ∆1 andV2 = ∆2

hold; the common base versionV0 is determined asV0 = ∇1u∇2; that is, the
version excluding both changes.

Definition 13.9 (Synchronize)To synchronize a user workspace[user:U] with
the production workspace[user:production], perform the following two steps:

1. Update[user:U] from [user:production], making the versions∆1; : : : ;∆n

accessible in[user:U] (but not yet current).

2. In [user:U], merge the versions∆1; : : : ;∆n with [current:>], where the
base version is the lowest common ancestor in the subsumption lattice, ex-
cluding any later changes. The resulting merged version is identified as
[user:U;current:>]u∆1u �� �u∆n. 2

In a third step, the merged version may now be committed to the production
workspace, making the individual changes available to other users. As in the
conservative scenario, no changes get lost—provided that the merged version is
carefully checked.

13.3.2 Identifying Merged Versions

When the versions to be merged are identified by features other than delta fea-
tures, special care must be taken when identifying the merged version: As merg-
ing has no semantics in terms of feature logic, the features of the merged version
cannot be determined automatically.

To illustrate this problem, consider the merge of two versions identified by
[os:dos] and [os:windows]. The features of the merged version are dependent
on the nature of the merge: if the merged version is system-independent, itsos
feature will be unspecified; if the merged version runs onDOS as well as on
WINDOWS, its features are

�
os:fdos;windowsg

�
, if it does not run onUNIX, its

features are[os:�unix], and so on.
Here are some guidelines in identifying merged versions:

Delta features accumulate.As shown in chapter 11, each revisionRi inherits
the delta features of its ancestor revisionsRj ; : : : ;Rk. Hence, the merge
of Ri v ∆i and Rj v ∆ j will result in a revisionRd v ∆d v ∆i u ∆ j . In
figure 13.17 on the facing page, the merged version inherits both the∆1

and∆2 delta features.

156 Cooperation Techniques

Workspace features are ignored.Workspace features are volatile; they should
not be considered while merging. Rather, the merged version should in-
herit the features of the workspace it is created in, like any other new ver-
sion created. In figure 13.17 on page 154, the merged version is created in
[user: tom] and thus a subset thereof.

Other features must be determined again.Features identifying neither work-
spaces nor changes cannot be inferred from the originating features.

We see that there are few differences between assigning features to a merged
version and between specifying the features of a newly created version. Parts that
can be automated are the accumulation of delta features and the assignment of
workspace features.

13.3.3 An Optimistic Scenario

To conclude, we give another example of using production workspaces, but this
time mimicking the optimistic cooperation strategy of theCVS system.

The initial setting of our scenario is shown in figure 13.18. It is the same initial
setting as in the conservative scenario from section 13.2.4. Users Lisa and Tom
have established their workspaces as temporary variants of the current production
workspace; they can access both the demonstration and the full-fledged product
variant.

[user: tom] [user:production] [user: lisa]
create create

[demo:>] [current:>]

Figure 13.18: A production workspace and two user workspaces

The optimistic scenario does not prevent parallel changes. Hence, both Tom
and Lisa can apply changes to the product. Tom’s changeδ1 affects both variants
at once, while Lisa’s changeδ2 affects the demonstration variant only. Neither
change is visible outside the respective user workspace, as shown in figure 13.19.1

In figure 13.20 on the next page, Lisa commits her change to the production
workspace. The merge of her workspace and the production workspace is trivial,

1For clarity, we show the current versions[current:>] in the production workspace only.

13.3 Optimistic Cooperation Techniques 157

∆2∆1

Figure 13.19: Changes in user workspaces

because the base version is identical to the production workspace; hence, Lisa’s
changed version is simply copied to the production workspace. This makes the
current version of the demonstration variant imply theδ2 change, or formally,�
[current:>]! [demo"]t∆2

�
.

∆2 [current:>]

commit

Figure 13.20: Simple synchronization of the production workspace

Tom now wishes to commit his changeδ2. Before doing so, he synchronizes
his workspace. The first step is to update his workspace with the current changeδ1

from the production workspace. As shown in figure 13.21, the changesδ2 andδ1

are still disjoint.

∆2 ∆1

update

Figure 13.21: Updating a user’s workspace

In the second synchronizing step, shown in figure 13.22 on the next page, Tom
integrates the two changesδ1 andδ2, resulting in the merged version set∆1u∆2.

158 Cooperation Techniques

∆1u∆2 ∆1∆2

Figure 13.22: Merging in a user’s workspace

After removing any conflicts between the changesδ1 andδ2, Tom commits
his versions back to the production workspace. As shown in figure 13.23, this
makes both∆1 and∆2 current versions in the respective variant.

[current:>] ∆1

commit

Figure 13.23: Synchronization of the production workspace after merge

In both scenarios, the optimistic scenario presented here and the conservative
scenario presented in section 13.2.4, the final current production version includes
both Lisa’sδ1 and Tom’sδ2 change; none of their changes is lost. The difference
in optimistic cooperation is that changes can be made in parallel and stay orthog-
onal to each other. In our example, the changeδ2 is orthogonal to the changeδ1;
in the conservative scenario,δ2 impliedδ1, since parallel changes are inhibited.

13.4 Discussion
In this chapter, we have presented some techniques that help organizing the work
of several users working on a product by controlling the propagation of changes.
We keep changes disjoint by confining them into disjoint user, team, project, and
site workspaces. By refining their workspaces, users can decide which versions
to work upon without conflicting with other’s work. Through a dedicated work-
space, users can publish and propagate their changes, using either conservative or
optimistic cooperation techniques.

Both the conservative and optimistic scenario presented in this chapter show
how the concepts introduced so far integrate—notably, how version sets uni-

13.4 Discussion 159

formly represent revisions, variants, and workspaces. But the scenarios also show
up a deficiency of feature logic. We can easily capture some versioningstateby
means of feature terms and set diagrams. But we cannot express thetransitions
between these states using feature logic—there is no way to express the semantics
of anupdateoperation in feature logic, for example. This is different from con-
sistency checking and version selection, where we could express all operations
in terms of feature logic. The properties of a formalism that allows us to express
these transitions, that is, to treat feature terms as first-class objects, remain yet to
be discovered.

Der Mensch ist ein zeitliches Wesen,
das nur lebt, indem es seine Welt um sich wandelt.

— KARL JASPERS, Einführung in die Philosophie

Plus ça change, plus c’est la même chose.

— ALPHONSE KARR

Chapter 14

Taming Complexity

For practical systems, a logic foundation alone does not suffice. We also must
know whether the central problems are decidable, and if so, at which cost. If these
costs are too high, we must identify the circumstances under which the costs can
be cut down.

The central problems in feature logic are deciding inconsistency, subsump-
tion, and equivalence. As shown in proposition 8.32 on page 86, all these prob-
lems can be reduced to deciding inconsistency. We present Smolka’s feature uni-
fication algorithm, which decides inconsistency for general quantifier-free feature
terms. As deciding inconsistency in general is co-N P-complete, Smolka’s algo-
rithm is of exponential time complexity. This makes practical applications unable
to scale up beyond a certain problem size. As a solution, we present some special-
ized procedures that break down complexSCM problems into manageable pieces
and discuss the conditions for efficient realization ofSCM operations.

14.1 Deciding Inconsistency for Simple Feature Terms

We begin with a discussion of the basic mechanisms to deduce consistency of fea-
ture terms—that is,feature unification.In [Smo92], Smolka presents aconstraint
systemthat can be used to decide about the inconsistency of feature terms. The
basic idea is to convert a simple feature term into a set offeature constraints,The
inconsistency of the constraint set can be decided in quadratic time.

Proposition 14.1 Deciding inconsistency of simple feature terms is of quadratic
time complexity.

161

162 Taming Complexity

PROOF. Smolka’s algorithm for solving feature clauses decides inconsistency of
simple feature terms in quadratic time [Smo92]. 2

Under certain circumstances, subsumption can also be decided in quadratic
time.

Corollary 14.2 Deciding the subsumptionSvT is of quadratic time complexity,
if the basic forms ofSand�T are simple.
PROOF.Deciding whetherSv T holds is equivalent to deciding whetherSu�T is
inconsistent (proposition 8.32 on page 86). BothS and�T can be converted in
linear time into basic form (proposition 8.22 on page 84). If the basic forms ofS
and�T are simple, proposition 14.1 on the preceding page applies. 2

As term equivalenceS= T is reducible to mutual subsumption (8.6), a similar
shortcut exists only if the basic forms ofS, �S, T, and�T are simple, which is
only true for trivial feature terms.

14.2 Deciding Inconsistency for General Feature Terms
For general feature terms including quantifiers and unions, inconsistency, sub-
sumption, or equivalence are undecidable problems.

Proposition 14.3 Inconsistency, subsumption, and equivalence of general feature
terms are undecidable problems.
PROOF. In [Smo92]; the proof follows from the word problem of Thue systems
being undecidable. 2

The problems are decidable, however, for quantifier-free terms.

Proposition 14.4 Deciding inconsistency, subsumption, and the equivalence of
quantifier-free feature terms are co-N P-complete problems.
PROOF. In [Smo92]; the proof follows from the satisfiability problem of proposi-
tional logic beingN P-complete. 2

Inconsistency, subsumption, and equivalence being co-N P-complete problems
implies that time complexity of decision is exponential.

For arbitrary quantifier-free feature terms, Smolka has presented an algorithm
calledfeature unificationto decide inconsistency [Smo92]. The basic idea is to
convert the feature term into basic form and then intoDNF. Since each conjunct
of theDNF is simple, inconsistency of each conjunct can be decided in quadratic
time, as discussed in proposition 14.1 on the page before. Transformation into

14.3 A Unification Example 163

DNF, however, is of exponential time complexity, resulting in exponential time
complexity of feature unification.

14.3 A Unification Example

We do not give a complete description of Smolka’s algorithm here—the inter-
ested reader may refer to [Smo92] for details. Instead, we illustrate feature
unification through an example. LetS and T denote the features of two com-
ponents, whereS= [host-arch:fpentium;power-pcg;host-arch# target-arch] and
T = [target-arch:�power-pc] holds. We use feature unification to determine
whetherSandT are consistent with each other, or whetherSuT =? holds.

1. We determine

U = SuT =

2
4 host-arch:fpentium;power-pcg;

host-arch# target-arch;
target-arch:�pentium

3
5

2. U is already in basic form. The transformation to disjunctive normal form
yieldsU =U 0tU 00 with

U 0 =

2
4 host-arch:pentium;

host-arch# target-arch;
target-arch:�pentium

3
5

U 00 =

2
4 host-arch:power-pc;

host-arch# target-arch;
target-arch:�pentium

3
5

3. Smolka’s algorithm processes each conjunct separately. It first transforms
U 0 into a basic set of constraints, introducing temporary variablesx andy
to express agreement.

host-arch
:
= pentium

host-arch
:
= x

target-arch
:
= y

x
:
= y

target-arch
:
= :pentium

164 Taming Complexity

4. The basic set of constraints is solved by instantiating the variablesx andy:

host-arch
:
= pentium

target-arch
:
= pentium

x
:
= pentium

y
:
= pentium

target-arch
:
= :pentium

As target-archis bothpentiumand:pentium, unification fails:U 0 =?.

5. Now comes the time for the second conjunct.U 00 is also transformed into a
set of constraints. After instantiation, we have:

host-arch
:
= power-pc

target-arch
:
= power-pc

x
:
= power-pc

y
:
= power-pc

resulting in the termU 00 = [host-arch:power-pc; target-arch:power-pc].

6. The result of the unification problem isSuT =U 0tU 00 =?tU 00 =U 00 =
[host-arch:power-pc; target-arch:power-pc] .

14.4 Reduction of Feature Terms
As a consequence of feature unification being of exponential complexity, we de-
termine possible optimizations that reduce complexity in practical applications.
The field of automated theorem proving (ATP) has determined severalreduction
mechanismsthat can be applied before the general decision algorithm. Generally,
a reduction satisfies the following properties [Bib92]:

� A reduction truly reduces the size of anATP problem.

� Validity of the reduced problem implies validity of the original problem
(and possibly vice versa).

� Whether the reduction mechanism is applicable can be decided in polyno-
mial time.

� The reduction mechanism itself requires polynomial time.

14.4 Reduction of Feature Terms 165

Since reduction is much more efficient than feature unification, it is worth
exploring whether the reduction techniques established inATP can be applied to
feature terms as well. In [Bib92], Bibel gives an overview of existing reduction
mechanisms in the context of propositional logic. At least three of these mecha-
nisms, whose validity is shown in [Bib87], can also be applied to general feature
terms.

Reduction of Multiple Occurrences (MULT) If a feature termSoccurs multiple
times in a union or intersection, the term can be reduced to one occurrence
only:

SuS= S (14.1)

StS= S (14.2)

MULT reduction is easily implemented by sorting the subterms in each
union or intersection and removing duplicates. Sorting has a time com-
plexity of O(n � logn); MULT reduction is thus of linear-logarithmic time
complexity.

Reduction of Tautologies (TAUT) If both a feature termS and its complement
�S occur in a union or intersection, they can be replaced by> and?,
respectively:

Su�S=? (14.3)

St�S=> (14.4)

Just asMULT reduction,TAUT reduction is implemented by sorting the sub-
terms in each union or intersection, but ignoring outer-level complement
signs in the sort comparison.TAUT reduction is also of linear-logarithmic
time complexity and can be combined withMULT reduction.

Reduction of Subsumed Terms (SUBS) Let S be a feature term andS0 v S be
a subset ofS. If both S andS0 occur in a intersection or union, only one
occurrence remains:

SuS0 = S0 (14.5)

StS0 = S (14.6)

Simple subsumption can often be determined on the syntactic level—for
instance, ifS0 = SuT holds for some feature termT. Again, such a condi-
tion can be decided in linear-logarithmic time, by comparing the subterms
of SandS0.

166 Taming Complexity

14.5 A Divide-and-Conquer Approach

By imposing certain conditions upon feature terms, time complexity of feature
unification can be dramatically reduced. The most important condition isorthog-
onality: If deciding inconsistency of a feature termU = SuT can be divided into
deciding inconsistency ofSandT separately, the termsSandT are orthogonal.

Definition 14.5 (Orthogonality) Two feature termsSandT are calledorthogo-
nal if

SuT inconsistent) Sinconsistent_T inconsistent (14.7)

holds. 2

An efficient procedure that determines orthogonality would be most useful,
because definition 14.5 implies the following corollary:

Corollary 14.6 LetU = SuT be the intersection of two consistent and orthogo-
nal feature termsSandT. Then,U is consistent.
PROOF.Follows fromSconsistent̂ T consistent) SuT consistent holds, which
is the negated form of definition 14.5. 2

Fortunately, there is a simple sufficient condition for orthogonality: ifSandT
have no common features or variables, they are orthogonal.

Proposition 14.7 Two consistent, non-atom feature termsSandT are orthogonal
if they have no common features or variables.
PROOF.We show thatSconsistent̂ T consistent) SuT consistent holds, which
is the negated form of definition 14.5.

S is consistent. According to definition 8.29 on page 86, there is a feature
algebraIS = (DIS; �IS) and anIS-assignmentαS such thatSIS

αS 6= /0 holds. Like-
wise, sinceT is consistent, there is a feature algebraIT = (DIT ; �IT) and anIT -
assignmentαT such thatTIT

αT 6= /0 holds.
Let DI = DIS�DIT be a domain. Letα be a mapping from the set of all

variables toDI , defined as

α(x) =

(
αS(x) if x occurs inS

αT(x) if x occurs inT

14.6 Fast Consistency Checking for Simple Terms 167

and let�I � DI �DI be an interpretation function defined for all featuresf as

f I =

(
f IS�TIT

αT if f occurs inS

SIS
αS� f IT if f occurs inT

and for all atomsa as

aI = aIS�aIT :

Both mappings are unambiguous sinceSandT have disjoint sets of variables and
features.

Let I = (DI ; �I) be a pair ofDI and�I . I is a feature algebra—all features are
functional, all names are unique, and atoms are still primitive.

Let us now consider the termSuT. Its interpretation results in(SuT)I
α =SI

α\
TI

α. I interprets all features and variables inS like IS; consequently, we haveSI
α =

(SIS
αS�TIT

αT). Likewise,I interprets all features and variables inT like IT , resulting

in TI
α =(SIS

αS�TIT
αT). From the equivalenceSI

α =TI
α =(SIS

αS�TIT
αT), we deduceSI

α\

TI
α = (SIS

αS�TIT
αT). SinceSandT are consistent, bothSIS

αS andTIT
αT are nonempty;

(SIS
αS�TIT

αT) 6= /0 follows. Consistency ofSuT results from definition 8.29. 2

Comparing the sets of features and variables occurring inSandT can be done
in linear time, such that the conditions for proposition 14.7 on the facing page are
easily verified. Consequently, a termT = T1uT2u �� � uTn can be divided into
m orthogonal subterms in quadratic time, simply by checking orthogonality for
each pairTi andTj out of T. Each subterm can then be checked individually for
consistency—for example, by using Smolka’s feature unification.

14.6 Fast Consistency Checking for Simple Terms
Even if S andT are not orthogonal, their consistency can be checked in quasi-
linear time if both are simple, consistent, and variable-free.

Proposition 14.8 Let S and T be simple, consistent, and variable-free feature
terms; let neitherS nor T contain agreements or disagreements. Consistency of
SuT can then be decided in quasi-linear time.
PROOF. SinceT is simple,T can be decomposed inton subtermsT = T1u �� � u

Tn, each of the formf �:T 0, where f � is a feature pathof zero or more features
f1: f2: : : : fm:T 0, and whereT 0 is either> or an atoma or a negated atom�a or a
divergencef".

For each pairTi ;Tj of subterms,Ti uTj is consistent becauseT is consistent.
Moreover,Ti andTj are orthogonal in any case:

168 Taming Complexity

1. Ti andTj are equal. Hence,Ti andTj are orthogonal according to defini-
tion 14.5 on page 166.

2. Ti andTj have different feature paths or are different divergences. Then,Ti

andTj are orthogonal according to proposition 14.7 on page 166.

3. Both Ti ;Tj , have the same feature pathf �—that is,Ti = f �:T 0i andTj =
f �:T 0j holds. Then, we have three cases:

(a) T 0i = a andT 0j =>,

(b) T 0i = a andT 0j =�b,

(c) T 0i =�b andT 0j =>,

wherea and b are some atoms. In all cases,T 0i v T 0j holds and defini-
tion 14.5 on page 166 applies. The symmetric cases lead toT 0i w T 0j and
thus to orthogonality as well.

Since every pair of subtermsTi , Tj is orthogonal, deciding whetherSuT is con-
sistent can be broken down inn subproblems:

SuT consistent, SuT1consistent̂ � � � ^SuTnconsistent (14.8)

SinceS is simple as well, the same decomposition applies to the subtermsSi

of S= S1u�� �uSm. Like the subtermsTi of T, above, each pairSi , Sj of subterms
of S is orthogonal. Hence, we can determine consistency ofSu T simply by
determining consistency of each subtermSi of Sand each subtermTi of T:

SuT consistent, S1uT consistent̂ � � � ^SnuT consistent (14.9)

The combination of (14.8) and (14.9) leads to

SuT consistent,
^

1�i�n
i< j�m

(Si uTj consistent) (14.10)

The subtermsSi andTj are simple enough such that consistency of anySi uTj

can be decided in constant time. To determine the consistency of a singleSi

with all Tj , it suffices to consider the termTj with identical feature path. For a
given feature path, it is possible to determineTj in quasi-constant time using an
appropriate data structure—for instance, using a hash table with an entry for each
feature path. This is reasonable, since the number of features is small in practice,
and so is the data structure. The remaining traversal ofS requires linear time
again. Overall complexity is thus of quasi-linear time, which was to be shown.

2

14.7 Integrating Reduction and Fast Consistency Checking 169

14.7 Integrating Reduction and Fast Consistency Checking
The proof of proposition 14.8 on page 167 leads to the construction of an al-
gorithm that integrates consistency checking for simple feature terms with term
reduction for arbitrary feature terms.

The basic idea is the principle ofpartial evaluation.In the domain of arith-
metic expressions, partial evaluation means to replace known variables by their
values and to evaluate resulting constant sub-expressions. This procedure is also
applicable to feature terms: In a termSuT, every occurrence ofT in S can be
replaced by>, sinceT must be satisfied anyway. Likewise, any subterm inS that
is inconsistent withT can be replaced by?, since it cannot be satisfied.

Here is a simple example of partial evaluation. Consider the term

U = SuT

= [os:�unix;user:ftom; lisag]u [os:dos;user:�tom] :

We haveT v [os:dos]. Consequently, we can replace[os:�unix] in Sby>, since
[os:�unix]uT = >uT = T holds. Likewise, we can replace[user: tom] by ?,
since[user: tom]uT =?uT =? holds. We obtain

U = SuT

= [>;user: lisa]u [os:dos;user:�tom]

which feature unification simplifies to

= [os:dos;user: lisa] :

As stated in proposition 14.8 on page 167, partial evaluation replacement al-
ways leads to a full consistency check in quasi-linear time if bothS andT are
simple; for all other cases, the termScan be reduced in size, simplifying a later
consistency check through feature unification (as in our example).

We now present the formal definition ofreduce, a function integrating partial
evaluation and fast consistency checking. First, we define asimplify function
required byreduceto propagate new> and? values.

Definition 14.9 (Simplify) Let simplify(S) be a function mapping a feature term
to a feature term such that the following holds:

simplify(>uS) = S simplify(>tS) => simplify(�>) =?
simplify(Su>) = S simplify(St>) => simplify(�?) =>
simplify(?uS) =? simplify(?tS) = S
simplify(Su?) =? simplify(St?) = S

(14.11)

170 Taming Complexity

and, for all other cases,

simplify(S) = S : (14.12)

2

The reducefunction performs the actual replacement, following the proof of
proposition 14.8 on page 167.

Definition 14.10 (Reduce)Let reduce(S;T) be a function mapping two feature
termsSandT to another feature term such that the following holds:

reduce(S;T1uT2) = reduce
�
reduce(S;T1);T2

�
(14.13)

reduce(S1uS2;T) = simplify
�
reduce(S1;T)u reduce(S2;T)

�
(14.14)

reduce(S1tS2;T) = simplify
�
reduce(S1;T)t reduce(S2;T)

�
(14.15)

reduce(�S;T) = simplify
�
�reduce(S;T)

�
(14.16)

reduce(f :S; f :T) = f :simplify
�
reduce(S;T)

�
(14.17)

as well as

reduce(S;S) => reduce(f";a) => reduce(f :S;a) =?
reduce(a; f :T) =? reduce(f"; f :T) =? reduce(f :S; f") =?

reduce(a;b) =? reduce(a;�a) =?
(14.18)

and, for all other cases,

reduce(S;T) = S : (14.19)

2

In definition 14.10, (14.13) and (14.14) reflect the recursive descent of (14.8) and
(14.9), respectively. Equations (14.15), (14.16) and (14.17) descend along unions,
complements and (common) feature paths. The remaining equations in (14.18)
either determine inconsistencies for non-composed cases, resulting in?, or sim-
plify subterms ofSby replacing them with>.

Obviously, the term computed byreduce(S;T) is not larger thanS. reduce
may thus be used as general reduction step before using feature unification. In an
intersectionSuT, we can replaceSby reduce(S;T) while preserving validity:

14.7 Integrating Reduction and Fast Consistency Checking 171

Proposition 14.11 For any two feature termsSandT, the equation

SuT = reduce(S;T)uT (14.20)

holds.
PROOF. We show that (14.20) holds via structural induction. We begin with the
non-composed cases in (14.18) and (14.19); assuming that these hold, we con-
tinue with the composed cases. Without loss of generality, we use a simpler
definition ofsimplify, namelysimplify(S) = S.

1. We show that (14.20) holds for the non-composed cases by showing that
bothSuT v reduce(S;T)uT andSuT w reduce(S;T)uT hold.

(a) We begin withSuT v reduce(S;T)uT. Due to (8.4), this is equiv-
alent to(SuT)u�

�
reduce(S;T)uT

�
= ?. Now let U be defined

asU = (Su T)u�
�
reduce(S;T)u T

�
= Su T u

�
�reduce(S;T)t

�T
�
= SuT u�reduce(S;T): For the cases in (14.18) and (14.19),

showing thatU =? holds is trivial.

(b) The next step is to show thatSuT w reduce(S;T)uT holds. Due
to (8.4), this is equivalent to�(SuT)u reduce(S;T)uT = ?. This
time, letU be defined asU = �(SuT)u reduce(S;T)uT = (�St
�T)u reduce(S;T)uT =�Su reduce(S;T)uT: Again,U =? holds
for all cases in (14.18) and (14.19).

2. We continue with the composed cases. Assume that (14.20) holds for some
feature termsS, T1, andT2. Let T = T1u T2. Then, using (14.13), we
obtainSuT = Su (T1uT2) = (SuT1)uT2 =

�
reduce(S;T1)uT1

�
uT2 =�

reduce(S;T1)uT2
�
uT1 = reduce

�
reduce(S;T1);T2

�
uT2uT1 = reduce(S;

T1uT2)uT1uT2 = reduce(S;T)uT: It follows that (14.20) holds forT =
T1uT2 as well.

3. Assume that (14.20) holds for some feature termsS1, S2, and T. Let
S= S1uS2. Then, using (14.14), we haveSuT = S1uS2uT = (S1uT)u
(S2uT) =

�
reduce(S1;T)uT

�
u
�
reduce(S2;T)uT

�
=
�
reduce(S1;T)u

reduce(S2;T)
�
u T = reduce(S1 u S2;T) u T = reduce(S;T) u T: Conse-

quently, (14.20) holds forS= S1uS2 as well.

4. Assume that (14.20) holds for some feature termsS1, S2, and T. Let
S=S1tS2. Then, using (14.15), we haveSuT =(S1tS2)uT =(S1tT)u
(S2tT) =

�
reduce(S1;T)uT

�
t
�
reduce(S2;T)uT

�
=
�
reduce(S1;T)t

reduce(S2;T)
�
u T = reduce(S1 t S2;T) u T = reduce(S;T) u T: Conse-

quently, (14.20) holds forS= S1tS2 as well.

172 Taming Complexity

5. Assume that (14.20) holds for some feature termsS0 and T. Let S=
�S0. Then, using (14.16), we haveSuT = �S0uT = (�S0t�T)uT =
�(S0uT)uT =�

�
reduce(S0;T)uT

�
uT =

�
�reduce(S0;T)t�T

�
uT =

�reduce(S0;T) u T = reduce(�S0;T) u T = reduce(S;T) u T: It follows
that (14.20) holds forS=�S0 as well.

6. Assume that (14.20) holds for some feature termsS0 andT 0. Let f be some
feature and letS= f :S0 andT = f :T 0. Then, using (14.17), we haveSuT =
f :S0u f :T 0 = f :(S0uT 0) = f :

�
reduce(S0;T 0)uT 0

�
=
�

f : reduce(S0;T 0)
�
u

(f :T 0) = reduce(f :S0; f :T 0) u (f :T 0) = reduce(S;T) u T: Consequently,
(14.20) holds forS= f :S0 andT = f :T 0 as well.

Since (14.20) holds for all non-composed feature terms as well as for all com-
posed feature terms, it holds for all feature terms, which was to be shown.2

As a result of proposition 14.11, we can applyreduceas a reduction step
before any feature unification. Moreover, if the conditions of proposition 14.8 on
page 167 are met,reducedetermines consistency ofSuT in quasi-linear time:

Corollary 14.12 Let S and T be simple, consistent, and variable-free feature
terms; let neitherSnorT contain agreements or disagreements. Then,

1. SuT is consistent iffreduce(S;T) is consistent; and

2. reduce(S;T) requires quasi-linear time.

PROOF. The termsS andT meet the conditions of proposition 14.8 on page 167.
Hence, consistency ofS andT can be decided in quasi-linear time. Applying
reducecompares each pair of subtermsSi andTj , as specified in (14.10); through
the propagation of? values insimplify, the result ofreduceis consistent iffSuT
is consistent. No further time complexity is added byreduce. 2

14.8 Two Reduction Examples

All of the strategies presented in this chapter can be combined into one single
procedure, choosing the least cost method wherever appropriate. As an example,
reconsider the editor example from figure 10.1 on page 104. The features of the
entire configuration are described as

editor= osuscreen-typeuscreen-device;

14.8 Two Reduction Examples 173

whereos, screen-type, andscreen-deviceare defined as

os=
�
os:dos;screen-type:fega; ttyg;concurrent: false

�
t
�
os:unix;screen-type:fx11;news; ttyg

�

screen-type=
�
screen-type:ega;screen-data:bitmap

�
t
�
screen-type: tty;screen-data:ascii

�
t
�
screen-type:x11;screen-data:bitmap

�
t
�
screen-type:news;screen-data:fpostscript;bitmapg

�

screen-device=
�
screen-device:dumb;data:D;screen-data:D

�
t
�
screen-device:ghostscript;data:postscript;

screen-data:bitmap;concurrent: true
�
:

Let us identify the configurations inT = [os:unix;screen-type:x11]. For this
purpose, we create a subset ofeditor, namelyeditoru T. Applying Smolka’s
feature unification alone, as discussed in section 14.1, requireseditor to be trans-
formed intoDNF form. Sinceoscomes in five variants,screen-typein four vari-
ants, andscreen-devicein two variants, this means a term with 5� 4� 2 = 40
conjuncts, which would again be multiplied with each alternative inT. Due
to the procedures discussed in the previous sections, much fewer steps are re-
quired. First, we decompose the problemeditoru T into three subproblems
editoruT = (osuT)u (screen-typeuT)u (screen-deviceuT).

1. The selectionosuT can be done by reduction:

osuT = reduce(os;T)uT

= reduce
�
reduce

�
os; [os:unix]

�
; [screen-type:x11]

�
uT

Evaluatingreduce
�
os; [os:unix

�
yields

reduce
�
os; [os:unix]

�
= reduce

�
[os:dos;screen-type:fega; ttyg;

concurrent: false]; [os:unix]
�

t reduce
�
[os:unix;

screen-type:fx11;news; ttyg];

174 Taming Complexity

[os:unix]
�

=?t
�
screen-type:fx11;news; ttyg

�
=
�
screen-type:fx11;news; ttyg

�
Reducing each of the remaining alternatives yields

osuT = (>t?t?)uT

= [os:unix;screen-type:x11] :

2. The selectionscreen-typeuT is also done by reduction. Since theos fea-
ture does not occur inscreen-type, it suffices to perform the reduction
reduce

�
screen-type; [screen-type:x11]

�
. Reducing each of the four alter-

natives leaves only

screen-typeuT = (?t?t [screen-data:bitmap]t?)uT

= [os:unix;screen-type:x11;screen-data:bitmap] :

3. The selectionscreen-deviceuT is trivial, sincescreen-deviceandT have
no common features and are thus orthogonal:

screen-deviceuT = screen-deviceuT

4. We now computeosuT, screen-typeuT, andscreen-deviceuT. The inter-
section ofosuT andscreen-typeuT can be trivially computed by reduc-
tion: reduce(osuT;screen-typeuT) => holds and thus

(osuT)u (screen-typeuT) =>u (screen-typeuT)

= (screen-typeuT) :

5. The final step is the intersection of(screen-typeuT) and(screen-deviceu
T). Since one of the alternatives ofscreen-typecontains variables, we can-
not use reduction for this alternative: full-fledged feature unification is re-
quired, instantiating the variableD to bitmap.

(screen-typeuT)u (screen-deviceuT)

= [os:unix;screen-type:x11;screen-device:dumb;
data:bitmap;screen-data:bitmap]

t [os:unix;screen-type:x11;screen-device:ghostscript;
data:postscript;screen-data:bitmap;concurrent: true]

14.9 Conclusion 175

This final term also identifies the entire configurationeditoru T. Rather than
invoking feature unification for 40 conjuncts, it sufficed to invoke it for one single
conjunct. The entire selection, including the consistency check of the resulting
configuration, required only one reduction call for each component version, as
well as two reduction calls for determining consistency.

As another example, consider the revision graph in figure 11.1 on page 114.
As stated in (11.3), the revision graph is expressed by

R= (∇2t∆1)u (∇3t∆1)u (∇4t∆3)u (∇5t∆2)u (∇5t∆4)

u (∇6t∆4)u (∇2t∇3t∆5)u (∇2t∇6) ;

where we uset instead of! to express implications.
Let us assume we wish to retrieve the revisionR3, identified by a selection

termS= ∆3u∇4. We determine the selectionR3 = RuS. Invokingreduce(R;S)
yields

reduce(R;S) = (∇2t∆1)u∆1u>u∇5u∇6u (∇2t∆5)u (∇2t∇6) :

which is already a lot smaller thanR. Resolving the intersections inreduce(R;S)
by callingreducewith ∆1, ∇5, and∇6, respectively, yields

reduce(R;S) = ∆1u∇5u∇6u∇2

which completes the termR3 to

R3 = RuS= reduce(R;S)uS

= ∆1u∇2u∆3u∇4u∇5u∇6

Again, had we used feature unification alone, convertingR into DNF would have
given us a term with 27�3= 384 conjuncts. Instead, four applications ofreduce,
each with quasi-linear time complexity, sufficed to determineR3.

14.9 Conclusion

Deciding inconsistency of feature terms isN P-complete. This implies that the
following problems areN P-complete, too:

� Is a version part of a specific selection set?

� Is a configuration consistent with respect to the features of its components?

176 Taming Complexity

In this chapter, we have presented specializeddeductive shortcutsexist that show
much better complexity for special cases. The problem of deciding consistency
can be broken down in smaller subproblems if the feature term breaks down into
orthogonal parts,that is, parts without common features or variables. The tech-
nique ofpartial evaluationleads to efficient decision of consistency for simple
feature terms.

While orthogonality is an important property for the separation of concerns,
partial evaluation is an important shortcut for version selection. In fact, the com-
mon SCM version selection schemes discussed in section 7.3 can all be imple-
mented in quasi-linear time complexity:

Simple selection terms.If the version selection term is simple, consistent, and
variable-free, consistency checking and thus version selection has quasi-
linear time complexity. This is the “strong identification, weak selection”
scheme, as realized inCPP.

Simple version identification terms. If the version identification terms are sim-
ple, consistent, and variable-free, consistency checking and thus version
selection also has quasi-linear time complexity. This is the “strong selec-
tion, weak identification” scheme, as realized inJASONand other attribute-
orientedSCM systems.

We see that despite the generality of version sets and feature unification, common
SCMversioning schemes can still be realized efficiently. But to be absolutely con-
vincing, this claim requires more than a proof—it requires a working prototype.
This is what we have built, and this is what we present in part four.

We remark that certain worst-case complexity results
are not considered to be a problem,

because the examples are pathological
and do not arise in practice.

— ALEX BORGIDA, Description Logics are not just
for the Flightless-Birds

Part Four

Applications

177

Chapter 15

A SCM Environment

In software engineering, proposing a new design alone does not suffice. As
Lukowiczet al.state in[LHPT95],

Such designs must be judged by whether they increase our knowl-
edge about what are useful and cost-effective problem solutions. In
most cases, objective judgement can only be achieved on the basis of
reproducible experiments.

For this purpose, we have implemented the version set model in an experimental
SCMsystem, calledICE for Incremental Configuration Environment.This chapter
gives a general overview about the architecture and components ofICE.

15.1 The Properties of ICE

The basic properties ofICE are those of the version set model; notably,ICE sup-
ports the integration of versioning dimensions, consistency checking in abstract
configurations, and tolerates ambiguities at allSCM levels. Other features ofICE
include:

Version sets as first-class objects.In ICE, every component and every configu-
ration is treated as set of possible versions, where an unambiguous item
is just the special case of a singleton set. Version sets are represented as
individual entities and can be examined and manipulated as a whole, using
the well-knownCPPrepresentation as discussed in section 2.6.1; likewise,
all version specifications are given asCPPexpressions—that is, boolean C
expressions.

179

180 ASCM Environment

Transparent version set access.For integration into common software develop-
ment environments,ICE makes version sets accessible through a virtual file
system calledFFSfor featured file system.Version sets are accessed ex-
plicitly by appending a version specification to file and directory names.
Implicit version set access is realized by changing the current directory
version.

Incremental version selection.Many software development tools require that
items be unambiguous.ICE provides incremental and interactive disam-
biguating facilities, allowing users to explore the version space. For each
configuration,ICE lists possible features and values that constrain the ver-
sion space while keeping consistency. Users can select these feature values
and refine their selection incrementally until the selection is unambiguous.

Intensional system construction.ICE realizes aMAKE tool that acts like an or-
dinary MAKE, but with built-in version set support.ICE MAKE deduces
the features of derived components and tolerates ambiguity in dependency
descriptions, such that entire systems can be built and configured just by
stating a few target features. As described in section 4.6,ICE MAKE deter-
mines whether required components have been built identically in another
configuration and reuses them across versions wherever possible. A full
description ofICE MAKE can be found in [Bra96].

Revision and workspace management.At the protocol layer,ICE provides fa-
cilities to create revisions and to propagate changes, realizing the optimistic
cooperation strategy as discussed in section 13.3.3. A textual merging al-
gorithm enhanced for version sets realizes change integration for arbitrary
version sets. The resultingTWICE tool is specified in [Men96].

ICE is part of the inference-based software development environmentNORA1.
NORA aims at utilizing inference technology in software tools; concepts and pre-
liminary results can be found in [FKS95, KS94, Lin95, Sne96].

15.2 Using Industry Standards
In section 15.1, we have seen thatICE relies on existing industry standards wher-
ever possible: component versions are accessed as files, multiple versions are
represented inCPPformat, the system model comes as an ordinaryMAKE file.
The choice to use existing representations instead of designing own, maybe bet-
ter, representations, were made for three reasons.

1NORA is a figure in Henrik Ibsen’s play “A Dollhouse”. Hence,NORA is NO Real Acronym.

15.3 A Layered Architecture 181

Economy in use. Using industry standards allows for smooth integration ofICE
into real-world software development environments. Existing documents,
such asMAKE files or CPP-maintained source files, can be reused. End
users familiar withMAKE andCPPneed not learn new paradigms or repre-
sentations, just some bits of additional functionality. Users can switch back
to their original tools ifICE does not satisfy them.

Economy in development.Using industry standards facilitates the development
of ICE. Syntax and semantics ofMAKE, CPP, or file systems are well-
documented and well-understood among developers. Rather than to coordi-
nate, document, implement, and debug basicSCM functionality as realized
in these tools, developers can focus upon the new functionality. More even,
mature implementations are available that can be reused and extended.

Economy in concepts.As anSCM foundation, the version set model should in-
tegrate and unify existingSCM concepts, rather than introducing new ones.
Hence,ICE need not rely on new representations for new concepts, but
rather demonstrate how existing representations are interpreted and reused
under the version set model.

15.3 A Layered Architecture

As discussed in section 6.6, futureSCMsystems should be decomposed into three
layers—primitives, protocol, and policy—, each providing a specific set ofSCM
services. The architecture ofICE can be divided into these three layers; an addi-
tional foundation layerrealizes primitives for handling version sets, as discussed
in part three.

Foundation layer. The foundation layer is not accessible to end users. It pro-
vides the basic functionality useful for realizing user-levelSCM services.
This includes support for maintaining feature terms, access to the inference
engine, and facilities for reading, writing, and manipulating simple version
sets.

Primitives layer. The primitives layer embedsICE into software development
environments. TheFFSis part of the primitives layer, allowing users and
user tools to access and refine version sets. Versions are identified by ar-
bitrary feature terms; feature names have no specific meaning. TheFFS
realizes access control by maintaining access rights for individual file ver-
sions.

182 ASCM Environment

ICE Policy
Quality assurance, CM Process, etc.

ICE Protocol
Transactions, Workspaces, Revisions, etc.

ICE Primitives
Version set access, Environment integration, etc.

ICE Foundations
Version set representation, Inference engine, etc.

Figure 15.1: TheICE service layers

Protocol layer. The protocol layer gives meaning to specific features and pro-
vides support for specificSCM tasks and procedures. Revisions and work-
spaces are handled at this layer, accessing version sets through theFFS.
Locking is also handled here, in contrast to [BDFW91], where locking is a
service of the primitives layer. OtherSCMtools working on version sets can
be located at this layer, such as software construction or interactive version
selection.

Policy layer. The policy layer uses the services provided at theSCM protocol
layer to encode procedures specific to an organization.ICE does not yet
provide facilities at this layer.

In the following chapters, we discuss the individual components ofICE, start-
ing with theICE foundations.

By three methods we may learn wisdom:
First, by reflection, which is noblest;

Second, by imitation, which is easiest;
and third by experience, which is the bitterest.

— CONFUCIUS

Chapter 16

Representing Version Sets

Upon designingICE, the first problem that arose was the representation and ef-
ficient storage of version sets at theSCM primitives layer. As it was our aim to
make ambiguity transparent to developers, we wanted to represent version sets in
a format suitable for human readers. Our choice fell on the well-establishedCPP
format, discussed in section 2.6.1. We show how to represent feature terms as
CPPexpressions, providing users with a familiar syntax to denote version sets.

16.1 A Multi-Version Representation

Upon designingICE, it was our aim to make version sets transparently accessi-
ble to developers, such that they could manipulate several versions at once. We
consider a document as a set of related items, where each item is versioned sep-
arately. For ordinary text documents, organized as a list of lines, this results in
each line being tagged with a feature termS indicating the document version(s) it
belongs to.

In figure 16.1 on the following page, we have illustrated such a versioned
text. The lines tagged with> occur in every version of the text. The lines tagged
with [author: tichy] belong to thetichy version only, while the lines tagged with
[author:dart] are part of thedart version. Upon selecting a versionSof the doc-
ument, only those lines are included whose feature termT is consistent withS—
that is, whereT uS is consistent.

SinceICE was designed to work with ordinary files, we had to design some
representation for tagging lines with feature terms. The most frequently used
multi-version representation for ordinary files is theCPPformat, as discussed in
section 2.6.1. UsingCPP-like directives, but with feature terms, we could have

183

184 Representing Version Sets

Line Features
Configuration >

management is the [author: tichy]
management is a [author:dart]
discipline >

of organizing and [author: tichy]
controlling evolving [author: tichy]
for controlling [author:dart]
the evolution of [author:dart]
systems. >

Figure 16.1: Tagging lines with feature terms

usedfeature directiveslike #if : : : #endif to specify the feature term applying
to the enclosed lines. An example is shown in figure 16.2 on the next page on the
left side.

But, since we’re already using aCPP-like representation, why not useCPP
expressions as well? Feature terms andCPPexpressions are quite similar: Both
support boolean equations and equality, and features in feature term can easily
be expressed byCPPvariables, which also can have only one value. Also, allow-
ing ICE to read and writeCPPfiles offers the possibility to re-use existingCPP
representations and to interact with tools requiringCPPrepresentation.

Consequently, we chose theCPPrepresentation as standard representation for
version sets inICE. The resulting file is shown on the right side of figure 16.2 on
the facing page.

16.2 Representing Feature Terms

ICE allows users that know feature logic to enter feature terms directly, using a
straight-forwardASCII representation. But usually, users are expected to use the
more familiar, well-understoodCPPrepresentation. In the following, we discuss
the mapping ofCPPexpressions to feature terms and vice versa, as summarized
in table 16.1 on page 186.

Set Operations. ICE usesCPPboolean operators for the set operations of fea-
ture logic—that is,&& for the intersection (u), || for union (t), and! for
complement (�).

16.2 Representing Feature Terms 185

Lines with feature directives
Configuration

#if [author: tichy]

management is the

#endif

#if [author: dart]

management is a

#endif

discipline

#if [author: tichy]

of organizing and

controlling evolving

#endif

#if [author: dart]

for controlling

the evolution of

#endif

systems.

Lines withCPPdirectives
Configuration

#if author == tichy

management is the

#endif

#if author == dart

management is a

#endif

discipline

#if author == tichy

of organizing and

controlling evolving

#endif

#if author == dart

for controlling

the evolution of

#endif

systems.

Figure 16.2: Multiple versions in one file with feature andCPPdirectives

Selection. A selection is represented by theCPPoperator==; that is, the feature
term f :S becomes, asCPPexpression,f == S. The CPPoperator!= is
used for negated feature values;author != lisa stands for the feature
termauthor:�lisa.

Atoms. Besides identifiers likelisa , ICE allows arbitrary C literals as atoms—
that is, strings ("lisa"), characters (’l’), integers (42) and floating point
numbers (4.711e+3), following the C standard [ISO90].

Agreement. Disagreement.The== and!= operators can also be used for agree-
ments and disagreements. This introduces an ambiguity inCPPexpressions,
because identifiers may be interpreted as features or atoms. To distinguish
between selection and agreement or disagreement, and arithmetic expres-
sions involving equality, the following rules are used. In an expression
S == T (S != T),

1. the expression is an agreement (disagreement) if

186 Representing Version Sets

Abstract syntax ASCII representation CPPrepresentation
> (also []) [] !0
? (also fg) fg 0

a a a

x X (see section 16.2)
f :S f : S f == S
f :�S f : ˜ S f != S
f :�0 f : ˜0 f
f :> f : [] defined f
f" f ˆ !defined f
f #g f = g f == g
f "g f ˆ g f != g
�S ˜ S ! S
SuT (also [S;T]) [S, T] S && T
StT (also fS;Tg) fS, Tg S || T
S! T (see section 16.2) (see section 16.2)
S$ T (see section 16.2) (see section 16.2)
9x(S) (see section 16.2) (see section 16.2)

Table 16.1: Representing feature terms inASCII and asCPPexpressions

(a) SandT are identifiers,

(b) T begins with an upper-case letter.

2. Otherwise, the expression is a selection withT (�T) as value ifS is
an identifier.

3. Otherwise, the expression is an arithmetic expression.

Multiple Selections. Variables. To avoid further ambiguities, feature terms with
multiple selections likef :g:Sand variables likeX cannot be mapped toCPP
expressions. Such feature terms can be embedded in theCPPrepresentation
by enclosing theirASCII representation in square brackets. For example,
the term[f :a;g:h:X; i:X] becomes, inCPPrepresentation,

f == a && [g: h: X] && i == [X]

Embedding ofCPPexpressions in theASCII representation is not supported.

16.3 Syntax and Semantics ofCPP Directives 187

Top and Bottom. CPPexpressions, like C expressions, are arithmetic by nature:
the boolean values of true and false are expressed by zero and non-zero
values, respectively. Consequently, we use0 to express the feature term?
and!0 to express�? or>.

To avoid ambiguities between representing> and the negated atom 0, we
use theCPPexpressiondefined f for the feature termf :>. When> does
not occur as feature value, it can usually be eliminated from set expressions.
Divergencef" becomes!defined f .

In CPPexpressions, a single identifierx occurring in a boolean formula is
interpreted like(x != 0) ; ICE reflects this interpretation by mapping the
feature termf :�0 to theCPPexpressionf .

Implications. ImplicationsS! T do not have an equivalent in theASCII or the
CPPrepresentation of feature terms. They can be represented using the
alternate forms�StT—that is,f˜ S, Tg in theASCII representation and
! S || T in theCPPrepresentation.

Equivalences. Like implications, equivalencesS$ T must be represented using
an alternate form. SinceS$ T = (SuT)t (�Su�T) holds, the form
f[S, T], [˜ S, ˜ T] g is a possibleASCII representation; theCPPrepre-
sentation becomes(S && T) || (! S && ! T) .

Quantifiers. Quantifiers9x(S) are not supported byICE. They have neither an
ASCII representation nor aCPPrepresentation.

ISO keywords. In compliance with the forthcoming C++ standard [Str94],ICE
recognizes the keywordsand , or , not , andnot eq instead of&&, || , ! ,
and!= . ICE may also be instructed to generate these keywords.

Other CPP expressions.All CPPexpressions that cannot be converted into a fea-
ture term using the rules above, are treated byICE as a single atom. We call
these expressionsarithmetic expressions.

16.3 Syntax and Semantics of CPP Directives

16.3.1 Specifying Line Features

Besides the simple#if : : : #endif construct,ICE handles allCPPdirectives re-
lated to conditional inclusion, improving the readability of multi-version files.

188 Representing Version Sets

Each block of the text is read within a certaincontext,a feature term that deter-
mines the features of the line; one also says that the contextgovernsthe line.CPP
directives like#if may be used to narrow this context for the enclosed lines.

#if : : : #elif : : : #else : : : #endif . The #if directive occurs in the general
form

#if S0
t0
#elif S1
t1
#elif S2
t2
...
#elif Sn

tn
#else
tn+1
#endif

where the#elif and#else directives and the following text blocksti are
optional. LetC be the context of the entire#if : : : #endif form. Each text
block ti is then interpreted with the contextTi defined as

Ti =Cu�S0u�S1u �� �u�Si�1uSi

=Cu G
0� j<i

�Sj uSi ; (16.1)

whereSn+1 is defined asSn+1 =>.

Figure 16.3 on the facing page gives an example of using#if : : : #endif .

#ifdef . A control line of the form

#ifdef f

is equivalent to

#if defined f

#ifndef . A control line of the form

#ifndef f

16.3 Syntax and Semantics ofCPP Directives 189

Line Features
// Init random seed >

#if HAVE SRAND

// srand() available [have-srand:�0]
#if defined USE SRAND

srand(time); [have-srand:�0;use-srand:>]
#else

// No srand() [have-srand:�0;use-srand"]
#endif

#elif HAVE SRANDOM

srandom(time); [�have-srand:�0;have-srandom:�0]
#else

// No random seed [�have-srand:�0;�have-srandom:�0]
#endif

Figure 16.3: Interpretation of#if directives

is equivalent to

#if !defined f

16.3.2 Specifying File Features

CPP directives may also be used to specify non-existent versions, and thus to
define the features of the entire file. For instance, by stating that the version subset
[tested:>] does not exist, the features of the entire file become�[tested:>] =
[tested"].

#error . A control line of the form

#error token-string

in a contextC expresses that the file does not exist in the contextC; in other
words, the features of the file are a subset of�C.

#error directives are useful for specifying the features of a file explicitly.
As an example, theCPPdirectives

#if !(SCREEN_TYPE == ega) n
|| !(SCREEN_DATA == bitmap)

190 Representing Version Sets

#error
#endif

specify the features of the file as[screen-type:ega;screen-data:bitmap]. No
subset of�[screen-type:ega]t�[screen-data:bitmap] exists.

#define . Using C encoding,#define may be used to specify the features of a
file. ICE can be instructed to interpret a control line of the form

#define f

as

#if !defined f
#error
#endif

and to interpret a control line of the form

#define f T

as

#if !(f == T)
#error
#endif

By default,ICE ignores#define directives.

#undef . Using C encoding,#undef may be used to specify the features of a file.
ICE can be instructed to interpret a control line of the form

#undef f

as

#if defined f
#error
#endif

By default,ICE ignores#undef directives.

16.3 Syntax and Semantics ofCPP Directives 191

16.3.3 Miscellaneous Directives

ICE also recognizes theCPP #line directive, which is useful for diagnostics.
The #pragma directive, followed by the keywordice , is used byICE-specific
extensions to theCPPrepresentation.

#line . A #line directive in the form

#line constant

or

#line constant " filename"

sets the current line number toconstant, for the purpose of error diagnos-
tics. If present, the name of the current file is set tofilename.

#pragma . A #pragma directive followed by the tokenice is recognized asICE-
specific directive. Any#pragma directives not followed byice are ig-
nored.

ICE recognizes the following#pragma ice directives:

#pragma ice config . A control line of the form

#pragma ice config S

is equivalent to

#if ! S
#error
#endif

#pragma ice config is obsolete;#error should be used instead.

#pragma ice encoding . A control line of the form

#pragma ice encoding e

sets the subsequent encoding of the file to the encoding specified bye
(see section 16.4 for details on file encodings). Possible values ofe
and the resulting encodings are shown in table 16.2 on the next page.

192 Representing Version Sets

Token Encoding Token Encoding
asis As-is text Text
c or C C binary Binary

Table 16.2: Encoding tokens

16.4 File Encodings

TheCPPformat, as defined in [ISO90], was designed for C and C++ programs.
Using theCPPformat for arbitrary files requires some slight changes to theCPP
encoding, depending on the file to be processed.ICE knows four file encodings:
C encoding, Text encoding, Binary encoding, and “As-is” encoding.

C Encoding. In C encoding,CPPdirectives are read and interpreted according to
theISOC standard [ISO90]. There may be arbitrary white space before and
after the# character; and the# character may also be replaced by theISO
C trigraph sequence??= or by thedigraph sequence%: from the proposed
C++ standard [Str94].CPPdirectives enclosed by C comments/* : : : */

are ignored.CPPdirectives may extend across multiple lines: the character
n followed by a newline is ignored, allowing forcontinuation lines.C and
C++ comments (// to the end of a line) are recognized.

C encoding is useful for processingCPP-managed source files. Figure 16.4
gives an example of a file in C encoding.

#if HAVE_ATHENA_WIDGETS
#if HAVE_X11_XAW_FORM_H

#include <X11/Xaw/Form.h>
#endif

#endif

Figure 16.4: A program file in C encoding

The second line in figure 16.4 is interpreted asCPPdirective although pre-
ceded by white space.

Text Encoding. Text encoding is a restricted form of C encoding. The# charac-
ter must be the first in the line; no white space before or after the# character
is allowed. The# character may not be replaced by a trigraph or digraph;
C comments around directives are ignored. Continuation lines are still al-
lowed; C and C++ comments may be used within aCPPdirective.

16.4 File Encodings 193

Text encoding is useful for general text files. In figure 16.5, we see an
example of a multi-version Makefile in text encoding.

Sample Makefile
if we’re using GCC, use the -O2 flag
#if CC == gcc
CFLAGS = -O2
#else
CFLAGS = -O
#endif

Figure 16.5: A Makefile in text encoding

Using text encoding, the second line is treated as ordinary text as intended.
With C encoding, the second line would flag an error, since it would be
interpreted as an#if directive followed by an invalidCPPexpression.

Binary Encoding. In binary encoding,CPP directives are enclosed in square
brackets. They may occur anywhere in a file, making this encoding suitable
for arbitrary files. Continuation lines and C++ comments are not allowed;
C comments may be used.

Figure 16.6 gives an example of a multi-version C++ program in binary
encoding.

// Initialize [#if d1] PTY[#else] TTY[#endif]
#if USE_ [#if d1] PTY[#else] TTY[#endif]
int open_ [#if d1] pty [#else] tty [#endif] ();
#endif // USE_ [#if d1] PTY[#else] TTY[#endif]

Figure 16.6: A C++ program file in binary encoding

Obviously, the changeδ1 in figure 16.6 consisted in changing all occur-
rences oftty to pty . Note that theCPPdirective on the second line is
treated as ordinary text, since it is not preceded by a[character.

As illustrated in figure 16.6, binary encoding can be used for fine-grained
differences in files. The placement of directives influences both size and
readability of the text. Instead of placing directives on word boundaries, as
in the example, we could also have placed directives on letter boundaries,
resulting in the representation shown in figure 16.7 on the next page; the
file is smaller, but even less legible.

194 Representing Version Sets

// Initialize [#if d1] P[#else] T[#endif] TY
#if USE_ [#if d1] P[#else] T[#endif] TY
int open_ [#if d1] p[#else] t [#endif] ty();
#endif // USE_ [#if d1] P[#else] T[#endif] TY

Figure 16.7: Binary encoding with character boundaries

Placing directives on line boundaries, makes the file larger, but improves
readability, as illustrated in figure 16.8.

[#if d1] // Initialize PTY
#if USE_PTY
int open_pty();
#endif // USE_PTY
[#else] // Initialize TTY
#if USE_TTY
int open_tty();
#endif // USE_TTY [#endif]

Figure 16.8: Binary encoding with line boundaries

Since the character sequence[# starts a directive, the special sequence[##

is used to encode the sequence[# itself.

As-is Encoding. This is a simple one: The entire file is read “as is” as one single
version, without any encoding.

ICE can also be instructed to determine the encoding of a file dynamically,
using a simple heuristic:

1. If the file begins with the character sequence[# , binary encoding is used.

2. If the file ends in a newline character and does not contain control charac-
ters besides newline and tab characters, text encoding is used.

3. Otherwise, as-is encoding is used.

Using the first alternative, the encoding can be specified explicitly at the beginning
of the file, using a#pragma encoding directive. For instance, the sequence
[#pragma encoding text] at the beginning of the file enforces text encoding
in the remainder of the file.

If any syntax errors occur during the interpretation ofCPPdirectives,ICE gives
a diagnostic and reads the file again, using as-is encoding.

16.5 Implementation Notes 195

16.5 Implementation Notes
Feature terms are implemented as abstract syntax trees using thecompositepat-
tern [GHJV94]; each operator in the abstract syntax is represented by a separate
class. To minimize the effort for copying feature terms, subtrees are shared wher-
ever possible. Feature terms are accessed throughsmart references,an instance of
theproxy pattern [GHJV94] implementing a simple reference-count mechanism
deleting unreferenced feature trees.

The scanner forCPPfiles, distinguishingCPPdirectives from ordinary text,
was written directly in C++. CPPexpressions are processed by a scanner/parser
automatically generated from aLEX token specification and aYACC grammar
specification. The 145 rules of theYACC grammar handle both feature terms and
CPPexpressions.

A processedCPPfile is represented internally as a list of text blocks, where
each block contains a sequence of characters and the associated feature term.
Each block is also associated with lexical details about the indentation, any com-
ments found onCPPdirectives, whetherISO keywords are used, etc., such that
subsequent writing does not change these details. The internalCPPfile represen-
tation was realized by Lars D¨uning [Dün94].

16.6 Conclusion
ICE usesCPPexpressions to represent feature terms and files enriched withCPP
directives to represent version sets. The intent is to give users a familiar, well-
understood representation of multiple items in one representation. By supporting
various encodings,ICE can interpret existingCPP-managed files (especially C and
C++ program files) and represent binary files using aCPP-like encoding.

The primary advantage of theCPPformat is that only the differences between
versions are specified. An increasing number of differences between versions
also implies a larger number of directives. While this is no problem forICE, it
makes the resulting files hard to read for humans. In the following chapter, we
discuss techniques to select and change arbitrary version subsets out of aCPP
representation, such that users can work upon singleton version sets without any
CPPdirectives.

I didn’t like CPP at all, and I still don’t like it.

— BJARNE STROUSTRUP, The Design and Evolution of C++

Chapter 17

Handling Version Sets

Having discussed theCPPrepresentation of version sets, we demonstrate how
version subsets are selected fromCPPfiles, realizing reading of arbitrary version
sets. These subsets can also be changed and merged back into the original file,
using aDIFF algorithm to determine a compact representation. Through selection
and changing, we can define the effects of usual file operations (read, write, create,
remove) on version sets inCPPrepresentation.

17.1 Selecting Version Sets

We show how arbitrary version subsets can be accessed from a version set inCPP
file representation. LetF be aCPPfile representing all source code versions. To
select a subset ofF using a selection termS, that is, the setF uS, we proceed
as follows. For each code piece, its governing feature termC is intersected with
the selection termS. If CuS is inconsistent, the code piece is removed from
the selection. IfCuS= S, the#if directive is removed, becauseSvC holds.
Otherwise,C is simplified respective toS, using partial evaluation as discussed in
section 14.7. The new (smaller)CPPrepresentation can be characterized bySand
is writtenF [S] = F uS(obviously,F = F[>] holds).

17.1.1 A Variant Example

Figure 17.1 on the next page shows three subset selections from the source code
of xload , a tool to display the current system load.xload is available for several
architectures, each with a different method to determine the system load. Conse-
quently, each architecture is identified by an individualCPPvariable.

From top to bottom, figure 17.1 shows

197

198 Handling Version Sets

xload[os:unix]

InitLoadPoint()
{

extern void nlist();
#if defined(AIXV3) && !defined(hcx)

knlist(namelist, 1, sizeof(struct nlist));
#else

nlist(KERNEL_FILE, namelist);
#endif
#ifdef hcx

if (namelist[LOADAV].n_type == 0 &&
#else

if (namelist[LOADAV].n_type == 0 ||
#endif

namelist[LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

xload[os:unix;hcx"]
InitLoadPoint()
{

extern void nlist();
#ifdef AIXV3

knlist(namelist, 1, sizeof(struct nlist));
#else

nlist(KERNEL_FILE, namelist);
#endif

if (namelist[LOADAV].n_type == 0 ||
namelist[LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

xload[os:unix;hcx:>]

InitLoadPoint()
{

extern void nlist();
nlist(KERNEL_FILE, namelist);
if (namelist[LOADAV].n_type == 0 &&

namelist[LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

Figure 17.1: Three version selections from aCPPfile

17.1 Selecting Version Sets 199

� the original selectionxload[os:unix];

� ahcxversionxload[os:unix][hcx:>] = xload[os:unix;hcx:>];

� a non-hcxversionxload[os:unix][hcx"] = xload[os:unix;hcx"].

Each selection reduces the number of governingCPPexpressions and simplifies
the remaining ones. In the case ofxload[os:unix;hcx:>], noCPPexpressions are
left—the version set is unambiguous.

17.1.2 A Revision Example

Another example is shown in figure 17.2. We use delta features to identify revi-
sions, as discussed in chapter 11. TheCPPexpressiondi stands for the feature
terms∆i ; likewise,!d i stands for∇i =�∆i.

The fileTextcomes in three revisions identified byR0 =∇1u∇2, R1 =∆1u∇2,
andR2 =∆1u∆2. According to (11.6), the features ofTextare∆2!∆1 =∇2t∆1.
These features are encoded in theCPPrepresentation ofText, using an#error

directive with the feature complement�∇2t∆1 = ∆2u∇1 as context.
The overall structure of theTextfile is as follows: The wordexplain occurs

in R0 only. In R1, it was changed todemonstrate , and again changed inR2 to
show. Note how the feature implications and the#elif directive keep the actual

Text

#if d2 && !d1
#error
#endif
We
#if d2
show
#elif d1
demonstrate
#else
explain
#endif
the encoding
of revisions.

Text[∆2]

#if !d1
#error
#endif
We
show
the encoding
of revisions.

Text[∇2]

We
#if d1
demonstrate
#else
explain
#endif
the encoding
of revisions.

Figure 17.2: Selecting revisions from aCPPfile

200 Handling Version Sets

expressions small—instead ofd2 && d1, only d2 is required, sinced2 implies
d1, and instead of!d2 && d1 , only d1 is required, due to usage of the#elif

directive.
On the right-hand side of figure 17.2, we see two subset selections ofText.

The selectionText[∆2] has theδ2 change applied; the#error directive states
that the∇1 subset does not exist. In the selectionText[∇2], no #error directive
is required, because all its subsets exist; the worddemonstrate is part of the
subsetText[∇2u∆1], and the wordexplain belongs to the subsetText[∇2u∇1].
We see how the complexity ofCPPdirectives decreases as we narrow the version
set by specifying more features.

If the selection termS is simple, like in our examples, subset selection is
very efficient, since nearly all consistency checking can be done via reduction
and orthogonality checking. Unless non-simple terms are used, subset selection
in ICE takes no more time than aSCCScheckout or aCPPrun without macro
expansion.

17.2 Changing Version Sets

Having shown how version subsets are selected, we show how the originalCPPfile
can be reconstructed after a change in a subset. Let us assume we want to change a
version subsetF [S] in a fileF to F 0[S]. What we need now is a mechanism to con-
struct the fileF 0 from F andF 0[S]—or, more specifically, fromF [�S]andF0[S],
sinceF [S] is to be overwritten byF 0[S]. This is the general problem ofunit-
ing two version sets represented asCPPfiles; in our case, we want to construct
F 0 = F 0[S]tF[�S].

A trivial mechanism to generateF 0 from F 0[S] andF [�S] is to concatenate
F 0[S] andF [�S], each in its specific context. The fileF 0 would then have the
structure:

#if S
: : : contents ofF 0[S] : : :

#else
: : : contents ofF[� S] : : :

#endif

The advantage of this mechanism is its simplicity. Its disadvantage is that each
version is stored separately, wasting space. What we would prefer is a representa-
tion where only thedifferencesbetweenF 0[S] andF[�S] are enclosed by#if S

: : : #endif . For this purpose, we need a mechanism that generates a compact
representation by determining the differences between versions, respectingCPP
directives.

17.2 Changing Version Sets 201

In this section, we present an algorithm that generates the union of two version
setsF[S] and F[T], whereS and T are disjoint—that is,Su T = ?, Sv �T,
and T v �S hold. The basic idea is to compare the two files textually, using
a DIFF algorithm ignoring allCPPdirectives. In the resulting unionF [St T],
text parts occurring only inF [S] or F [T] are governed byS or T, respectively;
common parts are governed byStT. The more similarF [S] andF [T] are, the
more commonalities will be detected byDIFF, and the smaller the representation
of F [StT] will be.

As an example of how this works, consider theTextexample from figure 17.2
on page 199. Let us assume we change the wordencoding in Text[∆2] to usage ,
giving Text0[∆2] as shown in figure 17.3.

Text0[∆2]

#if !d1
#error
#endif
We
show
the usage
of revisions.

Text[∇2]

We
#if d1
demonstrate
#else
explain
#endif
the encoding
of revisions.

Figure 17.3: Changing a version subset

For theDIFF run, we use the internal representation withoutCPPdirectives,
where each line is tagged with its features, shown in figure 17.4.

Text0[∆2]

Line Features
We ∆2u∆1

show ∆2u∆1

the usage ∆2u∆1

of revisions. ∆2u∆1

Text[∇2]

Line Features
We ∇2

demonstrate ∇2u∆1

explain ∇2u∇1

the encoding ∇2

of revisions. ∇2

Figure 17.4: Version subsets in internal representation

The DIFF algorithm runs on the lines ofF [S] andF[T] alone, ignoring the
respective features. For each line,DIFF determines whether it occurs inF[S], in

202 Handling Version Sets

F[T], or in both. The line features are obtained according to definition 17.1:

Definition 17.1 (DIFF line features) In a representation ofF [St T] generated
from F [S] and F[T], whereS and T are disjoint, the features of each line are
determined as follows.

1. Let S0 v S be the features of the line inF [S]. If the line does not occur
in F[S], let S0 =?.

2. Likewise, letT 0 v T be the features of the line inF[T]. If the line does not
occur inF[T], let T 0 =?.

3. The new features of the line are determined asS0tT 0.
2

All lines originally contained inF[S] only are thus governed withS0 v S;
likewise, lines originally contained inF[S] only are governed byT 0 v T. The
following proposition ensures that the representation given by definition 17.1 is
correct.

Proposition 17.2 Let F 0 = F[StT] be a representation for the union of two ver-
sion setsF [S] andF [T], as described above, and whereSandT are disjoint. Then,

F 0[S] = F[S] F 0[�S] = F [T] F 0[T] = F[T] F 0[�T] = F [S]

hold.
PROOF.Without loss of generality, we show thatF 0[S] = F 0[�T] = F[S] holds. Let
U = S0 tT 0 be the features of a line contained inF 0. Both S0 v Sv �T and
T 0 v T v�Sare formed according to definition 17.1. The termS0 represents the
original features of the line inF[S]; if the line did not occur inF [S], we have
S0 =?.

1. The selectionF 0[S] determines the new features of this line asU uS=
(S0uS)t (T 0uS) = S0t?= S0.

2. The selectionF 0[�T] returns the new featuresU u�T = (S0u�T)t (T 0u
�T) = S0t?= S0.

We see that the original line featuresS0 remain unchanged; the line is contained in
either all ofF [S], F 0[S], andF 0[�T] (if S0 6=? holds) or in none of them (ifS0=?
holds). Hence,F [S] = F 0[S] = F 0[�T] holds, which was to be shown. 2

17.3 Creating aCPP Representation 203

Text0[∆2]tText[∇2]

Line Features
Original Reduced

We ∇2t (∆2u∆1) >

show ∆2u∆1 ∆2

the usage ∆2u∆1 ∆2

demonstrate ∇2u∆1 ∇2u∆1

explain ∇2u∇1 ∇1

the encoding ∇2 ∇2

of revisions. ∇2t (∆2u∆1) >

Figure 17.5: Determining new line features

In our example, runningDIFF and applying definition 17.1 on the facing page
yields the output shown in figure 17.5. The central column shows the features
determined according to the rules above.

The feature terms of the individual lines can be simplified with respect to the
features of the entire file. In our case, the features of the file are(∆2u∆1)t∇2 =
(∆2t∇2)u(∆1t∇2) =>u(∆1t∇2) =∆2! ∆1. The simplifications for the line
features follow the general scheme

(SuT)u (S! T) = Su (S! T) (17.1)

(StT)u (S! T) = T u (S! T) ; (17.2)

leading to the simplified feature terms shown in the right column of figure 17.5.
The resultingCPPrepresentation ofText0 = Text0[∆2]tText[∇2] is shown in

figure 17.6 on the following page, together with its two sourcesText0[∆2] and
Text[∇2].

17.3 Creating a CPP Representation

TheCPPrepresentation of the re-united version set, as shown in figure 17.6 on the
next page, is not the only possible one. By interchanging text blocks and using
otherCPPdirectives, a multitude of representations is possible. This is illustrated
in figure 17.7 on page 205: we see three alternateCPPrepresentations for the
version set in figure 17.6.

Since the text blocks can be rearranged in an arbitrary manner, there is no
canonicalCPPrepresentation. Moreover, determining the smallest possibleCPP
representation is probablyN P-complete, as it is closely related to finding the
smallest possible representation of a formula in first-order logic.

204 Handling Version Sets

Text0[∆2]

#if !d1
#error
#endif
We
show
the usage
of revisions.

Text[∇2]

We
#if d1
demonstrate
#else
explain
#endif
the encoding
of revisions.

Text0

#if d2 && !d1
#error
#endif
We
#if d2
show
the usage
#elif d1
demonstrate
#else
explain
#endif
#if !d2
the encoding
#endif
of revisions.

Figure 17.6:CPPrepresentation after a subset change

For generating theCPPrepresentation inICE, we have chosen not to determine
the smallest possible representation. Instead,ICE attempts to generate appropriate
CPPdirectives by comparing the feature terms of subsequent text blocks.

17.3.1 An Algorithm to Create Nested CPP Directives

The easiest algorithm to create aCPPrepresentation is to enclose each text block
governed by a feature termT in #if T : : : #endif . The first refinement of this
representation is to generatingnestedCPPdirectives by maintaining a stack of
feature terms where we save the currentcontexts—that is, the currently governing
feature terms. Here is a simple algorithm realizing this approach.

Algorithm 17.3 (Creating nestedCPP directives) To write a version set inCPP
format, usingCPP#if directives, use the following algorithm.

The algorithm consists of three pieces. The used variables are declared in
hDeclarationsi and initialized inhInitializationi. TheCPPrepresentation is written
in hWrite bodyi.

hAlgorithm 17.3i �
hDeclarationsi

17.3 Creating aCPP Representation 205

Text0

#if d2 && !d1
#error
#endif
We
#if d2
show
the usage
#elif d1
demonstrate
#else
explain
#endif
#if !d2
the encoding
#endif
of revisions.

Text0

#if d2 && !d1
#error
#endif
We
#if d2
show
the usage
#else
#if d1
demonstrate
#else
explain
#endif
the encoding
#endif
of revisions.

Text0

#if d2 && !d1
#error
#endif
We
#if !d2
#if !d1
explain
#else
demonstrate
#endif
the encoding
#else
show
the usage
#endif
of revisions.

Figure 17.7: AlternateCPPrepresentations

hInitializationi
hWrite bodyi

The algorithm requires two variables.

hDeclarationsi �
Let the feature termC be the current context.
Let CC be a stack of contexts.

These variables are initialized as follows.

hInitializationi �
InitializeC:=>.
Initialize CC with the empty stack.

The file body is written via a loop across all text blocks.

hWrite bodyi �
for all text blocksdo
hWrite blocki

od
hClose bodyi

206 Handling Version Sets

For each text block to be written, letT be its governing feature term. We must
now generateCPPdirectives that change the context fromC to T.

� If T =C holds, the text is simply written.

� Otherwise, ifT vC holds, save the current context on the stack, and write
an#if Sdirective such thatT =CuSholds.

� Otherwise (T 6vC), write an#endif directive, restore the contextC from
CC, and retry writing the text block with the new context.

In a more structured way, this is expressed as follows:

hWrite blocki �
Let T be the governing feature term of the current text block.
while T 6vC do
hWrite #endifi

od
if T 6=C^T vC then
hWrite #ifi

fi
hWrite texti

If T =C holds, write noCPPdirective at all.

hWrite texti �
Write the text block without any directive.

Otherwise, ifT vC holds, we write an#if directive. The old context is saved on
the stackCC.

hWrite #ifi �
Let Sw T be a feature term such thatT =CuSholds.
Write #if S.
SaveC onCC.
Set the context toC:=CuS.

Otherwise, we must use an#endif directive to exit the current context. This is
done until we reach a suitable context. Since the outermost context is>, such a
context is always reached.

hWrite #endifi �
Write #endif .
RestoreC from CC, discarding it.

Eventually, an#endif is written for each stacked context.

17.3 Creating aCPP Representation 207

hClose bodyi �
while CC is non-emptydo
hWrite #endifi

2

17.3.2 Generating#else and #elif Directives

The actual algorithm used inICE is somewhat more complex: it also generates
#else and#elif directives. For this purpose, the algorithm maintains a current
else-expressionE as well as a stackEE of else-expressions. Another refinement
found in this algorithm is the handling of overall file featuresF .

Algorithm 17.4 (Creating full CPP directives) To create aCPP representation
of a version set, using the full set ofCPPdirectives, use the following algorithm.

The algorithm consists of four pieces. The used variables are declared in
hDeclarationsi and initialized inhInitializationi. TheCPPrepresentation is written
in hWrite headeri andhWrite bodyi.

hAlgorithm 17.4i �
hDeclarationsi
hInitializationi
hWrite headeri
hWrite bodyi

The algorithm requires five variables.

hDeclarationsi �
Let the feature termF be the features of the file.
Let the feature termC be the current context.
Let the feature termE be the current else-expression.
Let CC be a stack of contexts.
Let EE be a stack of else-expressions.

These variables are initialized as follows.

hInitializationi �
Initialize F with the features of the file.
InitializeC:= F .
Initialize E:=?.
Initialize CC andEE with the empty stack.

The file version is identified using an#error directive.

208 Handling Version Sets

hWrite headeri �
if F 6=> then

Write #if �F .
Write #error .
Write #endif .

fi

The file body is written via a loop across all text blocks.

hWrite bodyi �
for all text blocksdo
hWrite blocki

od
hClose bodyi

The variableT holds the feature term of the current block; the variableC holds
the current context. Before writing the block, we insert appropriateCPPdirectives
such that the new context becomesT.

hWrite blocki �
Let T 0 be the governing feature term of the current text block.
Let T = T 0uF.
LetC0 be the top element ofCC, or? if CC is empty.
while T 6vC^T 6vC0uE do
hWrite #endifi

od
if T 6=C then

if T vC then
hWrite #ifi

elsif T =C0uE then
hWrite #elsei

elsif T vC0uE then
hWrite #elifi

fi
fi
hWrite texti

If T =C holds, we do not need anyCPPdirective.

hWrite texti �
Write the text block without any directive.

17.3 Creating aCPP Representation 209

Otherwise, ifT vC holds, we write an#if directive. The old context and else-
expressions are saved on the stack; the else-expression is the complement of the
#if -expression.

hWrite #ifi �
Let Sw T be a feature term such thatT =CuSholds.
Write #if S.
SaveC onCC.
SaveE onEE.
Set the context toC:=CuS.
Set the else-expression toE:=�S.

Otherwise, ifT = C0 uE holds, we can write an#else directive. we prohibit
multiple#else directives by settingE to?,

hWrite #elsei �
Write #else .
Set the context toC:=C0uE.
Set the else-expression toE:=?.

Otherwise, ifT vC0uE holds, we write an#elif directive.

hWrite #elifi �
Let Sw T be a feature term such thatT =C0uEuSholds.
Write #elif S.
Set the context toC:=C0uEuS.
Set the else-expression toE:= Eu�S.

Otherwise, we must use an#endif directive to exit the current context. This is
done until we reach a suitable context.

hWrite #endifi �
Write #endif .
RestoreE from EE, discarding it.
RestoreC from CC, discarding it.

When the last text block is processed, we must write an#endif for each remain-
ing #if .

hClose bodyi �
while CC is non-emptydo
hWrite #endifi

2

210 Handling Version Sets

17.3.3 An Example Run

We illustrate the use of algorithm 17.4 by applying it to the version set shown in
figure 17.5 on page 203.

1. (Initialization) The features of the file
areF = ∆2 ! ∆1.

� The context is initialized to
C:= F = ∆2 ! ∆1.

� The else-expression is initialized
to E:=?.

� CC andEE are initialized with the
empty stack.

2. (Write header)F 6=> holds. The
complement ofF is
�F =�(∇2t∆1) = ∆2u∇1.

� #if d2 && !d1 is written.

� #error is written.

� #endif is written.

3. (Write block) The text isWe;
T =>uF = ∆2 ! ∆1 holds.

4. (Try equality)T =C holds.

� Weis written.

5. (Write block) The text isshow;
T = ∆2uF = ∆2u∆1 holds.

6. (Try equality)T =C does not hold.

7. (Try #if) T vC holds;S= ∆2.

� #if d2 is written.

� show is written.

� The contextC= ∆2 ! ∆1 is saved
on CC.

� The else-expressionE =? is
saved onEE.

� The context becomes
C:= CuS= ∆2u∆1.

� The else-expression becomes
E:=�S= ∇2.

8. (Write block) The text isthe usage ;
T = ∆2uF = ∆2u∆1 holds.

9. (Try #endif)T 6vC does not hold.

10. (Try equality)T =C holds.

� the usage is written.

11. (Write block) The text isdemonstrate ;
T = ∇2u∆1uF = ∇2u∆1 holds. The
outer context isC0

= ∆2 ! ∆1.

12. (Try #endif)T 6vC0uE does not hold.

13. (Try #if) T vC does not hold.

14. (Try #else)T =C0 uE does not hold.

15. (Try #elif)T vC0uE = ∇2 holds;
S= ∆1.

� #elif d1 is written.

� demonstrate is written.

� The context becomes
C:= C0uEuS= ∇2u∆1.

� The else-expression becomes
E:= Eu�S= ∇2u∇1.

16. (Write block) The text isexplain ;
T = ∇1uF = ∇1u∇2 holds. The outer
context isC0

= ∆2 ! ∆1.

17. (Try #endif)T 6vC0uE does not hold.

18. (Try equality)T =C does not hold.

19. (Try #if) T vC does not hold.

20. (Try #else)T =C0 uE = ∇2u∇1 holds.

� #else is written.

� explain is written.

� The context becomes
C= ∇2u∇1.

� The else-expression becomes
E:=?.

21. (Write block) The text is
the encoding ; T = ∇2uF = ∇2 holds.

17.3 Creating aCPP Representation 211

22. (Try #endif)T 6vC holds andT 6vC0uE
holds.

� #endif is written.

� E is restored toE:=?.

� C is restored toC:= ∆2 ! ∆1.

� CC andEE become the empty
stack again.

23. (Try #if) T vC holds;S= ∇2.

� #if !d2 is written.

� the encoding is written.

� The contextC= ∆2 ! ∆1 is saved
on CC.

� The else-expressionE =? is
saved onEE.

� The context becomes
C:= CuS= ∇2.

� The else-expression becomes
E:=�S= ∆2.

24. (Write block) The text is
of revisions. ; T =>uF = ∆2 ! ∆1
holds. The outer context is
C0

= ∆2 ! ∆1.

25. (Try #endif)T 6vC holds andT 6vC0uE
holds.

� #endif is written.

� E is restored toE:=?.

� C is restored toC:= ∆2 ! ∆1.

� CC andEE become the empty
stack again.

26. (Try equality)T =C holds.

� of revisions. is written.

27. (Close body) The stackCC is empty; no
more#endif directives need to be
written.

The complete output is shown on the right side of figure 17.6 on page 204.

17.3.4 Efficiency

Algorithm 17.4 requires some deduction steps, notably the decision of subsump-
tion. This can be done efficiently usingreduce. Using (8.4), (14.20) and (14.16),
we have:

T vU , �U uT =?

, reduce(�U;T)uT =?

, �reduce(U;T)uT =? (17.3)

If U andT are simple, this problem is equivalent to

T vU , reduce(U;T) => ; (17.4)

which requires quasi-linear time, according to corollary 14.12 on page 172.
The feature termSw T required inhWrite #ifi andhWrite #elifi can also be

obtained viareduce. In hWrite #ifi, we haveT vC, andSmust satisfyT =CuS.
(Note thatS=T is a trivial choice forS). SinceT vC holds, we haveT =CuT =
Cu reduce(T;C), following (14.20). Hence,S= reduce(T;C) is a valid choice
for S. The same applies tohWrite #elifi, where we obtainS= reduce(T;C0uE).

212 Handling Version Sets

Even better performance is achieved by saving the values ofS across selec-
tions and unions. InICE, each text block is associated with a set ofCPPdirec-
tives and possible values forS. Upon parsing, this set is initialized to contain
theCPPdirective separating this text block from its predecessor. Uniting version
sets unites the two sets ofCPPdirectives for each text block; upon selection, the
termsSare reduced according to the selection term.

When writing a version set inCPPrepresentation,ICE first determines whether
using one of the savedCPPdirectives leads to the desired governing expression;
if yes, theCPPdirective is written and the remaining set members are discarded.
Besides a maximum of performance, notably with orthogonal selection terms, this
helps maintaining the structure of the originalCPPfile as much as possible.

TheCPPdirectives generated byICE are to be read and understood by humans.
Beyond a certain term complexity, the effort for deducing an easily readable rep-
resentation is wasted. Hence,ICE can be instructed to disable the generation of
specialCPPdirectives as soon as the terms exceed a specific length. Instead,ICE
uses#if : : : #endif directives only, without#else , #elif , and further nested
directives. Writing this format does not require any deduction steps, and is easily
processed again byICE.

17.4 File Operations on Version Sets

Based on the selection and changing of version sets, we can now summarize the
effects of file operations on version sets.

Read. Read access toF [S] is accomplished by selectingS from F , as discussed
in section 17.1.

Write. Write access toF[S]—that is, changingF [S] to F 0[S]—is implemented by
generatingF 0 = F[�S]tF 0[S], as shown in section 17.2.

Create. CreatingF[S], whereF was non-existent before, createsF containing an
#error directive governed by�S, such thatF [�S] is non-accessible.

Remove. RemovingF [S] augmentsF with an#error directive governed byS,
such that onlyF [�S] is accessible.

We see that theCPPfile representation of version sets allows users to create,
read, change, and remove version sets just like ordinary files (that is, singleton
version sets), while still only the differences between versions are stored.

17.5 Implementation Notes 213

17.5 Implementation Notes
The creation of compactCPPrepresentations, as discussed in section 17.2, was
realized by Lars D¨uning [Dün94], using the freely availableGNU DIFF imple-
mentation. For maximum performance, theDIFF program is not invoked as a
separate process, but directly linked withinICE.

Writing of version sets is based on algorithm 17.4 on page 207, extended with
some additional optimizations not discussed here.ICE provides an interface for
developers wishing to control theCPPoutput format.

The inference engine used inICE implements Smolka’s feature unification
algorithm. It realizes all of the optimization methods discussed in chapter 14, as
well as the implication reductions (17.1) and (17.2).

The inference engine provides two entry points.reduce(S;T) realizes the
reducefunction from definition 14.10 on page 170; this assumes thatS andT
are already consistent.solve(T) determines consistency ofT, using Smolka’s
feature unification. Both rely on each other:solveusesreduceto reduce the size
of subproblems;reducecalls solveto determine the consistency of non-simple
subexpressions. For best performance, the inference engine caches deduction
results such that frequent problems are solved only once.

Smolka’s feature unification, as described in [Smo92], was implemented by
Marc Ziehmann [Zie93].

17.6 Conclusion
ICE provides mechanisms to select and change arbitrary version subsets, using the
CPPrepresentation. Version sets can be accessed and manipulated like ordinary
files, making version sets first-class objects in anSCM-aware environment, while
still only the differences between versions are computed and stored.

Whoever shouted the loudest about their particular feature would usually get it in.
If the feature was some new 3-D chart or some very ‘cool’ thing, that would get in.

And if it wasn’t cool but certainly was important, nobody would rally behind it : : :
So it was working out not to be a process we felt very comfortable about

for designing our new versions.
So we decided, “Well, let’s kind of invert the process a little bit.

Let’s not even think about features.”

— MIKE CONTE
in: MICHAEL A. CUSUMANO and RICHARD W. SELBY, Microsoft Secrets

Chapter 18

A Shell for Version Set Access

Based on the file operations, as discussed in section 17.4, we have implemented
a library calledLIBICE that realizes file operations on version sets inCPPrepre-
sentation; arbitrary version sets can be created, read, written, and removed. To
experiment with these mechanisms, we have realized a simplecommand shellon
top ofLIBICE that simulates transparent version set access for arbitrary files. The
name of the shell isICICLE (for ICE integrated command line engine).

18.1 Reading Version Sets
Basically,ICICLE is a command shell roughly complying to thePOSIXshell stan-
dard. Users can invoke programs by entering the program name, possibly fol-
lowed by program arguments:

(icicle) more sample.txt
#if SAMPLE
This is a sample text.
#else
This is a simple text.
#endif

Here,(icicle) is theICICLE prompt,more sample.txt is the user input, and
#ifdef : : : #endif is the output of themore command. Themore command
was invoked withsample.txt as argument; it simply prints the file given as
argument on standard output.

The special feature ofICICLE is that it allows transparent version set access.
To access a fileF in the versionS, users writeF [S], using theCPPrepresentation
for feature terms. Hence, users can access theSAMPLEversion ofsample.txt :

215

216 A Shell for Version Set Access

(icicle) more sample.txt[SAMPLE]
This is a sample text.

as well as its complement:

(icicle) more sample.txt[!SAMPLE]
This is a simple text.

This transparent access is realized as follows:

1. For each wordF[S], whereF is a file name andS is a validCPPexpression,
create a file namedF[S] containing the selectionSof the fileF.

2. Run the specified command.

3. Remove all filesF [S].

Hence, in our example, two temporary files namedsample.txt[SAMPLE]

andsample.txt[!SAMPLE] are created beforemore is invoked. Aftermore

has finished, they are removed.

18.2 Writing Version Sets

Besides reading of version sets,ICICLE also allows to change version sets, as
discussed in section 17.2. Here is an example:

(icicle) cat > sample.txt[SAMPLE]
This is a text sample.
ˆD
(icicle) more sample.txt[SAMPLE]
This is a text sample.
(icicle) more sample.txt
#if SAMPLE
This is a text sample.
#else
This is a simple text.
#endif

Thecat command copies the standard input to standard output; the> character
redirects this output to the given file. The standard input is typed in by the user
and finished using an end-of-input character (ˆD , Control-D). The contents of
sample.txt[SAMPLE] becomeThis is a text sample.

Writing version sets is realized by extending transparent access as follows:

18.3 Removing Version Sets 217

1. For each wordF [S], whereF is a file name andS is a validCPPexpression,
create a file namedF [S] containing the selectionSof the fileF .

2. Run the specified command.

3. If one of the filesF [S] has changed toF 0[S], changeF to F 0=F [�S]tF 0[S].

4. Remove all filesF[S].

18.3 Removing Version Sets

ICICLE also allows to remove version sets. Here is another example:

(icicle) more sample.txt
#if SAMPLE
This is a text sample.
#else
This is a simple text.
#endif
(icicle) rm sample.txt[SAMPLE]
(icicle) more sample.txt[SAMPLE]
sample.txt[SAMPLE]: No such file or directory
(icicle) more sample.txt
#if !SAMPLE
#error
#else
This is a text sample.
#endif

Therm command removes the file given as its argument. Consequently, themore

command cannot find the file and issues an error message. We see that issu-
ing the rm command inICICLE causes an#error directive to be inserted into
sample.txt , identifying the non-existent versions.

Removing version sets is realized by extending transparent access as follows:

1. For each wordF [S], whereF is a file name andS is a validCPPexpression,
create a file namedF [S] containing the selectionSof the fileF .

2. If the selectionSdoes not exist, do not create the file.

3. Run the specified command.

4. If one of the filesF [S] has changed toF 0[S], changeF to F 0=F [�S]tF 0[S].

218 A Shell for Version Set Access

5. If one of the filesF [S] has been removed, changeF to F 0 = F [�S].

6. Remove all filesF [S].

18.4 Multi-Version Merging

TheCPPrepresentation used inICE also inspired a simple textual merging algo-
rithm that merges an arbitrary number of versions. LetT be a version set with
T1 v T;T2 v T; : : : ;Tn v T beingn version subsets to be merged. Let us assume
that allTi were created independently fromT such that allTi are pairwise disjoint,
i.e.8i; j 2 f1; : : : ;ng(Ti uTj =?) holds.1

To generate a merged version from theCPPrepresentation ofT, we proceed
as follows. The merged versionT 0, denoted asT 0 = T1 1 T2 1 � � � 1 Tn, must
include code pieces that were added in anyTi and exclude code pieces that were
deleted in anyTi . Each code piece governed by aCPPexpressionC is included if
Cv T1tT2t�� �tTn holds; inT 0, the governing expression is simplified (partially
evaluated) respective to allTi . Otherwise, if9i(C v �Ti) holds, the code piece
governed byC was deleted in at least oneTi (and unchanged in allTj with j 6= i)
and thus is not included inT 0. Everything else stays unchanged.

A minimum distance between parallel changes must be preserved in order to
identify merging conflicts. Between any two code pieces governed byC0 andC00

both being a subset of differentTi sets, a separating code piece governed byD
must reside such that the following holds. Formally, letTi0 be the unique element
from fT1; : : : ;Tng such thatC0 v Ti0 ; similarly, Ti00 is the unique element from
fT1; : : : ;Tng such thatC00 v Ti00 . Then,D 6v Ti0 ^D 6v Ti00 must hold. If such aD
does not exist, or if the length ofD is below a certain minimal distance,C0 andC00

are in conflict with each other.
As an example, consider thetty.c file in figure 18.1, where the version sub-

setsT1 = [user: lisa] andT2 = [user: tom] are merged. Code pieceA0 is included,
because its governing expression[user: lisa] is equal toT1; code pieceA is ex-
cluded because its governing expression is equal to�T1. Code pieceC0 would be
included, as it is inT1; but as it is immediately followed byC00, whose governing
expression is equal to the differentT2 subset, the two changes are in conflict with
each other.

For convenience,ICE flags this section still being a subset of aTi with a
“ // >< CONFLICT ” comment; only the code pieceC can safely be removed as
it is a subset of both�T1 and�T2. At the end, the code pieceE is included, since

1Otherwise, replace the non-disjoint pairTi , Tj by Tk = Ti uTj .

18.5 Handling Arithmetic Constraints 219

tty.c[]

#if user == lisa
A0

#else
A

#endif
B

#if user == lisa
C0

#elif user == tom
C00

#else
C

#endif
D

#if user == tom && os == unix
E

#endif

tty.c[user: lisa1 user: tom]

A0

B
#if user == lisa // >< CONFLICT

C0

#else
C00

#endif

D
#if os == unix

E
#endif

Figure 18.1: Merging of version sets

it is separated from the conflict by code pieceD; the expression governing code
pieceE is simplified respective toT2.

The ICICLE shell provides transparent access to merged version sets; the1

operator is represented by the specialCPPoperator><. As an example, theICICLE
command

(icicle) more tty.c[user == lisa >< user == tom]

displays the merge oftty.c[user == lisa] andtty.c[user == tom] on
standard output.

18.5 Handling Arithmetic Constraints
To provide some basic support for arithmeticCPPexpressions,ICE realizespartial
evaluationof CPPexpressions.

Using arithmetic constraints for both selection and identification leads to un-
decidability, as discussed in section 7.3. Some special cases may be recognized,
though:

Partial evaluation of arithmetic expressions.ConstantCPParithmetic expres-
sions are evaluated according to their C semantics [ISO90] and replaced
by the resulting value. Arithmetic expressions involving identifiers are re-
placed by feature values, if applicable. For instance, aCPPexpression like

220 A Shell for Version Set Access

T == 200 && (T >= 100) || C == T)

evaluates to

T == 200

sinceT >= 100 evaluates to non-zero—that is,>.

Solving inequalities. TheICE inference engine contains an arithmetic constraint
checker using the Simplex Method. The simplex method allows theICE
inference engine to recognize inconsistencies in a conjunction of simple
inequalities. For instance, the arithmetic expression

T < 200 && T - 1 > 199

can be recognized as inconsistent by theICE inference engine.

Partial evaluation of arithmetic expressions as well as arithmetic constraint
solving allowICE to handle an important subset of arithmetic constraints. Both
mechanisms are implemented within the solving of feature clauses in Smolka’s
feature unification; all three methods are applied in turn on the constraint set until
the constraint set is unchanged.

18.6 More ICICLE Features

Besides basic shell functions and transparent version access,ICICLE supports
more than 250 commands to controlICE functionality. ICICLE also contains fa-
cilities to define new commands as scripts of other commands. All common shell
mechanisms like variables and control structures are available, including an inter-
active line editor with completion of file names andCPPexpressions. However,
by far most of these facilities are used for testing and debugging, and are not
intended for end users.

18.7 Implementation Notes

Multi-version merging was implemented by Andreas Mende [Men96]. Arith-
metic constraint solving was realized by Christina Trenkner [Tre96].

18.8 Conclusion

On version sets represented asCPPfiles, all elementary file operations like read-
ing, writing, creation, or removal are defined. These basic access methods are

18.8 Conclusion 221

available inLIBICE, theICE library; theICICLE command shell simulates trans-
parent version set access through temporary files. Version sets can be merged
using a simple textual algorithm, integrating changes in multi-version representa-
tions. These elementary file operations, as realized inLIBICE andICICLE, consti-
tute the base of an entire virtual file system, as discussed in chapter 19.

Feature: n. 1. A good property or behavior.
2. An intended property or behavior.
3. A surprising property or behavior.

4. A property or behavior that is gratuitous or unnecessary.
5. A property or behavior that was put in to help someone else

but that happens to be in your way.
6. A bug that has been documented.

— ERIC RAYMOND, The Jargon File

Chapter 19

The Featured File System

The featured file system (FFS) realizes transparent version set access in arbitrary
environments. In addition to versioned file access, as demonstrated in chapter 17,
it supports versioned directories and thus versioning of entire file systems. Di-
rectory versions confine the versions of the contained files and subdirectories.
Directory versions can thus be used as workspaces; users can change workspaces
like they change directories. Additional facilities like virtual subdirectories fa-
cilitate the interactive and incremental exploration of the configuration space, as
implemented in theSKATE configuration browser.

19.1 A SCM Primitives Layer
Thefeatured file system(FFS) is a virtual file system that realizes theICE primi-
tives layer—that is, access to version sets and integration into software develop-
ment environments. Compared toICICLE andLIBICE, theFFShas the following
advantages:

Version set access.Besides versioned file access, as realized inICICLE andLIB-
ICE, theFFSprovides versioned access todirectories.Directory versions
confine the versions of all contained files, and may thus be used to real-
ize workspaces; users can change their workspace just like changing di-
rectories. All file system operations, including the creation of directories,
permission changes, and file mode changes, are versioned.

Exploration of the configuration space. TheFFSrepresents non-singleton ver-
sion sets asdirectoriescontaining the individual versions. This provides
accidental access to non-singleton version sets. By adding or removing

223

224 The Featured File System

more version specifications, users can explore the configuration space in-
teractively.

Environment integration. The FFS is realized as a true file system, accessed
through the operating system interface. Existing programs need neither be
changed, nor must they be invoked in a special manner, nor must they be
linked with a special library.

19.2 Versioned Directories

Versioned files and versioned directories, as supported by theFFS, cover the state
and changes of the entire file system—that is, the whole configuration universe.
Basically, a versioned directory is stored and accessed like ordinary versioned
files are, using theCPPrepresentation. As an example, figure 19.1 shows a user-
readable representation of a versioned directory. (TheFFS itself uses a more
efficient binary format.) We see that theicicle and libice directories were
added in a changeδ1, which also removed thelib directory.

-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
#if d1
drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
#endif
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
#if d2
drwxrwsr-x 3 zeller 7168 Jun 10 15:15 libice
#elif d1
drwxr-sr-x 3 zeller 7168 Jun 10 15:15 libice
#else
drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib
#endif

Figure 19.1: A versioned directory

The later changeδ2 is more subtle: the access mode of thelibice directory
was changed fromrwxr-sr-x to rwxrwsr-x , making it writable by a group.

Users may now access individual versions of this directory, by appending a
version specification[S] to the directory name, just as with ordinary files. A typ-
ical interaction is shown in figure 19.2 on the next page. The$ character is the
UNIX shell prompt. TheUNIX commandls -l lists the contents of the direc-
tories given as its arguments. The single dot “. ” stands for the current direc-
tory; the directory name.[d2] is the current directory in version∆2. To avoid
shell-specific interpretation of brackets, we enclose the directory name in quotes.

19.2 Versioned Directories 225

We see thatls ".[d2]" shows the∆2 version of the current directory, while
ls ".[!d1]" shows the∇1 version.

$ ls -l ".[d2]"
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxrwsr-x 3 zeller 7168 Jun 10 15:15 libice

$ ls -l ".[!d1]"
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib

$ ls -l .
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxr-sr-x 3 zeller 7168 Jun 10 15:15 libice
drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib

Figure 19.2: Three views of a versioned directory

The final view,ls . , shows all versions of the current directory. Since the
ls command is not aware of multi-version directories, every existing directory
is listed, regardless of its specific version; file modes, sizes, and times are set up
appropriately.1

Instead of explicit version access, as illustrated in figure 19.2,FFSalso sup-
ports implicit version access through the current directory. Since.[d2] is a di-
rectory version as well, users can make it their current directory, using theUNIX
cd command. Hence,cd ".[d2]" followed by ls . has the same effect as
ls ".[d2]" , with the difference that all following commands reference the∆2

version of the current directory as well—until the directory is changed again.

1Here are the details. The access mode of a version set is the logicalAND of the modes of all
its individual versions—that is, the least permissive mode. The size of a version set is the maximum
size of its individual versions. The owner of a version set is the owner of the individual versions, or
nobody , if ambiguous. The access time of a version set is the most recent access time of the individual
versions.

226 The Featured File System

19.3 Version Confinements
Having a versioned directory in the current path not only affects this particular
directory version. A directory version also confines the versions of all files and
directories contained within that directory. Formally, if a versioned directoryD[T]
is part of the current path, the directory versionT affects all contents of the direc-
tory, including subdirectories and all files contained therein; any file versionF [S]
in D[T] will be implicitly read asF[SuT]. Hence, after changing to the directory
version∆2, all files and directories are visible in their∆2 version only.

This property is useful for setting upworkspaces,as discussed in section 13.1.
For instance, entering theUNIX command

$ cd ".[user == lisa && current]"

confines the versions of all files and directories in the current directory and below
to [user: lisa;current:�0]—that is, the current version of Lisa’s workspace. All
changes made in this workspace affect only Lisa’s current version.

As in ordinary file systems, the directory name “.. ” refers to the enclosing
directory—the second last component from the current path. For example, the
path testdir/.[user != tom]/.. is equivalent totestdir . Hence, Lisa
may issue theUNIX command

$ cd ..

to exit her workspace again and to see all versions at once.
As illustrated in figure 19.3 on the facing page, such directory changes may be

also be performed incrementally, subsequently narrowing the configuration space
as more and more features are specified.

For user convenience, theFFS interprets a version specification “[S] ” like
“ .[S] ”. Hence, entering

$ ls -l "[user == lisa]/[tested]"

has the same effect as

$ ls -l ".[user == lisa]/.[tested]"

which in turn is equivalent to

$ ls -l ".[user == lisa && tested]"

Whenever a change is made within a versioned directory, all rules for opera-
tions in workspaces, as defined in section 13.1.2, apply. Hence, no change made
within a directory version is visible in the complement of this version.

19.4 Version Shortcuts 227

:

w
����!

:=[os:�dos]

w
����!

:=[os:unix]

w

??y w

??y w

??y
:=[user: tom]

w
����!

:=[user: tom]=[os:�dos]

w
����!

:=[user: tom]=[os:unix]

Figure 19.3: Narrowing the configuration space in theFFS

19.4 Version Shortcuts
Specifying the current version as part of the path name has the advantage of sup-
porting both implicit and explicit version access. Arbitrary version sets can be
accessed from any program; by changing the directory version, entire file systems
can be accessed in a specific version without any additional version specifications.
This is superior to approaches where the current version is specified as part of the
process environment (since the environment must be interpreted by special run-
time libraries) or as part of the user’s file system (since this implies a state which
must be changed explictly).

The drawback is that the file names used by theFFSare quite uncommon—for
operating systems and programs. Users must be aware of possible problems.

Operating system caveats.In theUNIX operating system, the slash/ is reserved
as path separator—one cannot use arithemtic expressions involving integer
division. In MacOS, the Macintosh operating system, colons: are used
instead—one cannot enter feature terms in theASCII representation. In the
DOS operating system, all is lost, as it supports only eleven characters as
file names.

Program caveats. In theUNIX command shell, characters like&, | , * , ?, ! , or [

have a special interpretation and must be quoted. Many shell scripts are not

228 The Featured File System

protected against file names containing space and quote characters. Users
are frequently unfamiliar with the shell quoting mechanisms.

There are three issues addressing these problems. First, characters like/ and
: can easily be avoided. Second, as graphical user interfaces become more and
more common, so are the possibilities to specify arbitrary file names. Macintosh
users, for instance, have no concept of a command shell and of characters with
a specific interpretation. Existing shells can be easily adapted forFFSusage by
leaving characters within square brackets uninterpreted, likeICICLE does. Third,
the FFS supportssymbolic links that allow users to specify ordinary directory
names for version sets—so-calledversion shortcuts.As an example, consider the
setting in figure 19.4:

$ ls -l workspaces
drwxr-sr-x 1 lisa 1024 Jun 8 1996

lisa -> .[user == lisa && current]
drwxr-sr-x 4 tom 1024 Jun 10 15:15

tom -> .[user == tom && current]
drwxr-sr-x 3 john 1024 May 6 15:19

john -> .[user == john && current]

Figure 19.4: Symbolic links to workspaces

A symbolic link F1! F2 makesF1 analias for F2; wheneverF1 is part of a
path name,F2 is substituted. In our case, Lisa can simply enter

$ cd workspaces/lisa

which is a convenient replacement for

$ cd "workspaces[user == lisa && current]" .

The directory nameworkspaces/lisa may even be defined as Lisa’s home di-
rectory, such that Lisa automatically enters her current workspace upon logging
in. No special file names are ever required, unless someone wants to access vari-
ants or determine the differences between versions by examining the entire ver-
sion set. Of course, symbolic links are versioned just like other parts of the file
system, such that each user may maintain a set of individual links for frequently
accessed versions.

19.5 Exploring the Version Space 229

19.5 Exploring the Version Space

19.5.1 Virtual Directories

Since few tools can interpret version sets inCPPrepresentation, theFFStakes pre-
cautions against multiple file versions being accessed as single items. The basic
idea is to represent non-singleton version sets asvirtual directoriescontaining the
individual versions. These versions are listed as possible version specifications,
narrowing the version space. As an example, the filetasks.txt , occurring in
multiple versions, is listed as

$ ls -l .
drwxr-sr-x 12 zeller 1024 Jun 10 14:20 tasks.txt
$ ls tasks.txt
[user == john] [!(user == john)]
[user == lisa] [!(user == lisa)]
[user == tom] [!(user == tom)]

where the files

tasks.txt/[user == john]
tasks.txt/[user == lisa]
tasks.txt/[user == tom]

are the individual versions oftasks.txt .
Each complement liketasks.txt/[!(user == john)] is again a direc-

tory, since two choices remain. For instance, listing the entries of the subdirectory
tasks.txt/[!(user == john)] yields:

$ ls "tasks.txt/[!(user == john)]"
[user == lisa] [!(user == lisa)]
[user == tom] [!(user == tom)]

where all entries are files, since they are singleton. Note that the file

tasks.txt/[!(user == john)]/[user == lisa]

is identical to

tasks.txt/[!(user == john)]/[!(user == tom)] ,

and could also be accessed as

tasks.txt[user == lisa] .

230 The Featured File System

Figure 19.5: Using virtual subdirectories to select configurations

How do we obtain these subdirectories? LetF be a version set inCPPrep-
resentation to be processed by theFFSserver. TheCPPserver scansF for CPP
directives; if none are found,F is singleton and thus presented as file. Otherwise,
F is presented as a directory.

Each feature/value combinationT = f :S or T = f" found in governingCPP
expressions results in two entriesT and�T in the directoryF . These entries are
again files, if singleton, and virtual directories, otherwise.

In figure 19.5, we see theDDD debugger accessing the versions of thexload

file discussed in section 17.1.1. The central window is a file system browser
allowing the user to choose files and directories. In the upper field, the user has
entered afile filter specifying the files to be shown; the current patternxload/*

shows all files in thexload directory. In our case,xload is a multi-version

19.5 Exploring the Version Space 231

file; theFFSrepresents it as a virtual directory with possibleCPPexpressions as
entries shown in the list below. Although neitherDDD nor its file selection dialog
are aware of versions, the user can select an individual version from the virtual
file system just by including and excluding options.

The example also illustrates a problem when reusing existingCPPfiles like
xload : the knowledge about inconsistencies is not explicitly expressed. For in-
stance, there is no machine in the real world where bothapollo andatt are
defined. But this mutual exclusion is not specified inxload , such that Lisa must
specify both explicitly. Having amanufacturer feature with valuesapollo and
att would make version selections much faster; limiting the choice to configura-
tions with syntactically correct programs would also help here.

19.5.2 Feature Completion

A special problem comes up when the workspace is narrowed such that a version
set becomes singleton before all its features have been specified. When a fileF
has the featuresS, it exists asF[S] only. Let us assume we have narrowed our
workspace down toF[S0], such thatF [S0] becomes singleton. In principle, we may
list F [S0] as an ordinary file, since there is no difference between readingF [S0]
and readingF[S]. With writing, this is different—writingF [S0] assignsF the
featuresS0; the featuresS are lost. For this reason, theFFS displaysF [S0] as a
symbolic linkcompletingthe features ofF by pointing toF[S].

As an example, consider thescreen-device component from the editor
example in figure 10.1 on page 104. Listing thedumb version yields

$ ls screen-device
[Concurrent == true] [ScreenData == bitmap]
[Data == postscript] [ScreenDevice == dumb]
[Data == ScreenData] [ScreenDevice == ghostscript]

as well as the respective complements.
The screen-device:ghostscriptversion is already singleton. The remaining

features are explicitly completed by the symbolic link:

$ ls "screen-device[ScreenDevice == ghostscript]"
screen-device[ScreenDevice == ghostscript] ->

screen-device[ScreenDevice == ghostscript
&& Data == postscript
&& ScreenData == bitmap
&& Concurrent == true]

The user can specify any unambiguous superset ofscreen-device and still
access the single existing version for reading and writing; file names need be no
longer than required for disambiguation.

232 The Featured File System

The drawback of thisFFS feature is that once a version setF [S] has been
created, it is impossible to create a supersetF [S0] with S0 w S except by remov-
ing F[S] first. But as the redirection fromF[S0] to F[S] is shown explicitly, few
problems should arise in practice.

19.5.3 Accessing the CPP Representation

Listing possible refinements as version subdirectories not only allows the user
to explore the configuration space, but also prohibits accidental processing of
version sets inCPPrepresentation. In fact, users need never see theCPPrepre-
sentation, unless maybe to examine differences between versions. In some cases,
however, it is desirable to access all versions at once.

The CPP representation of a fileF as a whole may be accessed using the
special formF [], meaning “all versions”. Instead of exploring the configuration
space oftasks.txt , we may as well open

tasks.txt[user == lisa || user == tom][]

and thus view and edit both Lisa’s and Tom’s versions at once; likewise, opening
xload[] gives us theCPPrepresentation ofxload . Besides being convenient
for developers, this feature is a must for programs that recursively descend the
directory tree; such programs would otherwise suffer from the combinatorical
explosion of possible configurations if they traversed all possible configurations
through virtual directories. The ability to access version sets in theCPPrepresen-
tation is also required for higher-levelSCM tools discussed in the next chapters.

Finally, it should be noted that all this version selection is not necessary when
working in a sufficently narrow workspace, making every version singleton and
unambiguous.

19.6 A Configuration Browser

While theFFSprovides some basic facilities to explore the version space, existing
applications can be enhanced by making them aware of versions. One such ex-
ample is theSKATE browser, shown in figure 19.6 on the facing page. TheSKATE
browser enhances a usual file system browser with the ability to visualize and
explore the configuration space. For each possible feature, we generate a menu
listing the possible feature values. The subsumption lattice formed by the ver-
sion sets is shown as a graph, visualizing revision graphs and variant/workspace
hierarchies. Through these menus, the user can specify a (possibly incomplete)
configuration.

19.7 Implementation Notes 233

Figure 19.6: Browsing through files and configurations withSKATE

SKATE ensures consistency by making menu items insensitive that would re-
sult in an inconsistent or non-existent configuration. In theOSmenu, for instance,
all items are sensitive; there is no choice forUSER == zeller that makes the
selection inconsistent. Now let us assume that user Lisa works on all versions
except theWindows operating system. This means that the version

USER == lisa && OS == Windows

does not exist; the directory “.[USER == lisa && OS == Windows] ” is in-
accessible in theFFS. If we set the value of theUSERfeature to, say,lisa , the
Windows value of theOSfeature would be grayed out, indicating that this selec-
tion would lead to an inconsistent configuration. Likewise, selectingWindows

for OSwould make thelisa entry in theUSERmenu insensitive. As the global
effects of choice refining and revoking are immediately visualized in the config-
uration panels, the user can interactively explore the configuration universe while
ICE checks for consistency.

19.7 Implementation Notes

TheFFSis realized on top of the popularnetwork file system(NFS) [SGK+85].
As discussed in section 5.4.3, this allows arbitrary programs to access the file

234 The Featured File System

NFS

NFS

NFS

NFS

ICE Deduction Engine

Volatile Cache

Featured File System

IC
E

 L
ib

ra
ry

F
F

S
 S

er
ve

r

User
Process

User
Process

ICE
SCM
Tools

...

User
Process

User
Process

Persistent Cache

Figure 19.7: Processes accessing the featured file system

system transparently. TheFFS server was designed and implemented by Olaf
Pfohl [Pfo96], by extending a freely availableNFSserver (originally designed for
theLINUX operating system). The overall architecture is shown in figure 19.7.

To maximize performance, theFFSserver maintains a persistent cache, where
all version sets once read are stored. Whenever a fileF [S] is requested, theFFS
server first looks upF [S] in the persistent cache, and scans theCPPrepresentation
F only if F [S] was not found in the cache. Hence,F is scanned only at the first
access; second and later version set accesses are served in constant time.

WhenF [S] is written, it is also stored in the persistent cache; the originating
version setF is only updated when a superset ofS is requested. In practice, this
means that once a workspace is entered, theFFSserver has the same performance
as an ordinaryNFS server. But still, all files common to several workspace are
cached only once, showing the space-saving effects of the viewpathing techniques

19.8 Discussion 235

used inn-DFS.
To minimize problems with existing multi-version representations, theFFS

server uses “as-is” encoding for reading ordinary files; hence,CPPdirectives in
maintained files are left uninterpreted. However, if a multi-version representation
is read by theFFS server, using theF [] form, theFFS server uses the dynamic
encoding as discussed in section 16.4. Hence, ordinary filessample.c are left
unprocessed; but renaming theCPPfile sample.c to sample.c[] makesFFS
interpret theCPPdirectives and create the appropriate versions.

TheSKATE configuration browser was realized by Dirk Babel [Bab96], using
the freely available Tcl/Tk graphical user interface.SKATE runs in two modes.
In remote mode,the question whether a specific configuration exists is answered
by attempting to access this configuration from theFFSserver. Since this places
a heavy load on theFFSserver, an alternative is provided. Inlocal mode,SKATE
gets the possible configurations from the file directly and uses a localICE deduc-
tion engine to deduce whether a configuration leads to inconsistency.

19.8 Discussion
A virtual file system, as realized in theFFS, is certainly the most convenient way
to integrate version access in today’s software development environments. There
can be no doubt that virtual file systems will constitute the standard for version
access in future integratedSCM systems.

Basic read and write access to version sets can only constitute the primitives
layer ofSCM access. Based on these primitives, specializedSCM tools must ex-
ist that organize theSCM protocol and process layers—for instance, workspace
management and change propagation as discussed in chapter 13. Such tools are
currently in development forICE, and the problems encountered during their de-
velopment show that there is still much to do for futureSCM researchers.

I would give the spec to marketing and say,
“Please give me your feedback. Is this the right set of features to do?”

And marketing would either read it or not read it,
because it was way too long.

Or, if they did read it, they would get lost in it,
because it’s a super-technical thing.

And if they did comment on it, : : : they would say,
“Well, we think this dialog box is laid out wrong.

You should really have the check boxes on the left,” or something.
It’s not the feedback you want as a program manager.

— MIKE CONTE
in: MICHAEL A. CUSUMANO and RICHARD W. SELBY, Microsoft Secrets

Chapter 20

Performance Studies

We present the results of some experiments performed to determine the feasibility
of the version set model. We show howICE can be used to select and change
version subsets, how “classical” revision graphs are represented and how theFFS
performs in practice. It turns out that all these “classical” tasks can be handled
efficiently.

20.1 Working On Variants

As a first case study, we shall useICICLE to extract and modify version subsets
out of an existingCPPrepresentation. The example file we have chosen is the
xload file discussed in section 17.1.1.1

20.1.1 Retrieving Single Variants

We shall retrieve a singlexload variant usingICICLE and compare it withCPPin
terms of performance and flexibility.

Table 20.1 on the following page shows the 26CPPsymbols governing the
xload source code. EachCPPsymbol represents a specific machine architecture
(like sun , macII , orCRAY) or feature (likeX NOTPOSIX or STDC). To retrieve
a single variant, each of theseCPPsymbols must either be defined or undefined.
UsingCPP, this is rather simple, since all symbols not explicitly defined are left
undefined; moreover,CPPpre-defines appropriate symbols for the machine it is
running on. On aSUN machine, for instance,CPPdefines thesun symbol and

1All data required for repeating theseICICLE experiments is contained in theICE test suite, which
is part of theICE distribution. See appendix B for details on getting theICE distribution.

237

238 Performance Studies

AIXV3 CRAY KERNELFILE
KERNELLOADVARIABLE KMEMFILE KVM ROUTINES

LOADSTUB MOTOROLA SVR4
SYSV UTEK XNOTPOSIX

STDC alliant apollo
att hcx hpux

i386 macII mips

sequent sgi sony
sun umips

Table 20.1:CPPsymbols inxload

nothing else; it thus suffices to invokeCPP on thexload file to get theSUN
variant. To measure the efficiency ofCPP, we have commented out all#define

and#include directives inxload and usedCPPto select a version from#ifdef

directives only. The command

$ /lib/cpp xload > /dev/null

requires an average running time of 0.08 seconds.2

UsingICICLE, we must specify for each singleCPPsymbol whether it is de-
fined or undefined. This results in theICICLE command

(icicle) system cat xload[sun n
&& !defined(AIXV3) && !defined(CRAY) n
&& defined(KERNEL_FILE) n
&& defined(KERNEL_LOAD_VARIABLE) n
&& defined(KMEM_FILE) && defined(KVM_ROUTINES) n
&& !defined(LOADSTUB) && !defined(MOTOROLA) n
&& !defined(SVR4) && !defined(SYSV) n
&& !defined(UTEK) && !defined(X_NOT_POSIX) n
&& !defined(__STDC__) && !defined(alliant) n
&& !defined(apollo) && !defined(att) n
&& !defined(hcx) && !defined(hpux) && !defined(i386) n
&& !defined(macII) && !defined(mips) n
&& !defined(sequent) && !defined(sgi) n
&& !defined(sony) && !defined(umips)] > /dev/null

which requires an average running time of 0.79 seconds—that is, one order of
magnitude slower thanCPP. Of these 0.79 seconds, 0.37 seconds are spent in

2All times measured are times spent in the execution of the command (“user time”) on a 75 MHz
SUN SPARCstation20 runningSunOS4.1.4.

20.1 Working On Variants 239

readingxload into memory; the next 0.37 seconds are required for creating a
temporary working file, and running thecat command on the working file re-
quires another 0.05 seconds.

Why is ICICLE ten times slower thanCPP? This is not the fault of the deduc-
tion engine. In the selectionxload [S] with

S= [sun:>;aixv3";cray";kernelfile:>; : : : ;umips"] ; (20.1)

ICE representsSas a hash table indexed through the feature name, as discussed in
section 14.6. Following the proof of 14.8 on page 167, this leads to quasi-linear
time for determining the consistency ofT uS for each governing expressionT in
xload —just like CPP, and this is just what is implemented inICE. So, the lower
performance ofICE does not stem from overall complexity, but rather from the
general overhead required for generalized solutions.

20.1.2 Using Configuration Constraints

In practice, the longICICLE command as shown in section 20.1.1 is quite re-
dundant, since only few of the possibleCPPsymbol combinations actually make
sense—there simply is no configuration with bothsunandhpuxdefined. Such
knowledge can be expressed by configuration constraints like(sun:>! hpux"),
meaning that ifsun is defined, thanhpux is not. We extendxload with some
constraints applying to thesunarchitecture; these constraints inCPPnotation are
shown in figure 20.1 on the following page.

With these constraints embedded inxload , we can now simply say

(icicle) system cat xload[sun]

to get theSUN configuration; havingsundefined implies all other features being
either explicitly defined or explicitly undefined. The average running time of this
command is 0.81 seconds—that is, slightly larger than the first command. This
overhead is due to the processing of#error directives.

Again, the deduction engine is as efficient as possible. Thexload configura-
tion constraints are represented as one single implication

C= (sun:>! [cray";motorola";utek";alliant"; : : : ;x not posix"])

in an efficient form using hash tables for the left-hand sides and right-hand sides
of an implication. Hence,Cu [sun:>] evaluates toSfrom (20.1) in quasi-constant
time, and the remaining selection is done as in section 20.1.1.

The configuration constraints we introduced forxload are still incomplete.
A full solution would not only express implications for thesunarchitecture, but

240 Performance Studies

#if defined(sun)
// ‘sun’ excludes all other architectures.
// This should be done for all architectures!
#if defined(CRAY) || defined(MOTOROLA) n
|| defined(UTEK) || defined(alliant) n
|| defined(apollo) || defined(att) n
|| defined(hcx) || defined(hpux) || defined(i386) n
|| defined(macII) || defined(mips) n
|| defined(sequent) || defined(sgi) n
|| defined(sony) || defined(umips)
#error
#endif
// ‘sun’ also implies SunOS (in our example)
#if defined(AIXV3) || defined(SVR4) || defined(SYSV)
#error
#endif
// Other features implied by the ‘sun’ architecture.
#if !defined(KERNEL_FILE) || !defined(KVM_ROUTINES) n
|| !defined(KERNEL_LOAD_VARIABLE) n
|| !defined(KMEM_FILE) n
|| defined(LOADSTUB) || defined(X_NOT_POSIX)
#error
#endif
#endif // defined(sun)

Figure 20.1:xload configuration constraints

for all other architectures as well. Forn architectures, we haven2=2 mutual
exclusions—and thusn2=2 configuration constraints. This number can be dra-
matically reduced by expressing architectures through feature values rather than
features. A single featurearchitecture:sunwould automatically exclude all other
possible values forarchitecture, reducing the need for explicit configuration con-
straints. Hence,xload also demonstrates the benefits of functional features, and
consequently the advantages of feature logic.

20.1.3 Modifying Variants

Of course, the strength ofICE is not to simulateCPPbehavior, but rather to go
beyond. As an example, we shall useICICLE to create a user-specific copy of the
SUN xload variant. TheICICLE command

(icicle) vi xload[sun && USER == lisa]

20.2 A Revision History 241

requires 0.87 seconds to create a temporary working file containing the selected
variant and to invoke thevi text editor on it. Lisa may now perform arbitrary
changes on the working file.

After having made some changes and leaving the editor,ICICLE opens the
version setxload[sun && USER == lisa] for writing. Writing the version
set is more expensive that reading:ICICLE requires 1.42 seconds to perform the
write operation. This time is spent in determining the textual difference between
the original and the changed version set, in determining the new features, and in
writing an efficient representation.

Why is writing more expensive than reading? The vast majority of time is
spent in algorithm 17.4 on page 207, which re-creates theCPPrepresentation even
for trivial changes. Storing the originalCPPdirectives and re-using them if ap-
plicable, as discussed in section 17.3.4, already shows significant improvements
here; but further speed improvements like disabling nested directives would result
in files that are barely readable by humans.

20.2 A Revision History
In a second experiment, we have determined howICE handles configuration con-
straints in revision histories. As case study, we have chosen theGNU MAKE pro-
gram, which is publicly available in 17 revisions named 3.55 to 3.74.3 From the
GNU MAKE distribution, we have considered a single file namedcommands.c ;
this file happened to be modified in each revision.4

We wanted to know howICE performs in creating a repository from the 17
revisions ofcommands.c , compared to well-known tools likeRCSandSCCS. In
theFFS, a new revisionnew is created as a subset of an existing revision setold ,
using the command sequence

$ cd old
$ cat revision > commands.c[new]

such thatcommands.c[new] becomes a subset ofcommands.c[old] . Here,
revision is the specific revision ofcommands.c . The ICICLE shell does not
support versioned directories, but provides an equivalent short-hand notation:

(icicle) cat revision > commands.c[old , new]

This ICICLE command was repeated once for each new revision, where the indi-
vidual changes were identified byd355 (for the initial revision 3.55) tod374 (for

3The recentGNU MAKE distribution as well as differences to earlier revisions are available from
theGNU FTPserverftp://prep.ai.mit.edu/pub/gnu/ .

4The revision history ofcommands.c is also part of theICE distribution.

242 Performance Studies

Revision ICE RCS SCCS

1 (3.55) 0.13s 0.03s 0.08s
2 (3.56) 0.28s 0.02s 0.06s
3 (3.60) 0.35s 0.03s 0.06s
4 (3.62) 0.42s 0.05s 0.06s
5 (3.63) 0.39s 0.05s 0.12s
6 (3.64) 0.46s 0.03s 0.11s
7 (3.65) 0.57s 0.02s 0.16s
8 (3.66) 0.79s 0.05s 0.09s
9 (3.67) 0.87s 0.06s 0.11s

Revision ICE RCS SCCS

10 (3.68) 1.05s 0.06s 0.15s
11 (3.69) 1.15s 0.06s 0.16s
12 (3.70) 1.60s 0.07s 0.16s
13 (3.71) 2.44s 0.07s 0.16s
14 (3.72) 3.15s 0.04s 0.14s
15 (3.72.1) 4.01s 0.03s 0.12s
16 (3.73) 3.75s 0.07s 0.15s
17 (3.74) 4.40s 0.08s 0.18s

Table 20.2: Revision checkin times forICICLE, RCS, andSCCS

the final revision 3.74). The resulting execution times for each checkin process in
ICICLE, as well as the checkin times forRCSandSCCS, are shown in table 20.2.

We see that theICE checkin time grows with the revision number, while the
RCSandSCCScheckin times remain fairly constant. Could this a negative effect
of N P-complete feature unification? The answer is no, because the exponential
effect of feature unification looks different. In table 20.3, we have repeated the
same experiment with a specially preparedICE variant that relies onN P-complete
feature unification alone—that is, all speed-ups discussed in chapter 14 have been
disabled. Already with the 4th revision, execution time grows beyond all limits;
we had to abort the operation after five minutes. Table 20.3 thus illustrates the
necessity of specific deduction shortcuts for commonSCM operations.

Careful analysis of the deduction process shows that only trivial reductions are
required in this linear revision history—all that is needed is to add a new revision
constraint upon each checkin, as discussed in section 12.1, and to reduce the
new governing feature terms according to the revision constraints. Each of these
reduction processes takes at most quasi-linear time proportional to the length of
the governing feature terms; full-fledged feature unification is never required.

Revision ICE with reduction ICE without reduction
1 (3.55) 0.13s 0.12s
2 (3.56) 0.28s 0.77s
3 (3.60) 0.35s 3.87s
4 (3.62) 0.42s >300.00s

Table 20.3:ICICLE checkin times with and without reduction

20.2 A Revision History 243

0

1

2

3

4

5

2 4 6 8 10 12 14 16

ICE with reduction
ICE without reduction

RCS
SCCS

Figure 20.2: Revision checkin times forICICLE, RCS, andSCCS

So why does theICE checkin time grow? As discussed in section 17.2,ICE
compares entire version sets when determining a new compact representation.
In our example, this implies that the new revision is compared with the entire
repository; code removed in some earlier revision and re-inserted in some later
revision is stored only once. This is in contrast toRCSandSCCS, which compare
the new revision with the previous revision only, and where the same code may
be stored in multiple places. InICE, as the repository grows with the number of
revisions, so does the time for comparing it with the new revision, as shown in
figure 20.2.

In our example, the checkin problem could easily be solved by comparing
the latest revisions only; the data above shows thatICE is quite efficient when
comparing small revision sets. But if we have multiple variants in multiple revi-
sions, all sharing some common code, which are the “latest” revisionsICE should
compare? And to which extent should variants be compared? A possible practi-
cal solution might be to flag revisions as “old” and to exclude old revisions from
comparison. However, the shortened check-in time might be compensated by a

244 Performance Studies

for (d = enter_file (".SUFFIXES")->deps; d != 0; d = d->next)
{

#if d370
unsigned int slen = strlen (dep_name (d));

#else
unsigned int len = strlen (file->name);

#endif
#if d374

if (len > slen && !strncmp (dep_name (d),
name + (len - slen), slen))

#elif d370
if (len > slen && !strncmp (dep_name (d),

name + len - slen, slen))
#else

if (len > slen && streq (dep_name (d),
file->name + len - slen))

#endif
{

#if d370
file->stem = savestring (name, len - slen);

#else
file->stem = savestring (file->name, len - slen);

#endif
break;

}
}

if (d == 0)
file->stem = "";

Figure 20.3: A multi-revision file

larger version set representation.

Speaking of version sets, what does the version setcommands.c actually
look like? An excerpt in ordinaryCPPrepresentation is shown in figure 20.3.
We see that the changed370 replacedfile->name by dep name(d) and that
changed374 introduced a parenthesized subexpression. In this excerpt, there is
a maximum number of two features that govern code pieces, making the excerpt
quite readable. Butcommands.c also contains code pieces governed by four
features, which is a little harder to understand—but still an alternative to a set of
mutualDIFF runs.

Just like the example in section 20.1, individual revision sets can be retrieved
in linear time; the whole revision set can be subject to versioning, even if this
requires some time for creating an appropriateCPPrepresentation. However, if
only a single revision is subjected to versioning (for instance, if a user works on
an individual revision in a workspace), this is equivalent to the creation of a new

20.3 Caching Effects 245

Operation FFS NFS CVS

uncached cached
Read (check out) file 11.2s 1.6s 1.5s 5.8s
Write (check in) file 122.0s 57.0s 12.5s 58.8s
Read (check out) project 173.0s 32.4s 28.7s 108.0s
Write (check in) project not available5

Table 20.4:FFSperformance sample

revision—except that it would be identified differently, using[USER == lisa]

instead ofd375 , for instance. Again, a “classical”SCM task like branching in a
revision tree is handled efficiently.

20.3 Caching Effects

While the times shown in sections 20.1 and 20.2 could be acceptable for stand-
aloneSCM tools, they are totally unacceptable for a virtual file system like the
FFS—a read or write operation on a file should not take more than a few millisec-
onds to complete. In section 19.7, we have discussed the caching mechanisms
used by theFFS server; in this experiment, we shall see whether these caching
mechanisms bring satisfying performance.

Table 20.4 gives typical performance times ofFFSaccess. We have chosen
the following operations: reading and writing a 4.5 MB file (a 40-page article in
PostScript format) as well as reading and writing theICE distribution, release 0.5
(8.5 MB in 1115 files). ForCVS, “reading” means checking out each file from
its RCSrepository, and “writing” means checking in each file back again after a
change.

We see that in writing files, theFFS server is four times slower than the
vendor NFS server. We assume this is due to deficiencies in theFFS server
implementation—for instance, the vendorNFSserver is multi-threaded, while our
FFSserver is (yet) single-threaded. The difference between uncached and cached
writing of version sets, however, is the time spent in actual work, rather than file
transmission. We see that this time (122s� 57s= 65s) is similar to the time
required by theRCScheck in. This does not surprise, as both do the same work:
both runDIFF to determine the differences between origin and new revision; af-
terwards, both create a new version set representation.

5Due to a bug in the current implementation of theFFSdirectory cache, significant times for
writing projects were not available at the time of writing.

246 Performance Studies

Reading version sets shows much better performance. The execution times
show that reading uncached version sets is comparable withRCSrepository ac-
cess, while reading cached version sets can compete with the originalNFSserver.
Stil, even better performance is possible. A real-world implementation of the
FFSserver would probably be multi-threaded, avoiding delays in the deduction
engine, and sharing a common version set and deduction caches. Even better, it
would be based on a operating system interface for virtual file systems, bypassing
theNFSbottleneck for local disk access.

20.4 Conclusion
Using theICE implementation, we have shown three simple case studies that sup-
port the efficiency claims raised in chapter 14. We see that retrieving individual
versions from aICE version set need not be more expensive than a simpleCPP
run. SinceICE compares entire version sets rather than only the latest revisions,
adding revisions to a repository requires more time thanRCSor SCCS, but yields a
potentially more compact and user-readable representation. Remaining read/write
delays can be compensated through caching of version sets. As soon as a version
set is cached, theFFSserver behaves as fast as an ordinaryNFSserver.

Our case studies have avoided the use of full-fledged feature unification and
relied on trivial reduction schemes that have been optimized for handling stan-
dardSCM tasks. But as we know that arbitrarySCM tasks will result in arbitrary
complexity, some questions must remain open:

� Which newSCM protocols are feasible on top of version sets?

� Can we find deduction shortcuts that make theseSCM protocols efficient?

� If we cannot find such shortcuts, is this due to the problem or due to our-
selves?

In chapter 21, we close this work with some general observations on these topics,
discussing the conditions for efficientSCM tasks.

On the other hand,
a generalized solution may be more costly,

in terms of speed of execution,
memory requirements, or development time,

than the specialized solution
that is tailored to the original problem.

— CARLO GHEZZI, MEHDI JAZAYERI, DINO MANDRIOLI,
Fundamentals of Software Engineering

Chapter 21

Efficient SCM

The proofs in chapter 14, substantiated by the studies in chapter 20, show that
classicalSCM tasks such as version selection can be realized efficiently on top
of feature logic, by exploiting orthogonality and reduction of feature terms. In
this final chapter, we present some strong arguments that wherever there is an
efficient implementation of a specificSCM task, there is also an efficient shortcut
bypassing the complexity of feature unification; but as soon as deduction facil-
ities are required, complexity becomes exponential. We discuss the conditions
under whichSCM tasks remain efficient; it turns out that a good software design
according to the principles of software engineering principles is a key factor for
efficientSCM.

21.1 Version Selection

The version selection mechanisms, as discussed in section 3.3, all rely on a finite
set of versions, all identified by the equivalent of a simple feature terms; the
selection term can also be expressed as a simple feature term.

According to proposition 14.8 on page 167, the time required for selecting
versions using feature logic is proportional to the number of stored versions—
just as the time required by existing implementations. As soon as variables,
agreements, or disagreements are used in selection terms, checking consistency
requires quadratic time for each version—again, just as in existing implementa-
tions.

When versions are identified by general feature terms, and the selection is a
simple feature term, orthogonality checking and feature term reduction will often
reduce the problem size considerably. Every remaining possible version must be

247

248 Efficient SCM

checked for consistency with the selection term. The same applies for identifica-
tion with simple feature terms and selection with general feature terms. If general
non-orthogonal feature terms are used for both identification and selection, every
possible alternative must be checked, resulting in exponential complexity.

21.2 Versioning Dimensions

When multiple versioning dimensions can be selected independent from each
other, as changes in the Change-Oriented Model, for example, this has no im-
pact on complexity—as should be expected from proposition 14.7 on page 166,
since every versioning dimension is represented through another feature.

Complexity becomes an issue as soon as versioning dimensions are no more
orthogonal. For instance, maintaining configuration constraints, as discussed in
chapter 11, has a serious impact on determining consistency of configurations,
since every constraint must be satisfied. In practice, this means that users must
first select a small subset of configurations in order to keep the problem size small.
On the other hand, a large number of constraints, such as the constraints used for
modeling revision graphs, implies a small number of possible versions, reducing
the problem size as well.

21.3 Configuration Consistency

ExistingSCMsystems can only determine consistency of bound configurations—
that is, a configuration described by a simple feature term. Even with agreements,
disagreements, and variables, consistency checking can be done in quadratic time,
as stated in proposition 14.1 on page 161.

When introducing ambiguities in consistency checking, such as allowing mul-
tiple versions for each component, the number of possible configurations grows
exponentially and so grows the effort for consistency checking—unless orthogo-
nality again reduces the problem size.

21.4 The Benefits of Low Coupling

Having considered these complexity problems, how can we keepSCM efficient
and our software maintainable? From the previous sections, we see that orthogo-
nality of feature terms is a major issue in keeping the size ofSCMproblems small.
If the feature terms describing two componentsA andB are orthogonal, we can
select arbitrary versions ofA andB without affecting the consistency of their re-
spective configuration. In software engineering, this property is also known as
low couplingof modules. Coupling is a measure of strength of interconnections

21.5 The Benefits of High Cohesion 249

between components; low coupling is a desirable property because it keeps evolv-
ing programs manageable—notably, we can make a change (create a new ver-
sion) ofA or B without affecting the other component. Low coupling is obtained
through basic software engineering principles such as abstraction, parameteriza-
tion, generalization, localization, and, most of all, anticipation of change. Since
low coupling implies orthogonality and vice versa, low coupling between com-
ponents has immediate benefits in simplifyingSCM problems and thus keeping
evolving software manageable.

21.5 The Benefits of High Cohesion

Another desirable property in software engineering ishigh cohesionwithin a
component. Cohesion is a measure of how well a component fits together; high
cohesion expresses that all parts of a component should contribute to its imple-
mentation, which also means that a change in a component part implies changes
in other parts of the component. In our model, high cohesion between compo-
nents leads to many configuration constraints between these components, such
that the actual number of possible configurations is kept small and thus becomes
manageable as well.

21.6 Maintaining Unstructured Software

The problematic cases for automated deduction are exactly those cases that make
software difficult to maintain: a number of unstructured constraints involving
components all over the system, expressing chaotic interconnections between
components. In such cases, the only remedy may be torestructurethe system
such that variance is kept as local as possible, eliminating version dependencies
between components and thus reducing complexity. This can be done by ex-
amining the configuration space [KS94] and to reengineer it [Sne96] such that
dependencies between configuration threads are significantly reduced—as is the
complexity ofSCM tasks.

Where such a restructuring is not possible, automated deduction like feature
unification can help to keepSCM tasks manageable. It may especially be helpful
to manage a temporary situation, such as lots of developers creating lots of tem-
porary variants, whose consistency must be checked and expressed. But due to its
complexity, automated deduction does not scale up beyond a certain problem size.
In the long term, applying the principles of software engineering to avoid perma-
nent, non-orthogonal variance, is the only way to keepSCMtasks manageable and
the product maintainable.

250 Efficient SCM

21.7 Conclusion
Feature unification is the standard technique for deciding consistency of general
feature terms. Feature unification isN P-complete and thus applicable to small
problems only. The problem of deciding consistency can be broken down in
smaller subproblems if the feature term breaks down into orthogonal parts, that is,
parts without common features or variables. The technique of partial evaluation
leads to efficient decision of consistency for simple feature terms. Both determin-
ing orthogonality and partial evaluation already suffice to realize standardSCM
tasks efficiently on top of feature logic.

The most difficultSCM problem is to determine the consistency of abstract
configurations, where the feature terms describing the individual components are
non-orthogonal. A well-structured configuration space, as obtained through the
principles of software engineering, ensures orthogonality of feature terms and
thus keepsSCM problems manageable. A small amount of non-orthogonal am-
biguity can be tolerated using feature unification—for instance, temporary, non-
orthogonal variance as it occurs during parallel development.

Today, the field ofATP has produced several deduction techniques for propo-
sitional logic that might turn out useful for feature logic as well. The application
of these deduction techniques may raise the amount of ambiguity tolerance in
practicalSCM systems, maybe even beyond any ambiguity as found in today’s
software systems. This should allowSCM systems to manage several parallel de-
velopment paths at once and ensure consistency across all ambiguities. But still,
a good software design is the key factor to keep evolving software maintainable.

In skating over thin ice our safety is in our speed.

— RALPH WALDO EMERSON

Part Five

Odds and Ends

251

Chapter 22

Conclusion

The future of automatedSCMlies in a clear separation of primitives, protocol, and
policy layers, based on a well-defined semantic foundation. As such a foundation,
we propose version sets, expressed through feature logic. Version sets integrate
and unify currentSCM versioning models and provide a well-defined semantics
for defining higherSCM layers. Feature logic is powerful enough not to endanger
flexibility at higherSCM layers, and yet sufficiently specialized to describe how
features propagate in theSCM process.

In part three, we have shown how version sets capture and integrate theSCM
concepts introduced in part one. The coveredSCM concepts range from versions
to components, from configurations to revisions, from changes to constraints, and
from relationships to system modeling. The principal results fulfill the require-
ments raised in chapter 6:

Unified versioning. Version sets provide one single formalism to express all ver-
sioning dimensions as well as constraints on them, integratingSCM con-
cepts like revisions, variants, workspaces, and configurations in one single
model. TheSCMpolicy is not constrained by decisions made in lowerSCM
layers.

Integration of changes and revisions.Configuration constraints, expressed in
feature logic, allow us to capture the entire range of temporal versioning—
from the rigidness of versions-oriented models to the flexibility of change-
oriented models.

Consistency checking under ambiguity.Through feature logic, we deduce the
features and the consistency of configurations as well as derived compo-

253

254 Conclusion

nents and thus describe how features propagate in theSCM process. In-
consistencies are detected even when the configuration description is in-
complete or ambiguous. Ambiguity is not only tolerated in consistency
checking; at allSCM layers, sets rather than single items are the primary
objects ofSCM tasks and procedures.

Our implementation of the version set model inICE has shown that this foun-
dation has several user-visible benefits. Through theFFS, users can access ver-
sion sets consisting of arbitrary combinations of revisions, changes, variants, and
workspaces. Individual versions are accessed as files; version sets as a whole can
be accessed via version directories or through theCPPrepresentation. On top of
theFFS, specificSCM protocols are realized efficiently through simple file opera-
tions on version sets. These features makeICE a universal platform for individual
SCM policies and demonstrate the flexible and unifying nature of the version set
model.

Besides refining, extending, and evaluating theICE implementation, espe-
cially at the protocol and policy levels, our future work will focus on four subjects.

Beyond feature logic. Feature logic, as defined by Smolka, is not appropriate
for all SCM aspects. As discussed in section 10.8, an extension to specify
set values would be most helpful to overcome the difficulties in specifying
aggregations (section 10.4). Also, feature logic does not distinguish be-
tween provided and required features. There is no notion of cardinality and
ambiguity; hence, preference and default operators (section 9.3) cannot be
defined in feature logic. On the other hand, one must be careful thatad
hoc extensions forSCM purposes do not endanger the generality of feature
logic.

Versioned Relationships.In chapter 3, we have introduced relationships as a
means to represent the structure of a system; typical relationships included
is-instance-ofto represent the dependency between source components and
derived components, oris-a-part-of to model the aggregation of compo-
nents into systems. Such relationships are subject to versioning just as the
individual components are—that is, a system model may occur in several
variants or may be revised frequently. We want to model such relationships
as features and roles, providing a natural link between object versioning
and relation versioning.

Efficient integration of SCM concepts.We have seen that allSCM concepts in-
troduced in part one can be realized on top of the version set model, and

255

theICE system already shows how these concepts can be integrated into a
singleSCM system. We also have identified possible complexity problems
with non-orthogonalSCM concepts, especially variance. Based on further
experience with theFFSand the underlying deduction engine, we want to
investigate how far integration ofSCM concepts can go without endanger-
ing efficiency. Furthermore, we want to see which otherSCM protocols are
feasible, how they can be realized on top of theFFS, and how far theSCM
process is determined by these protocols.

Support of the SCM process.Our long-term goal is to establish a layeredSCM
model where each layer is defined in concepts of the next lower layer. In
this task, we pursue a bottom-up approach. Having supplied feature logic
as anSCM foundation and proposed version sets asSCM primitives, our
next step would be to specify theSCM protocol in terms of transitions be-
tween version sets, and to specify theSCM process in terms of transitions
betweenSCM protocols. We imagine organizing theSCM process entirely
by manipulating component features—changing their state fromproposed
via testedto released. Eventually, we hope to map the entireSCM process
to operations on version sets denoted by feature logic, providing a uniform
semantic foundation for allSCM layers.

Although we would have liked to present
the ultimate version management model,

such a model is not likely to exist for some time.

— RANDY H. KATZ, Version Modeling in Engineering Databases

Appendix A

Frequently Asked Questions

In this appendix, we have summarized the most frequently answered questions
about the version set model andICE.

Note: Questions A.3.1 to A.3.9 are taken from[Est95, p. 80], reproduced in
section 6.4 on page 57.

A.1 General Questions

A.1.1 What are the main achievements of your work?

There are three of them, as discussed in chapter 22:

� The unification ofSCM versioning concepts in one single formalism.

� The integration of change-oriented and version-oriented versioning through
configuration constraints.

� The ability to check and propagate consistency even for incomplete or am-
biguous configurations.

A.1.2 Why do you neglectSCM process issues?

We believe in the importance of separatingSCM issues, such as policy, protocol,
and primitives. We also believe that you cannot define a layer without first defin-
ing its foundation. In this work, we have provided such a foundation covering the
SCM primitives layer, extending a little into theSCM protocol layer. As soon as
theSCM protocol layer will be fully understood, we can turn to the policy layer,
covering theSCM process.

257

258 Frequently Asked Questions

A.1.3 Why don’t you compare the version set model to other integrated
SCM models?

To the best of our knowledge, there aren’t any.

A.2 Topic: Feature Logic

A.2.1 Why do you use feature logic?

Because it allows us to combine attribute descriptions with boolean operations.
Both play a central role inSCM, notably for identification and retrieval.

A.2.2 But you could also use first-order logic, could you?

In principle, yes—there are few domains, if any, where first-order logic would
not suffice. Unfortunately, first-order logic is not attribute-oriented. Modeling
the functional nature of attributes or features in first-order logic leads to a large
number of explicit constraints, which are difficult to read and to maintain. Feature
logic is much more appropriate here.

A.2.3 Why didn’t you use some more general description logic?

A description logic more general than feature logic would probably also do the
job. However, several intrinsic properties of feature logic would have to be mod-
eled explicitly, such as feature propagation and the functional nature of features.
On the other hand, such an explicit modeling allows for alternate feature propa-
gation schemes that may be appropriate in several domains. Try it out.

A.2.4 Why didn’t you use an existing theorem prover?

First, existing theorem provers are batch-oriented. This is not appropriate for our
model, where thousands of comparatively small problems must be solved in a
minimum amount of time. Second, building a theorem prover ourselves allowed
us to adapt it to the specific needs ofSCM and to develop appropriate deduction
techniques.

A.2.5 Is the formalization of SCM concepts necessary at all?

Yes. TheSCMcommunity has been inventing and implementing for years, realiz-
ing greatSCM tools and systems. Now is the time to look back and evaluate what
has actually happened, to provide a foundation for yet smarterSCM support.

A.3 Topic: The Version Set Model 259

A.2.6 Do I really have to learn feature logic to solveSCM problems?

No, not at all. A system likeICE shows that all this logic can be hidden behind a
set of familiar and well-understood representations.

A.3 Topic: The Version Set Model

A.3.1 Is the versioning model linked to the data model, the product model
(schema), the transaction model (uni-version subdatabases), or is it
independent?

The version set model is orthogonal to any other software models and independent
from a specific representation.

A.3.2 At what granularity are deltas expressed, computed and merged—on
the base of whole files, text lines, or syntactical entities?

The model is independent from a specific representation of version sets. Our
implementation expresses, computes, and merges deltas on the base of arbitrary
sequences of characters, notably text lines.

A.3.3 And how is versioning combined with e.g. inheritance and parame-
terization?

Inheritance is realized through the subsumption relation; that is, a version set is a
subset of another version set, inheriting its features. Parameterization is realized
through incremental version selection, constraining version sets through further
feature values (or parameters).

A.3.4 Does basic versioning only apply to atomic and textual objects, and
not to composites or to the entire database?

Versioning applies to primitives (chapter 9) as well as to arbitrary composites
(chapter 10).

A.3.5 How to version relationships, and thus configurations?

Relationships may be modeled as features of the originating version sets. Con-
figurations are independent from relationships, and independently versioned, al-
though anSCM system may enforce the specification of configurations through
relationships.

260 Frequently Asked Questions

A.3.6 How to express intentional version selection, and how to express con-
straints, defaults and preferences for such selections?

Defaults and preferences are realized through preference operators (section 3.3.3)
The version set model handles ambiguities at all levels; defaults and preferences
are thus needed only if an application requires unambiguous configurations in
order to proceed.

A.3.7 Is the selection based on symbolic attribute values, that together con-
stitute a version space?

Yes. That’s what feature logic is for.

A.3.8 Can the constraints and attribute domains evolve over time?

Yes. Constraints and attributions are subject to versioning as well.

A.3.9 Given a system model with objects and relationships: is the product
selection (AND-closure) done before the version selection within each
group (OR-choices), or vice versa, or intertwined?

Selection is unconstrained, i.e. intertwined.

A.4 Topic: Complexity

A.4.1 I saw feature unification isN P-complete! How dare you suggest an
N P-complete method for practical usage?

Feature unification isN P-complete, yes, leading to exponential complexity in the
worst case. The emphasis here is on “worst case”—nearly all examples in this
book run very efficiently in practice. The rule of thumb is: if anSCM concept
has been implemented efficiently somewhere else, then there is an appropriate
deductive shortcut.

A.4.2 And what about the integration of SCM concepts? Can I really com-
bine revisions, variants, and workspaces just as I like?

In principle, yes. But you will probably run into complexity problems—arbitrary
combinations means arbitrary feature terms, which leads to arbitrary complexity.

A.5 Topic: Applications 261

A.4.3 Can I something do to avoid complexity problems?

The general rule is to keep versioning dimensions either very orthogonal or very
non-orthogonal, as discussed in sections 21.4 and 21.5. In short: follow a well-
establishedSCM model, like the ones realized in currentSCM tools and systems.
None of these models imposes any severe complexity problems (otherwise, they
would not work efficiently). Follow the principles of software engineering, no-
tably abstraction, generalization and localization.

A.5 Topic: Applications

A.5.1 What are the new features of your application?

Again, there are three of them:

� Handling of multiple versions through aCPP-like representation.

� Incremental configuration refinement through a virtual file system.

� Workspace management through versioned directories.

A.5.2 I saw you use#ifdef to represent versions. Isn’t#ifdef bad SCM
practice?

One should be careful not to confound message and messager. It is theCPPtool
that causes the problem, since it forces you to maintain all versions at once. Also,
#ifdef is commonly used for permanent variance, which should also be avoided.
In theICE context,#ifdef is just a representation for multiple versions, as is an
SCCSrepository or an ordinary data base.

A.5.3 Do you really want us to read and write#ifdef ’ed code?

You don’t have to. If you don’t see#ifdef today, you don’t need to see it with
ICE either. You see (and possibly write)#ifdef as soon as you want to work
on several versions at once, or if you want to determine the differences between
some versions. You never have to read or write all versions at once, asCPPforces
you to.

A.5.4 Wouldn’t defining CPP variables like d1 break my code?

No. ICE does not perform macro expansions or alter the code in any way.

262 Frequently Asked Questions

A.5.5 My SCM vendor says we should use databases instead of file systems.
So, why do you use a file system instead of a database?

Your vendor is right. Databases are much more secure than file systems. On the
other hand, other vendors will tell you that a file system is much better suited for
integration into a software development environment. The probably best thing to
do is to use a database for version storage and a file system for version access.
For ICE, this means future work.

A.5.6 What is the performance ofICE on large-scale projects?

Unfortunately, the currentICE implementation leaves too much to be desired for
large-scale projects. Open issues include transaction safety and general robust-
ness, as well as efficient usage of ressources, notably memory requirements. The
biggest problem of all is the lack of a higher-level interface. However, there is
no reason why the results of chapter 20 should not be applicable to large-scale
projects.

A.5.7 Will ICE improve my productivity?

This is a question which should be verified empirically, and thus requires a fully
usableICE system; see question A.5.6. Generally, we think that the best way to
improve productivity is a well-understood and well-supported software process.
An adaptive environment likeICE can help you implement a process according
to your needs, rather than a process enforced by someSCM vendor. OtherICE
features such as transparent version set access or the ability to view and change
version sets may also improve the individual productivity.

A.5.8 I want to useICE. Is there anything I can do?

Support this work. Help us designing and building a foundation for betterSCM
environments.

Alles Wissen und alle Vermehrung unseres Wissens
endet nicht mit einem Schlußpunkt,

sondern mit einem Fragezeichen.

— HERMANN HESSE, Lektüre für Minuten

Some say the world will end in fire,
Some say in ice.

— ROBERT FROST, Poems

Appendix B

Obtaining ICE

A free ICE distribution is available forUNIX systems under the conditions of the
GNU general public license. TheICE distribution contains the source code and
the documentation of theICICLE shell as well as theFFSserver and theSKATE
configuration browser as described in this work.

The ICE distribution and related technical reports are available through the
ICE WWW page,

http://www.cs.tu-bs.de/softech/ice/

and through theICE FTPsite,

ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ice/ .

Building ICE requires a C++ compiler such asGNU C++. RunningSKATE re-
quires a Tcl/Tk interpreter. BothGNU C++ and Tcl/Tk are freely available from
several sources.

TheICE maintainers can also be reached by electronic mail. Send mail to:

ice-bugs@ips.cs.tu-bs.de — for bug reports and suggestions
ice@ips.cs.tu-bs.de — everything else.

Be aware that theICE maintainers cannot provide full-time technical support,
although they will try to help as much as they can.

A drawback of attempting to impose a standard
is that it will quickly become outmoded.

— DAVID LEBLANG, The CM Challenge

263

Acknowledgements

This research owes to the suggestions and assistance of several people, who de-
serve all my thanks and acknowledgments. First of all comes the software tech-
nology department at Braunschweig. Many thanks go to Jens Krinke for careful
proofreading. Bernd Fischer, Franz-Josef Grosch, and Christian Lindig were a
persevering and helpful audience for any new ideas.

The implementation ofICE was possible only through the contributions of
several student workers. Dirk Babel realized theSKATE configuration browser.
Michael Brandes conceivedICE MAKE. Lars Düning implemented theCPPrep-
resentation of version sets. Andreas Mende extendedICICLE with multi-version
merging. Olaf Pfohl built theFFSserver. Christina Trenkner integrated arithmetic
constraint solving in Smolka’s feature unification, which was originally coded
by Marc Ziehmann. Other parts ofICE were contributed by Ahmad Alsaadi,
Thorsten Sommer, Ragnar Stahl, and Rolf Watermann.

ICE itself relies on free software such asGNU DIFF, GNU MAKE, READ-
LINE, AUTOCONF, and theGNU C++ compiler. Many thanks go to the people of
the Free Software Foundation for developing and maintaining these bullet-proof
products. Free software was also used in typesetting this book, using the great
and free TEX/LATEX system from Donald Knuth, Leslie Lamport and others.

Finally, I owe a great deal to my teachers. Wolfgang Bibel taught me the
techniques of automated deduction. Gregor Snelting set me on the right track by
proposing feature unification as a means to determine configuration consistency.
And special thanks go to Petra Funk, for all the moral and technical support she
gave me.

Parts of this work have been supported by the Deutsche Forschungsgemein-
schaft, grants Sn11/1-1 and Sn11/1-2.

265

About the Author

Curriculum Vitae
28 October 1965 Born in Hanau, Germany
1970–1973 Elementary school, Großauheim, Germany
1973–1978 Coll`ege André Malraux, Bangui, Central Africa
1978–1984 Karl-Rehbein-Gymnasium, Hanau, Germany
1984 Final examination (Abitur)
1984–1991 Computer science studies,

Technical University of Darmstadt, Germany
1991 Computer science diploma (Dipl.-Inform.)
1991–today Research assistant,

Technical University of Braunschweig, Germany

Lebenslauf
28. Oktober 1965 Geboren in Hanau/Main
1970–1973 Grundschule, Großauheim/Main
1973–1978 Coll`ege André Malraux, Bangui, Zentralafrika
1978–1984 Karl-Rehbein-Gymnasium, Hanau
1984 Abitur
1984–1991 Studium der Informatik,

Technische Hochschule Darmstadt
1991 Diplom (Dipl.-Inform.)
1991–heute Wissenschaftlicher Mitarbeiter,

Technische Universit¨at Braunschweig

267

268 About the Author

Publications
[1] Gregor Snelting and Andreas Zeller. Inferenzbasierte Werkzeuge in NORA.

In Proc. Softwaretechnik 93, volume 13(3) ofSoftwaretechnik-Trends, pages
25–32, Dortmund, Germany, November 1993. GI. In German.

[2] Gregor Snelting, Bernd Fischer, Franz-Josef Grosch, Matthias Kievernagel,
and Andreas Zeller. Die inferenzbasierte Softwareentwicklungsumgebung
NORA. Informatik—Forschung und Entwicklung, 9(3):116–131, August
1994. In German.

[3] Andreas Zeller and Gregor Snelting. Handling version sets through feature
logic. In Wilhelm Schäfer and Pere Botella, editors,Proc. 5th European Soft-
ware Engineering Conference, volume 989 ofLecture Notes in Computer
Science, pages 191–204, Sitges, Spain, September 1995. Springer-Verlag.

[4] Andreas Zeller. A unified version model for configuration management. In
Gail Kaiser, editor,Proc. 3rd ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, volume 20 (4) ofACM Software Engineering
Notes, pages 151–160, Washington, DC, October 1995. ACM Press.

[5] Andreas Zeller and Dorothea L¨utkehaus. DDD—A free graphical front-end
for UNIX debuggers.ACM SIGPLAN Notices, 31(1):22–27, January 1996.

[6] Andreas Zeller. Smooth operations with square operators—The version set
model in ICE. In Ian Sommerville, editor,Proc. 6th International Work-
shop on Software Configuration Management, volume 1167 ofLecture Notes
in Computer Science, pages 8–30, Berlin, Germany, March 1996. Springer-
Verlag.

[7] Andreas Zeller. Software configuration with feature logic. In Franz Baader,
Hans-J¨urgen Bürckert, Andreas G¨unter, and Werner Nutt, editors,Proc. of
the Workshop on Knowledge Representation and Configuration (WRKP’96),
volume 96-04 ofDFKI-Dokumente, pages 79–83, Dresden, Germany, Sep-
tember 1996. DFKI, Saarbr¨ucken, Germany.

[8] Andreas Zeller. Versioning software systems through concept descriptions.
Computer Science Report 97-01, Technical University of Braunschweig, Ger-
many, January 1997. Submitted for publication.

[9] Andreas Zeller and Gregor Snelting. Unified versioning through feature logic.
ACM Transactions on Software Engineering and Methodology, 6(3), July
1997. To appear.

Bibliography

[Abr95] Per Abrahamsen. The CPP-parse-edit mode for EMACS. Part of
the EMACS distribution, 1995.

[AFK+95] Larry Allen, Gary Fernandez, Kenneth Kane, David Leblang, De-
bra Minard, and John Posner. ClearCase MultiSite: Support-
ing geographically-distributed software development. In Estublier
[Est95], pages 194–214.

[AK86] Hassan A¨ıt-Kaci. An algebraic semantics approach to the effec-
tive resolution of type equations.Theoretical Computer Science,
45:293–351, 1986.

[AKN86] Hassan A¨ıt-Kaci and Roger Nasr. Login: A logic programming
language with built-in inheritance.Journal of Logic Programming,
1986(3):186–215, 1986.

[AKP91] Hassan A¨ıt-Kaci and Andreas Podelski. Towards a meaning of
LIFE. In J. Maluszy´nski and M. Wirsing, editors,Proc. 3rd Inter-
national Symposium on Programming Language Implementation
and Logic Programming, volume 528 ofLecture Notes in Com-
puter Science, pages 255–274, Passau, Germany, August 1991.
Springer-Verlag.

[AS95] Paul Adams and Marvin Solomon. An overview of the CAPITL
software development environment. In Estublier [Est95], pages
1–34.

[Bab96] Dirk Babel. Ein deduktiver Konfigurationsbrowser f¨ur ICE.
Master’s thesis, Technical University of Braunschweig, Germany,
1996.

269

270 Bibliography

[BDFW91] A. Brown, S. Dart, P. Feiler, and K. Wallnau. The state of au-
tomated configuration management. Technical Report CMU/SEI-
ATR-91, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, September 1991.

[Ber90] Brian Berliner. CVS II: Parallelizing software development. In
Proc. of the 1990 Winter USENIX Conference, Washington, D.C.,
1990.

[Ber94] Valdis Berzins. Software merge: Semantics of combining changes
to programs. ACM Transactions on Software Engineering and
Methodology, 16(6):1875–1903, November 1994.

[BESS96] Naser S. Barghouti, Wolfgang Emmerich, Wilhelm Sch¨afer, and
Andrea Skarra. Information management in process-centered soft-
ware engineering environments. In Alfonso Fuggetta and Alexan-
der Wolf, editors,Software Process, volume 4 ofTrends in Soft-
ware, chapter 3, pages 53–87. John Wiley & Sons, Chichester, UK,
1996.

[BFH+94] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Prof-
itlich. An empirical analysis of optimization techniques for termi-
nological systems, or making KRIS a move on.Journal of Applied
Intelligence, 4:109–132, 1994.

[BH91] Franz Baader and Bernhard Hollunder. KRIS: Knowledge repre-
sentation and inference system.ACM SIGART Bulletin, 2(3):8–
14, 1991.

[BHR95] David Binkley, Susan Horwitz, and Thomas Reps. Program inte-
gration for languages with procedure calls.ACM Transactions on
Software Engineering and Methodology, 4(1):3–35, January 1995.

[Bib87] Wolfgang Bibel. Automated Theorem Proving. Vieweg, Braun-
schweig, Wiesbaden, second edition, 1987.

[Bib92] Wolfgang Bibel. Deduktion: Automatisierung der Logik, volume
6.2 of Handbuch der Informatik. Oldenbourg, M¨unchen, Wien,
1992. In German.

[BJSS90] Alexandre Boudet, Jean-Pierre Jouannaud, and Manfred Schmidt-
Schauß. Unification in boolean rings and abelian groups. In Kirch-
ner [Kir90], pages 267–295.

Bibliography 271

[BL84] Ronald. J. Brachman and H. J. Levesque. The tractability of sub-
sumption in frame-based description languages. InProc. of the
4th National Conference of the American Association for Artifi-
cial Intelligence, pages 34–37, Austin, Texas, August 1984.

[BMPS+91a] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A.
Resnick, and A. Borgida. The CLASSIC knowledge representation
system.ACM SIGART Bulletin, 2(3):108–113, 1991.

[BMPS+91b] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A.
Resnick, and A. Borgida. Living with CLASSIC: When and how
to use a KL-ONE-like language. In J. Sowa, editor,Principles
of Semantic Networks, pages 401–456. Morgan Kaufmann, San
Mateo, California, 1991.

[Boo47] George Boole.The Mathematical Analysis of Logic, Being an
Essay Towards a Calculus of Deductive Reasoning. Macmillan,
Cambridge, 1847. Reprints 1948, 1951 (Blackwell, Oxford).

[Bra96] Michael Brandes. Deduktive Programmkonstruktionauf Basis von
MAKE. Master’s thesis, Technical University of Braunschweig,
Germany, December 1996. In German.

[BS86] Rolf Bahlke and Gregor Snelting. The PSG system: From formal
language definitions to interactive programming environments.
ACM TOPLAS, 8(4):547–576, October 1986.

[Buf95] Jim Buffenbarger. Syntactic software merging. In Estublier
[Est95], pages 153–172.

[CGS91] R. Cunis, A. G¨unter, and H. Strecker.Das PLAKON-Buch. Num-
ber 266 in Informatik-Fachberichte. Springer-Verlag, Berlin, Hei-
delberg, New York, 1991. In German.

[Cle88] Geoffrey M. Clemm. The Odin specification language. In Winkler
[Win88], pages 145–158.

[Cle93] Geoffrey M. Clemm.The Odin System Reference Manual. Uni-
versity of Colorado at Boulder, 1993.

[Cou89] William Courington. The Network Software Environment. Tech-
nical Report FE 197-0, Sun Microsystems, Inc., February 1989.

[CW96a] Reidar Conradi and Bernhard Westfechtel. Configuring versioned
software products. In Sommerville [Som96], pages 88–109.

272 Bibliography

[CW96b] Reidar Conradi and Bernhard Westfechtel. Version models for
software configuration management. Technical Report AIB 96-10,
RWTH Aachen, Germany, October 1996.

[Dar91] Susan Dart. Concepts in configuration management systems. In
Feiler [Fei91b], pages 1–18.

[Dit89] K. R. Dittrich. The DAMOKLES database system for design ap-
plications: its past, its present, and its future. In K. H. Bennett, ed-
itor, Software Engineering Environments: Research and Practice,
pages 151–171. Ellis Horwood Books, Durhan, UK, 1989.

[Dün94] Lars Düning. Variantenmanagement mit Feature-Termen und dem
C-Präprozessor. Project report, Technical University of Braun-
schweig, Germany, April 1994. In German.

[EC94] Jacky Estublier and Rubby Casallas. The Adele configuration
manager. In Tichy [Tic94], chapter 4, pages 99–133.

[EC95] Jacky Estublier and Rubby Casallas. Three dimensional version-
ing. In Estublier [Est95], pages 118–135.

[EGLT76] K. Eswaran, J. Gray, P. Lorie, and I. Traiger. On the notions of
consistency and predicate locks in a database system.Communi-
cations of the ACM, 9(11):624–633, November 1976.

[ELN+92] G. Engels, C. Lewerentz, M. Nagl, W. Sch¨afer, and A. Sch¨urr.
Building integrated software development environments—Part 1:
Tool specification. ACM Transactions on Software Engineering
and Methodology, 1(2):135–167, 1992.

[Est85] Jacky Estublier. A configuration manager: The Adele data base
of programs. InProc. of the Workshop on Software Engineer-
ing Environments for Programming-in-the-Large, pages 140–147,
Harwichport, Ma., June 1985.

[Est88] Jacky Estublier. Configuration management: The notion and the
tools. In Winkler [Win88], pages 38–61.

[Est95] Jacky Estublier, editor.Software Configuration Management: se-
lected papers / ICSE SCM-4 and SCM-5 workshops, volume 1005
of Lecture Notes in Computer Science, Seattle, Washington, Octo-
ber 1995. Springer-Verlag.

Bibliography 273

[ESW93] Wolfgang Emmerich, Wilhelm Sch¨afer, and Jim Welsh. Databases
for software engineering environments—the goal has not yet been
attained. In Ian Sommerville and Manfred Paul, editors,Proc.
4th European Software Engineering Conference, volume 717 of
Lecture Notes in Computer Science, pages 145–162, Garmisch-
Partenkirchen, Germany, September 1993. Springer-Verlag.

[FDD88] Peter H. Feiler, Susan Dart, and G. Downey. Evaluation of the
Rational environment. Technical Report CMU/SEI-88-TR-15,
Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, July 1988.

[Fei91a] Peter H. Feiler. Configuration management models in commer-
cial environments. Technical Report CMU/SEI-91-TR-7, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
March 1991.

[Fei91b] Peter H. Feiler, editor.Proc. 3rd International Workshop on Soft-
ware Configuration Management, Trondheim, Norway, June 1991.
ACM Press.

[Fel79] Stuart I. Feldman. Make—A program for maintaining computer
programs.Software—Practice and Experience, 9:255–265, April
1979.

[Fel93] Stuart Feldman, editor.Proc. 4th International Workshop on Soft-
ware Configuration Management (Preprint), Baltimore, Maryland,
May 1993.

[Fis93] Bernd Fischer. A new feature unification algorithm. Computer Sci-
ence Report 93-01, Technical University of Braunschweig, Ger-
many, December 1993. Submitted for publication.

[FKR94] Glenn Fowler, David Korn, and Herman Rao.n-DFS: The multiple
dimensional file system. In Tichy [Tic94], chapter 5, pages 135–
154.

[FKS95] Bernd Fischer, Matthias Kievernagel, and Gregor Snelting. De-
duction-based software component retrieval. In K¨ohler et al.
[KGGW95], pages 1–5.

[Gad95] Christophe Gadonna.MISTRAL User Manual V1. Laboratoire de
Génie Informatique, Grenoble, May 1995.

274 Bibliography

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Massachussetts, 1994.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.Fundamentals
of Software Engineering. Prentice Hall, Inc., 1991.

[GMSW89] W. Morven Gentleman, Steven A. MacKay, Darlene A. Stewart,
and Marceli Wein. Commercial realtime software needs different
configuration management. In Tichy [Tic89], pages 152–161.

[Gra81] J. Gray. The transaction concept: Virtues and limitations. InProc.
of the International Conference on Very Large Data Bases, 1981.

[Gul93] Bjørn Gulla. The constraint diagram: An approach to visualizing
the version space. In Feldman [Fel93], pages 112–122.

[Gun96] Carl A. Gunter. Abstracting dependencies between software con-
figuration items. In David Garlan, editor,Proc. 4th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,
volume 21 (6) ofACM Software Engineering Notes, pages 167–
178, San Francisco, October 1996. ACM Press.

[Har89] Richard Harter. Version management and change control; system-
atic approaches to keeping track of source code and support files.
Unix World, 6(6), June 1989.

[HK92] T. Hung and P. F. Kunz. Unix code management and distribution.
Technical Report SLAC-PUB-5923, Stanford Linear Accelerator
Center, Stanford, California, September 1992.

[HPR89] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninter-
fering versions of programs.ACM Transactions on Programming
Languages and Systems, 11(3):345–387, July 1989.

[HVT96] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. An empirical
study of delta algorithms. In Sommerville [Som96], pages 49–66.

[IEE88] The Institute of Electrical and Electronics Engineers, Inc., New
York. IEEE Guide to Software Configuration Management, 1988.
ANSI/IEEE Standard 1042-1987.

[IEE90] The Institute of Electrical and Electronics Engineers, Inc., New
York. IEEE Guide to Software Configuration Management Plans,
1990. ANSI/IEEE Standard 828-1990.

Bibliography 275

[ISO90] The International Organization for Standardization and The
International Electrotechnical Commission. Programming
Languages—C, December 1990. ISO/IEC International Standard
9899:1990 (E).

[Joh88] M. Johnson. Attribute-value logic and the theory of grammar.
Technical Report CSLI Lecture Notes 16, Stanford University,
Center for the Study of Language and Information, 1988.

[Kat90] Randy H. Katz. Toward a unified framework for version modeling
in engineering databases.ACM Computing Surveys, 22(4):375–
408, December 1990.

[Kay79] M. Kay. Functional grammar. InProceedings of the Fifth Annual
Meeting of the Berkeley Linguistics Society, 1979.

[Kay84] M. Kay. Functional unification grammar: A formalism for ma-
chine translation. InProc. 10th International Joint Conference on
Artificial Intelligence, pages 75–78, Stanford, 1984.

[KB82] R. M. Kaplan and J. Bresnan. Lexical-functional grammar: A for-
mal system for grammatical representation. In J. Bresnan, editor,
The Mental Representation of Grammatical Relations, pages 173–
381. MIT Press, Cambridge, Mass., 1982.

[KGGW95] Jana K¨ohler, Fausto Giunchiglia, Cordell Green, and Christoph
Walther, editors.Working Notes of the IJCAI-95 Workshop: For-
mal Approaches to the Reuse of Plans, Proofs, and Programs,
Montréal, August 1995.

[Kie92] Thilo Kielmann. Using PROLOG for software system mainte-
nance. InProc. of the First International Conference on the Prac-
tical Application of PROLOG, London, UK, April 1992.

[Kir90] Claude Kirchner, editor.Unification. Academic Press, London,
1990.

[KR86] R. T. Kasper and W. C. Rounds. A logical semantics for feature
structures. InProc. of the 24th Annual Meeting of the ACL, pages
257–265, Columbia University, New York, 1986.

[KR89] Brian W. Kernighan and Dennis M. Ritchie.Programmieren in C.
Carl Hanser, Prentice–Hall International, 2. edition, 1989.

276 Bibliography

[KS94] Maren Krone and Gregor Snelting. On the inference of configura-
tion structures from source code. InProc. 16th International Con-
ference on Software Engineering, pages 49–57, Sorrento, Italy,
May 1994. IEEE Computer Society Press.

[LCD+89] Anund Lie, Reidar Conradi, Tor M. Didriksen, Even-Andr´e Karls-
son, Svein O. Hallsteinsen, and Per Holager. Change oriented ver-
sioning in a software engineering database. In Tichy [Tic89], pages
56–65.

[LCS88] David B. Leblang, Robert P. Chase, and Howard Spilke. Increas-
ing productivity with a parallel configuration manager. In Winkler
[Win88], pages 21–37.

[LDC+89] Anund Lie, Tor M. Didriksen, Reidar Conradi, Even-Andr´e Karls-
son, Svein O. Hallsteinsen, and Per Holager. Change-oriented ver-
sioning. In C. Ghezzi and J. A. McDermid, editors,Proc. 2nd Eu-
ropean Software Engineering Conference, volume 387 ofLecture
Notes in Computer Science, pages 191–202, Coventry, September
1989. Springer-Verlag.

[Leb94] David B. Leblang. The CM challenge: Configuration management
that works. In Tichy [Tic94], chapter 1, pages 1–37.

[LHPT95] Paul Lukowicz, Ernst A. Heinz, Lutz Prechelt, and Walter F. Tichy.
Experimental evaluation in computer science: A quantitative study.
Journal of Systems and Software, 18(1):9–18, January 1995.

[Lin95] Christian Lindig. Concept-based component retrieval. In K¨ohler
et al. [KGGW95], pages 21–25.

[LL87] M. Lacroix and P. Lavency. Preferences: Putting more knowledge
into queries. In Peter M. Stocker and William Kent, editors,Proc.
of the 13th International Conference on Very Large Data Bases,
pages 217–225, Brighton, 1987.

[LM88] Andreas Lampen and Axel Mahler. An object base for attributed
software objects. InProc. of the Fall ’88 EUUG Conference, pages
95–105, Cascais, October 1988.

[MA96] Boris Magnusson and Ulf Asklund. Fine grained version control
of configurations in COOP/Orm. In Sommerville [Som96], pages
31–48.

Bibliography 277

[Mac91] Robert MacGregor. Inside the LOOM classifier.ACM SIGART
Bulletin, 2(3):88–92, 1991.

[Mac94] David MacKenzie.Autoconf—Creating Automatic Configuration
Scripts. Free Software Foundation, Inc., 59 Temple Place - Suite
330, Boston, MA 02111-1307, USA, November 1994. Distributed
with Autoconf.

[Mah94] Axel Mahler. Variants: Keeping things together and telling them
apart. In Tichy [Tic94], chapter 3, pages 39–69.

[MAM93] Boris Magnusson, Ulf Asklund, and Sten Min¨or. Fine-grained re-
vision control for collaborative software development. In David
Notkin, editor,Proc. of the first ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 33–41, Los An-
geles, December 1993. ACM Press.

[Man94] Suresh Manandhar. An attributive logic of set descriptions and set
operations. InProc. of the 32nd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL ’94), Las Cruces, New
Mexico, June 1994.

[MC96] Josephine Micallef and Geoffrey M. Clemm. The Asgard sys-
tem: Activity-based configuration management. In Sommerville
[Som96], pages 175–186.

[McD82] J. McDermott. R1: A rule-based configurer of computer systems.
Artificial Intelligence, 19(1):39–88, 1982.

[McD84] J. McDermott. R1 revisited: Four years in the trenches.AI Maga-
zine, 5(Fall):21–32, 1984.

[MDW91] E. Mays, R. Dionne, and R. Weida. K-Rep system overview.ACM
SIGART Bulletin, 2(3):93–97, 1991.

[Men96] Andreas Mende. Verwaltung von Revisionen und Arbeitsbere-
ichen in ICE. Master’s thesis, Technical University of Braun-
schweig, Germany, December 1996. In German.

[MLG+93] Bjørn P. Munch, Jens-Otto Larsen, Bjørn Gulla, Reidar Conradi,
and Even Andre Karlsson. Uniform versioning: The change-
oriented model. In Feldman [Fel93], pages 188–196.

[MM85] W. Miller and Eugene Myers. A file comparison program.
Software—Practice and Experience, 15(11):1025, 1985.

278 Bibliography

[MNR83] D. McLeod, K. Narayanaswamy, and Bapa Rao. An approach to
information management for CAD/VLSI applications. InProceed-
ings of the SIGMOD Conference on Databases for Engineering
Applications, pages 39–50, San Jose, California, May 1983.

[Mor88] Thomas M. Morgan. Configuration management and version con-
trol in the Rational programming environment. InProceedings
of the Ada-Europe International Conference, pages 18–28. Cam-
bridge University Press, June 1988.

[MR87] M. Drew Moshier and William C. Rounds. A logic for partially
specified data structures. In Steve Muchnik and Mark Wegman,
editors, Proc. 14th Annual ACM Symposium on Principles of
Programming Languages, pages 156–167, Munich, January 21-23
1987. ACM Press.

[Mun96] Bjørn P. Munch. HiCoV: Managing the version space. In Som-
merville [Som96], pages 110–126.

[Nar89] K. Narayanaswamy. A text-based representation for program vari-
ants. In Tichy [Tic89], pages 30–33.

[Neb90] B. Nebel. Reasoning and Revision in Hybrid Representation
Systems, volume 422 ofLecture Notes in Artificial Intelligence.
Springer-Verlag, 1990.

[Nic91] Peter Nicklin. Managing multi-variant software configurations. In
Feiler [Fei91b], pages 53–57.

[NS89] B. Nebel and G. Smolka. Representation and reasoning with at-
tributive descriptions. In K. H. Bl¨asius, U. Hedst¨uck, and C.-R.
Rollinger, editors,Sorts and Types in Artificial Intelligence, vol-
ume 256 ofLecture Notes in Artificial Intelligence, pages 112–
139, Eringerfeld, April 1989. Springer-Verlag.

[OG90] B. O’Donovan and J. B. Grimson. A distributed version control
system for wide area networks.Software Engineering Journal,
September 1990.

[OHPDB92] Eduardo Ostertag, James Hendler, Rub´en Prieto-D´ıaz, and Chris-
tine Braun. Computing similarity in a reuse library system: An AI-
based approach.ACM Transactions on Programming Languages
and Systems, 1(3):205–228, July 1992.

Bibliography 279

[PD87] Rubén Prieto-D´ıaz. Classifying software for reusability.IEEE
Software, 4(1), January 1987.

[Pel91] Christof Peltason. The BACK system—an overview.ACM
SIGART Bulletin, 2(3):114–119, 1991.

[PF89] Erhard Ploedereder and Adel Fergany. The data model of the con-
figuration management assistant. In Tichy [Tic89], pages 5–13.

[Pfo96] Olaf Pfohl. FFS – ein versioniertes Dateisystem auf Basis von
Feature-Logik. Master’s thesis, Technical University of Braun-
schweig, Germany, 1996.

[Rei89] Christoph Reichenberger. Orthogonal version management. In
Tichy [Tic89], pages 137–140.

[Rei95] Christoph Reichenberger. VOODOO: A tool for orthogonal ver-
sion management. In Estublier [Est95], pages 61–79.

[Roc75] Marc J. Rochkind. The source code control system.IEEE Transac-
tions on Software Engineering, SE-1(4):364–370,December 1975.

[RS91] Anthony Rich and Marvin Solomon. A logic-based approach to
system modelling. In Feiler [Fei91b], pages 84–93.

[SAK90] Gerd Smolka and Hassan A¨ıt-Kaci. Inheritance hierarchies: Se-
mantics and unification. In Kirchner [Kir90], pages 489–516.

[SB95] Wilhelm Schäfer and Pere Botella, editors.Proc. 5th European
Software Engineering Conference, volume 989 ofLecture Notes
in Computer Science, Sitges, Spain, September 1995. Springer-
Verlag.

[SBK88] N. Sarnak, R. Bernstein, and V. Kruskal. Creation and maintenance
of multiple versions. In Winkler [Win88], pages 264–275.

[Sch95] Ulrik Schroeder. Inkrementelle, syntaxbasierte Revisions- und
Variantenkontrolle mit interaktiver Konfigurationsunterst¨utzung.
PhD thesis, Technical University of Darmstadt, Germany, 1995.
In German.

[SGK+85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.
Design and implementation of the Sun Network filesystem. In
Proc. of the Summer 1985 USENIX conference, pages 119–130,
Portland, Oregon, June 1985.

280 Bibliography

[SGS91] Gregor Snelting, Franz-Josef Grosch, and Ulrik Schroeder. Infe-
rence-based support for programming in the large. In A. van Lam-
sweerde and A. Fugetta, editors,Proc. 3rd European Software En-
gineering Conference, volume 550 ofLecture Notes in Computer
Science, pages 396–408, Milano, Italy, October 1991. Springer-
Verlag.

[SM95a] Bradley D. Schmerl and Chris D. Marlin. Consistency issues in
partially bound dynamically composed systems. Technical report,
Department of Computer Science, Flinders University of South
Australia, 1995.

[SM95b] Bradley D. Schmerl and Chris D. Marlin. Designing configuration
management facilities for dynamically bound systems. In Estublier
[Est95], pages 88–100.

[Smo92] Gert Smolka. Feature-constrained logics for unification grammars.
Journal of Logic Programming, 12:51–87, 1992.

[Sne91] Gregor Snelting. The calculus of context relations.Acta Informat-
ica, 28:411–445, May 1991.

[Sne96] Gregor Snelting. Reengineering of configurations based on math-
ematical concept analysis.ACM Transactions on Software Engi-
neering and Methodology, 5(2):146–189, April 1996.

[Som96] Ian Sommerville, editor.Proc. 6th International Workshop on Soft-
ware Configuration Management, volume 1167 ofLecture Notes
in Computer Science, Berlin, Germany, March 1996. Springer-
Verlag.

[SS95] Sabine Sachweh and Wilhelm Sch¨afer. Version management for
tightly integrated software engineering environments. InProc. of
the 7th international Conference on Software Engineering Envi-
ronments, Noordwijkerhout, Netherlands, April 1995. IEEE Com-
puter Society Press.

[Str94] Bjarne Stroustrup.The Design and Evolution of C++. Addison-
Wesley, Reading, Massachusetts, 1994.

[SUP+83] S. Shieber, H. Uszkorzeit, F. Pereira, J. Robinson, and M. Tyson.
The formalism and implementation of PATR-II. In J. Bresnan,
editor,Research on Interactive Acquisition and Use of Knowledge.
SRI International, 1983.

Bibliography 281

[TGC95] Eirik Tryggeseth, Bjørn Gulla, and Reidar Conradi. Modelling sys-
tems with variability using the PROTEUS configuration language.
In Estublier [Est95], pages 216–240.

[Tic81] Walter F. Tichy. A data model for programming support environ-
ments. InProceedings of the IFIP WG 8.1 Working Conference
on Automated Tools for Information System Design and Develop-
ment, October 1981.

[Tic84] Walter F. Tichy. The string-to-string correction problem with block
moves.ACM Transactions on Computer Systems, 2(4):309–321,
November 1984.

[Tic85] Walter F. Tichy. RCS—A system for version control.Software—
Practice and Experience, 15(7):637–654, July 1985.

[Tic88] Walter F. Tichy. Tools for software configuration management. In
Winkler [Win88], pages 1–20.

[Tic89] Walter F. Tichy, editor.Proc. 2nd International Workshop on Soft-
ware Configuration Management, Princeton, New Jersey, October
1989. ACM Press.

[Tic94] Walter F. Tichy, editor.Configuration Management, volume 2 of
Trends in Software. John Wiley & Sons, Chichester, UK, 1994.

[Tic95] Walter F. Tichy. Software-Konfigurationsmanagement: Wie,
wann, was, warum? InProc. Softwaretechnik 95, volume 15(3) of
Softwaretechnik-Trends, pages 17–23, Braunschweig, Germany,
October 1995. GI. In German.

[Tre96] Christina Trenkner. PUCK – Einbettung von arithmetischen Con-
straints in die Feature-Unifikation. Master’s thesis, Technical Uni-
versity of Braunschweig, Germany, 1996.

[vdHHW95] André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf.
Does configuration management research have a future? In Es-
tublier [Est95], pages 305–310.

[vdHHW96] André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf.
A generic, peer-to-peer repository for distributed configuration
management. InProc. 18th International Conference on Software
Engineering, pages 308–317, Berlin, Germany, March 1996. IEEE
Computer Society Press.

282 Bibliography

[Wes91] Bernhard Westfechtel. Structure-oriented merging of revisions of
software documents. In Feiler [Fei91b], pages 86–79.

[WG95] Tim A. Wagner and Susan L. Graham. Dynamic configuration
abstraction. In Sch¨afer and Botella [SB95], pages 205–218.

[Whi91] David Whitgift. Methods and Tools for Software Configuration
Management. John Wiley & Sons, Chichester, UK, 1991.

[Wie93] Douglas Wiebe. Object-oriented software configuration manage-
ment. In Feldman [Fel93], pages 241–252.

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem.
Annals of Mathematics, 141(3):443–551, 1995.

[Win87] Jürgen F. H. Winkler. Version control in families of large pro-
grams. In E. Riddle, editor,Proc. 9th International Conference on
Software Engineering, pages 91–105, Monterey, California, March
1987. IEEE Computer Society Press.

[Win88] Jürgen F. H. Winkler, editor.Proc. of the International Workshop
on Software Version and Configuration Control, Grassau, January
1988. Teubner Verlag, Stuttgart.

[WS95] Ian Warren and Ian Sommerville. Dynamic configuration abstrac-
tion. In Schäfer and Botella [SB95], pages 173–190.

[Xcc95] Xcc Software Technology Transfer GmbH, Karlsruhe, Germany.
RCE—Revision Control Engine: Introduction and Reference Man-
ual, 1995.

[Zie93] Marc Ziehmann. Unification of feature terms. Project report
CS680, University of Albany, New York, December 1993.

Abbreviations

API Application programming
interface.

AtFS Attributed file system.

ATP Automated theorem proving.

BCT Bound configuration thread.

CAD Computer-aided design.

CASE Computer-aided software
engineering.

CCB Configuration control board.

CD-ROM Compact disk read only
memory.

CM Configuration management.

CMA Configuration management
assistant.

CPP C preprocessor.

CR Change request.

CVS Concurrent versions system.

CoV Change-oriented versioning.

DBMS Database management system.

DCVS Distributed concurrent
versions system.

DCS Dynamically composed system.

DFG Deutsche
Forschungsgemeinschaft.

DNF Distributive normal form.

DOS Disk operating system.

DRCS Distributed revision control
system.

DVI Device-independent file.

EPOS Expert system for program and
(“og”) system development.

EFS Extensible file system.

EGA Enhanced graphics adapter.

FFS Featured file system.

FTP File transfer protocol.

GCC GNU C compiler.

GNU GNU’s not unix.

GUI Graphical user interface.

HICOV High-level extensions to
change-oriented versioning.

IBM International business machines.

283

284 Abbreviations

ICE Incremental configuration
environment.

ICICLE ICE integrated command line
engine.

IPSEN Integrated project support
environment.

LEX Lexical scanner.

MacOS Macintosh operating system.

n-DFS n-dimensional file system.

NUCM Network for unified
configuration management.

NFS Network file system.

NORA No real acronym.

NSE Network software environment.

PCL PROTEUSconfiguration
language.

PDG Program dependency graph.

PROLOG Programming in logic.

PSG Programming system generator.

RCE Revision control engine.

RCS Revision control system.

REGEX Regular expression.

SCCS Source code control system.

SCM Software configuration
management.

Tcl/Tk Tool command language
toolkit.

TTY Teletype terminal.

TWICE Tasks withinICE.

VOODOO Versions of outdated
documents organized
orthogonally.

VoV Version-oriented versioning.

WWW World wide web.

YACC Yet another compiler compiler.

Index

Symbols
+u (Aggregation),105
(Agreement),76
&& (AND), 184
n (Backslash), 192
? (Bottom),74
f� � � g (Braces),79
[� � �] (Brackets),78
j: : :j (Cardinality),87
� (Complement),77
DI (Domain),74
∆i (Delta),115
δi (delta),115
" (Disagreement),76
" (Divergence),76
== (Equal to),184, 185
= (Equivalence),85
$ (Equivalence),80
9 (Existential quantification),81
(Hash),192
I (Interpretation),74
! (Implication),80
w (Inclusion),85
�I (Interpretation function),74
u (Intersection),77
1 (Merge),218
>< (Merge),219
∇i (Nabla),115
! (NOT), 184, 187
!= (Not equal to),184, 185
|| (OR), 184
%: (Percent),192, see also#
??= (Question),192, see also#
" (Quote),185
’ (Quote),185
: (Selection),75
v (Subsumption),85

> (Top),74
t (Union),78
ψ-term, 71

A
Abbreviations, 283–284
Abrahamsen, Per, 16
Absorption

of u andt, 79
of !, 80

Abstract syntax tree, 14, 17
merging changes in�s, 50
of feature terms, 195

Abstraction, 56, 249
Access control, 53, 59, 142
accessfeature, 107
Accounting

CM functionality area,6, 53
Acronyms, 283–284

no real, 180
Activity, 19
ADA, 39
addressfeature, 96
ADELE, 59, 60

configuration rule, 26, 56
distributedCM, 52
variant identification, 13

agefeature, 78
agentfeature, 72
Aggregate,22
Aggregation,105
Agreement,76, see also#
AIDE-DE-CAMP, 17
Aı̈t-Kaci, Hassan, 69, 71
Algebra

boolean�, 85
Alsaadi, Ahmad, 265

285

286 Ambiguity — CCB Index

Ambiguity, 56, 65
Ambition, 18, 25, 65
Ancestor,117
and , 187, see also&&

and-then operator, 95
AND/OR graph,22, 109
Anticipation of change, 249
Applications

of the version set model, 179–250
Arbiter, Petronius, 70
Architecture, 6

federated�, 59, 60
of SCM systems, 59–60

architecturefeature, 240
Arithmetic

constraints, 96
in CPP, 185,187
in version identification, 67, 68
solving� constraints, 219–220

implementation, 220
ASGARD, 19
Assignment, 74
Associativity

of u, 78
of t, 79

AtFS, 13
realization, 47

Atom, 75
ATP, seeautomated theorem proving
Attribute, 13, 28, 58, 260

�-value logic, 71
�s in a unifiedSCM model, 66
and relationship, 41
in ADELE, 26
in CAPITL, 40
in CMA, 34
in CPP, 15
in JASON, 29, 33
methodology

general rules, 97–99
in CAPITL, 40

propagation, 40–41, 66, 73
queries, 26

Attributed file system,seeAtFS
Attribution scheme,13
Audit and review

CM procedure,5
Audit trail, 53
Auditing

CM functionality area,6, 53
author feature, 77, 107, 108, 110, 183–185
AUTOCONF, 15, 265
Automated theorem proving, 164

B
Babel, Dirk, 235, 265
BACK, 68
Base version, 49

determining�, 154
Baseline,113

component�, 17
configuration�, 25

BCT, seeconfiguration thread, bound
Behavior differences in merging, 51
Bibel, Wolfgang, 165, 265
Bibliography, 269–283
Bill of material, 39
Binary pool,41, see alsoCache for derived

components
Binding,29, 51
Binkley, David, 52
Borgida, Alex, 176
Bottom,74, see also?
Branch,10, 48, 49

in CLEARCASErule, 29
Brandes, Michael, 265
Bresnan, J., 71
bsd-regexfeature, 136, 137
Build

software�, seeconstruction
Build command file,37

C
C, 15, 39

preprocessor,seeCPP
C++, 15, 39

GNU �, 265
Cache

for derived components,41
CAD, seecomputer-aided design
CAPITL, 66, 97

versioned software build, 40–41
virtual file access, 46

Cardinality, 87
Casallas, Rubby, 11, 54
Case studies, 237–246

Index Change — Concurrency control 287

CCB, seeconfiguration control board
Change

�s vs. revisions, 113–139
and configuration, 137–138
and other features, 136–137
anticipation of�, 249
committing�s,151
control, 10, 53, 60
extrinsic, 138
history, 53
intrinsic, 138
log, seechange history
orthogonal�, 134–136
propagation, 5, 18, 19, 25, 53, 56

across sites, 52
across workspaces, 43,149
bypassing theSCM system, 45
in abstract syntax trees, 50

request, 18, 53, 60
set, 5,17, 60

change-41feature, 97
change-42feature, 97
Change-Oriented Model,5, 9, 17–20, 36,

136, 248
configuration rules, 26
in distributedSCM, 52
version identification, 12
vs. version-oriented models, 56–57

Checkin, 5,9, 44, 60
Checkin/Checkout Model,5, 9, 20, 44
Checkout, 5,9, 44, 60
CLASSIC, 68
Classification

faceted�, 97
CLEARCASE, 55, 138

change impact analysis, 39
configuration rule, 28
cooperation strategy, 48
revision numbering, 12
variant identification, 12
versioned software build, 39
virtual file access, 46

realization, 47
CLEARMAKE, 39
CM, seeconfiguration management
CMA, 33
Code

as component attribute, 40
Coherence,seeconsistency

Cohesion, 249
color feature, 86
colors feature, 94, 95, 99
Colton, Charles Caleb, 20
Command shell,seeshell
Comment

aroundCPPdirectives, 192
in CPPdirectives, 192, 193

commitoperation,151
Committing changes,151
Commutativity

of u, 78
of t, 79

Comparison
of text files, 13

Compilation
conditional�, 15

Complement, 72,77, see also�
Completeness, 3, 5
Complexity, 161–176

and consistency, 248
and versioning dimensions, 248
of version selection, 247–248

Component, 4,9, 21,91
abstract�, 92
as union of its versions, 93
bound�, 92
dependency,37
derived�, 23
derived�, 34, 37,37, 45, 66

caching, 41
features, 110–111

features of derived�, 110–111
generic�, 22, 92, see alsocomponent,

abstract
optional�, 109
relationship, 21–24
status,seestatus
unambiguous�, 92, see also

component, bound
version,92

Components
CM functionality area,6, 9–20

Composite pattern, 195
Composition Model,5, 21, 35–36, 44
Computer-aided design, 15
Concept description, 68, 71, 111
Concurrency control,seecooperation

strategy

288 concurrentfeature — Consistency Index

concurrentfeature, 110, 173, 174
Concurrent Versions System,seeCVS
Conditional compilation,15
Configuration, 5,24–32, 101–112

abstract�, 25, 29, 55–56, 73,108
ambiguity in�, 108–109
and revision, 137–138
as first-class object, 109
baseline,25
bound�, 25, 108
consistent�, 108
constraint,138

complexity, 248
in EPOS, 31
in JASON, 33

context,seecontext
control board, 18, 53
current�, seecurrency
dynamic�, 25, see alsoabstract�
family, 25, see alsoabstract�
features, 103
file, 15
formal�, 108
generic�, 25, 56,108
item,4, see alsocomponent
language,29
management,see below
object,4, see alsocomponent
partially bound�, 25, see also

generic�
rule, 21, 25, 33, 95
set, 65–66
source�, 110
tagging�, 25–26, 138, 147–148
template,25, see alsoabstract�
thread

bound�, 39
types, 25
visualizing�, 31–32, 58

Configuration management,3–61
architecture of� systems, 59–60
distributed�, 52–53, 147
functionality areas,6, 9–54

accounting, 6, 53
auditing, 6, 53
components, 6, 9–20
construction, 6, 37–42
controlling, 6, 53–54
process, 6, 54

process-centered, 6, 53
structure, 6, 21–36
team, 6, 43–53
team-centered, 6

future requirements, 55–61
model, 9, 58

unified�, 58, 60–61
models, 5–6

change-oriented,5, see also
Change-Oriented Model

checkin/checkout,5, see also
Checkin/Checkout Model

composition,5, see also
Composition Model

long transaction,6, see alsoLong
Transaction Model

network for unified�, seeNUCM
object-oriented�, 29
policy layer,seepolicy layer
primitives layer,seeprimitives layer
procedure,4
procedures, 4–5

audit and review, 5
control, 4
identification, 4
manufacture, 5
process management, 5
status accounting, 4
team work, 5

protocol layer,seeprotocol layer
software�, 4

Configuration Management Assistant, 24,
seeCMA

Confinement,141
Conflict, 19, 49

in abstract syntax trees, 50
Conflict resolution, 43, 49–52

in ICE, 218–219
Confucius, 182
CONGRESS, 69
Conradi, Reidar, 57
Consistency, 3, 5, 24,32–35, 65, 72

and complexity, 248
constraint, 33
external�, 33
in configurations,108
in feature logic,86
in structure editors, 17
internal�, 34, 51

Index Consistency (continued) —DFG 289

of abstract configurations, 56
Constant,72
Constraint, 161

consistency�, 33
locking�, 147
revision�, seerevision constraint

Construction, 5, 182
CM functionality area,6, 37–42
management, 3

Conte, Mike, 213, 235
Contents

as component attribute, 40
Context,141
Context model,26
Context relation, 51
Continuation line, 192
Control

CM procedure,4
Controlling

CM functionality area,6, 53–54
Cooperation strategy, 43,48, 48–49

conservative�, 48, 147–153
optimistic�, 48–49, 154–158, 180

Cooperative versioning,10, see also
workspace

Copying
to-and-fro, 44

Correctness
static�, 32,34
syntactic�, 32,35

Coupling, 248
CPP, 10, 15–16, 20, 55, 56, 65, 67, 176, 179

as standard forICE, 180–181
directives, 187–191

creating�, 203–212
#define , 190
#elif , 188
#else , 188
#endif , 188
#error , 189
#if , 188
#ifdef , 188
#ifndef , 188
#line , 191
#pragma , 191
#undef , 190

expressions, 184–187
parse-edit-mode, 16
variant identification, 13

vs. ICE, 200
CR, seechange request
Create

operation on version sets, 212
Currency, 46, 145–146

maintenance, 138,145
current feature, 96, 138, 145, 146, 150–158,

226
Cusumano, Michael A., 213, 235
CVS, 156, 245

configuration, 26
cooperation strategy, 48
distributed�, 52
workspace, 44

Cyclic terms, 40

D
Dart, Susan, 6, 53
data feature, 110, 173, 174
Database

graph�, 15
query, 27–28
relationship, 22–24
repository, 15

DCS, seedynamically composed system
DCVS, 52
De Morgan’s laws, 79
Default,27, 96

operator,95
#define directive,190
Delta,14, see alsoDifference, 57, 259

reverse�, 14
Delta feature,115
Delta set,115
demofeature, 151, 152, 156
Dependency

component�, 37
depthfeature, 97, 98
Derivation, 23,110, see alsocomponent,

derived,110, see also
construction

history, 39, 40
Descendant,117
Description logic, 40, 68
Deutsche Forschungsgemeinschaft, 265
Device driver, 47
devicefeature, 112
DFG, 265

290 DIFF — Feature Index

DIFF, 13, 17, 20, 245
GNU �, 213, 265
in ICE, 200–203

DIFF3, 49
Difference, 14, 41

behavior�, 51
between non-text files, 13–14
between text files,13

in ICE, 200–203
tree�, 51
version�, 13–14

Dijkstra, Edsger W., 20
Dimension,seeversioning dimension
Directory

versioned�, 223–225
virtual �, 229

Disagreement,76, see also"
Disjointness,86
Disjunctive normal form,85, 162
Distribution

of u andt, 79
Divergence,76, see also"
Divide-and-conquer,seeorthogonality
DNF, seedisjunctive normal form
DRCS, 52
drive-speedfeature, 102, 103
Düning, Lars, 195, 213, 265
Dynamic

version creation, 96–97, 135
Dynamically composed system, 25, 56

E
Eaton, David W., 54
Economy

in ICE, 180–181
Editor

multi-variant�, 16–17, 20, 56
EFS, 46

realization, 47
#elif directive,188
#else directive,188
EMACS, 17
Emerson, Ralph Waldo, 250
Encoding

as-is�, 194
binary�, 193–194
C �, 192
dynamic�, 194, 235

of CPPfiles, 191–194
text�, 192–193

#endif directive, 15,188
Ends

odds and�, 251–284
Entity-relationship

model, 15
Environment aspect, 39
Epicurus, 87
EPOS, 17, 59
Equivalence

feature�, 80, see also$
term�, 85, see also=

#error directive,189
Estublier, Jacky, 11, 54, 58
Evaluation

partial�, 169, see alsoFeature term,
partial evaluation

Existence, 75
Existential quantification,81, see also9
Extensible file system,seeEFS
External consistency,33

F
Faceted classification, 97
Family

of products, 6
FAQ, seefrequently asked questions
Fault, 18, 53
Favre, Jean-Marie, 7
Feature, 69,72, 74

algebra,74
assignment, 74

completion, 231–232
constraint,seeconstraint
delta�, 115
dependent,102, see alsofeature,

extrinsic
directives, 184
extrinsic�, 102, 102–105
independent,102, see alsofeature,

intrinsic
interpretation,74
intrinsic�, 102, 105–108
logic, v, 65–87

evolution, 71
overview, 72–73

of component, 91–93

Index Feature (continued) — History 291

in ICE, 189
of configuration, 101–112
of derived component, 110–111
of version, 91–93, 97–99

in ICE, 189
path, 167
provided�, 102
required�, 102
rules for assigning�, 97–99
set-valued�, seerole
term,see below
unification, 101, 161–175

example, 163–164
speeding up�, 164–175

Feature logic, 69
Feature term, 71, 72,74

basic�, 84
closed�, 84
coherent�, seeconsistent
consistent�, 86
disjoint�, 86
equivalent�, 85
implementation, 195
in DNF, 85
orthogonal�, seeorthogonality
partial evaluation, 167–175
primitive �, 84
quantifier-free�, 84
reduction�, 164–165
representation, 183–195

ASCII �, 184
CPP�, 184–187

simple�, 85
Featured file system,seeFFS
Federated architecture, 59, 60
Feiler, Peter H., 5, 58
Feldman, Stuart, 38
Fergany, Adel, 33
Fermat’s last theorem, 67
FFS, 180, 223–235, 265
File

encoding,seeencoding
filter, 230

File system
attributed�, seeAtFS
extensible�, seeEFS
featured�, seeFFS
virtual �, 45–48, 223

operating system interface, 246

realization, 47–48
First-order logic, 68, 71
Fischer, Bernd, 73, 265
fixedfeature, 96
Form

as component attribute, 40
Foundation layer

ICE �, 181
Fowler, Glenn, 46
Frame, 68
Free Software Foundation, 265
Frequently asked questions, 257–262
Frost, Robert, 262
fruit feature, 86, 92
Functionality

as component attribute, 40
Funk, Petra, 265

G
Geneen, Harold, 99
Generalization, 56, 249
Gentleman, W. Morven, 55
Ghezzi, Carlo, 246
GNU

C++, 263, 265
DIFF, 213, 265
EMACS, 17
MAKE, 38, 241, 265
REGEX, 136

Government, 188
Graph

database, 15
revision�, seerevision graph
version�, seeversion graph

Grosch, Franz-Josef, 265
Gulla, Bjørn, 31, 58
Gunter, Carl, 41

H
have-srandfeature, 189
have-srandomfeature, 189
hcx feature, 198, 199
Heimbigner, Dennis, 60
Hesse, Hermann, 262
HICOV, 19, 57
Historical versioning, 9
History

292 Horwitz, Susan — Lattice Index

derivation,seederivation history
Horwitz, Susan, 51
host-archfeature, 163, 164

I
Ibsen, Henrik, 180
ICE, vi, 179–250

architecture, 181–182
case studies, 237–246
conflict resolution, 218–219
distribution, 263
foundation layer, 181
inference engine, 213
layers, 181–182
library, seeLIBICE
MAKE, 180, 265
merging, 218–219

implementation, 220
obtaining�, 263
performance, 237–246
policy layer, 182
primitives layer, 181,223–224, 235
properties, 179–180
protocol layer, 182
specifying file features, 189
standards, 180–181
version set access

usingICICLE, 215–220
using theFFS, 223–235

version set operations, 197–221
version set representation, 183–195
virtual file system,seeFFS

ICICLE, 215–220
vs. FFS, 223

Idempotency
of u, 78
of t, 79

Identification, 3, 66
CM procedure,4
of merged versions, 155–156
revision�, 11–12
variant�, 12–13
version�, 11–13
vs. selection, 67

#if directive, 15,188
#ifdef directive,188
#ifndef directive,188
Implication,80, see also!

Inclusion,85, see alsow
Incremental configuration environment,see

ICE
Infimum,seelattice
Inheritance, 29, 57, 65, 259
Instantiation, 81
Integration, 58

change�, 49, see alsomerging
of SCM system, 43
program�, seemerging,

semantics-based
Internal consistency,34, 51
Interpretation function,74
Intersection, 72,77, see alsou
IPSEN, 50

consistency check, 35
database, 15
interactive variant selection, 17

is-a-part-of feature, 22
Isbell, Charles, 112
Item

configuration�, 4, see alsocomponent

J
JASON, 26, 29, 33, 67, 176
Jaspers, Karl, 159
Jazayeri, Mehdi, 246
Johnson, M., 71

K
Kaplan, R. M., 71
Karr, Alphonse, 159
Kasper, R. T., 71
Katz, Randy H., 22, 255
Kay, M., 71
kernel file feature, 239
Kidder, Tracy, 146
Kielmann, Thilo, 40
knowledge representation, 68
Knuth, Donald, 265
K-REP, 68
Krinke, Jens, 265

L
Lacroix, Maurice, 27
Lamport, Leslie, 265
LATEX, 265

Index Lattice (continued) — Network 293

Lattice
revision�, 121
subsumption�, 86, 121

Lavency, P., 27
Laws

of assembly, 112
of computer programming, 139

Leblang, David, 263
Level number,12
LEX, 195
Lexical-functional grammar, 71
LIBICE, 215

vs. FFS, 223
Library

system�, 47
LIFE, 69
Lindig, Christian, 265
#line directive,191
Linguistics, 71
Link

symbolic�, 228
linkagefeature, 109, 137
LINUX , 234
Localization, 56, 249
lockedfeature, 147, 148, 151–153
Locking, 44,48, 59,148, 147–148, 182

constraint, 147
Logic

description�, seedescription logic
feature�, seefeature logic
first-order�, seefirst-order logic
predicate�, seepredicate logic
propositional, 162
terminological�, seedescription logic

Logical versioning, 10
LOGIN, 69
Long transaction,43, see alsoworkspace
Long Transaction Model,6, 47
LOOM, 68
Lukowicz, Paul, 179

M
Machine

virtual �, 61
MacOS, 227
Mahler, Axel, 36, 61
Maintainability, 248–249
MAKE, 38–39

as standard forICE, 180–181
GNU �, 241, 265
ICE �, seeICE MAKE

Makefile,38
versioned�, 193

Management issues
in CM, 53

Manandhar, Suresh, 111
Mandrioli, Dino, 246
Manufacture

CM procedure,5, see also
construction

Marlin, Chris D., 56
Matrix notation, 77
McGuinness, Deborah L., 112
Mende, Andreas, 220, 265
Merge rule, 50
Merged version, 49
Merging, 49–52, 57, 259

identification, 155–156
in ICE, 218–219

implementation, 220
semantics-based�, 51–52
syntax-based�, 50–51
textual�, 49, 180

Microsoft, 213, 235
MISTRAL, 52
MJØLNER, 51
Modularity

in system modeling, 22
moodfeature, 78
MULT reduction, 165
Multi-site development, 52–53, 147
Multi-variant editor, 16–17, 20, 56
Multiple dimensional file system,seen-DFS
MULTISITE, 52, 147
Munch, Bjørn, 19
MVPE, 16

N
n-DFS, 46, 49, 235

realization, 47
Nabla set,115
Narayanaswamy, K., 17
Network

file system,seeNFS
for Unified Configuration

Management,seeNUCM

294 Network (continued) — Program Index

software environment,seeNSE
Neutral element

respective tou, 78
respective tot, 79

NFS, 47, 233
Nicklin, Peter, 26
NORA, 180
not , 187, see also!
not eq, 187, see also!=
NSE, 47

cooperation strategy, 49
realization, 47

NUCM, 53, 147
numfeature, 72

O
Object

configuration�, 4, see alsocomponent
pool, 11,41, see alsoCache for

derived components
object, 91
objectfeature, 72, 91–98, 101, 102,

105–112, 118, 136, 137,
143–145, 148, 149

Object-oriented
SCM, 29
system design, 25
system modeling, 22
unifiedSCM model, 66

Odds
and ends, 251–284

ODIN, 39
operating-systemfeature, 77, 79, 98
Operation context,seecontext
Option,26

space,26
or , 187, see also||
or-else operator, 95
Origin, 117
Orthogonal

changes, 135
version management,11

Orthogonality,166
deciding�, 166–167

osfeature, 72, 96, 101, 104, 138, 143–145,
155, 169, 173, 174, 198, 199,
227

Outdating,145, see alsocurrency

P
Parameterization, 56, 249
passengersfeature, 82, 83
PATCH, 17
Patch,17, see alsochange set,17, see also

change
PATR-II, 71
PCL, 29–30
PDG, seeprogram dependency graph
P-EDIT, 16
Performance, 237–246
Permanent variant,10
personfeature, 72
Pfohl, Olaf, 234, 265
PLAKON, 68
planesfeature, 99
Ploedereder, Erhard, 33
POL, 40
Policy layer

CM �, 60, 97
ICE �, 182

posix-regexfeature, 136, 137
#pragma directive,191
predicatefeature, 72
Predicate logic,seefirst-order logic
Preference,27, 96

in SHAPE, 27
in database queries, 27–28
operator,95

Primitives layer
CM �, 59, 138
ICE �, 181,223–224, 235

Prins, Jan, 51
print-languagefeature, 92–95, 98
Problem report, 53
Procedure

CM �, seeconfiguration management
procedure

Process, 5, 58–60
�-related CM functionality areas,

53–54
CM functionality area,6, 54
management, 3

CM procedure,5
Product,21, see alsosystem, 91
Production

workspace,150
Program

Index Program (continued) — Revision set 295

dependency graph, 51
integration,seemerging,

semantics-based
slice, 51

Project, 146
project feature, 146, 147
Projection

object pool�, 11
PROLOG

�-like configuration rules inSHAPE,
27

ancestor ofLOGIN andLIFE, 69
using� for software construction, 40

propagateoperation,149
Propagation

attribute�, seeattribute propagation
change�, seechange propagation

PROTEUS, 29–30
Protocol layer

CM �, 60, 97, 138
ICE �, 182

Provenance
as component attribute, 40

Proxy pattern, 195
PSG, 51

consistency check, 35
interactive variant selection, 17

ψ-term, 69
Publications, 268–269

Q
Quality assurance, 60
Query

database�, 27–28
version graph�, 28

Questions
frequently asked�, 257–262

R
RATIONAL, 39

virtual file access, 46
Raymond, Eric, 221
RCE, 31, 47
RCS, 9, 10, 60, 241

configuration, 25
cooperation strategy, 48
distributed�, 52

internal organization, 136
repository, 14
revision numbering, 12

Read
operation on version sets, 212

READLINE, 265
Record structures, 69
reducefunction, 169–170
Reduction,164, see alsofeature term

reduction
References, 269–283

as component attribute, 40
Refinement,118
Regular expression, 136
Reichenberger, Christoph, 11
Relationship, 66

and revision, 136–137
version�, 15, 21–24, 58, 259
vs. attribution, 41

Release, 4
number,12

Remove
operation on version sets, 212

Repository, 5, 9,14–15
distributed�, 52
evolution, 131–134

Reps, Thomas, 51
Resnick, Lori Alperin, 112
resolutionfeature, 102, 103
Restructuring, 249
Reverse delta,14
Revision,9, 118

�s vs. changes, 113–139
adding�, 131–134
and configuration, 137–138
and relationship, 136–137
and variant, 136–137
constraint, 119–128, 136

maintenance, 131–134
date,12
graph, 113–115
history, 10
identification, 11–12
lattice, 121
number,11
removing�, 134

Revision control engine,seeRCS
Revision Control System,seeRCS
Revision set,118

296 Rochkind, Marc — System Index

Rochkind, Marc, 9
Role, 68, 111
Rounds, William C., 71

S
Satisfiability problem, 162
SCCS, 9, 10, 241

configuration, 25
cooperation strategy, 48
repository, 14
revision numbering, 12
vs. ICE, 200

Schmerl, Bradley R., 56
Schroeder, Ulrik, 51
SCM, seesoftware configuration

management
screen-datafeature, 110, 173, 174, 190
screen-devicefeature, 110, 173, 174, 231
screen-typefeature, 104, 110, 173, 174, 190
Search path

in the version graph,28–29
Selby, Richard W., 213, 235
Selection,75, see also:

version�, seeversion selection
vs. identification, 67

Service
in multiple dimensional file system,46

SHAPE, 47
preferences, 27
variant identification, 13
versioned software build, 39
virtual file access, 45, 46

Shell, 215–220
Shieber, Stuart, 71
Simplex method, 96, 220
simplify function, 169–170
site, 147
SKATE, 232–233, 265
Slice

program�, 51
Slot, 72
Smolka, Gerd, 70, 71, 111
Snelting, Gregor, i, 265
Software

builds,seeconstruction
component,seecomponent
configuration management,see

configuration management

engineering
environment, 15, 45
principle, 56, 249

item, 21
process,seeprocess
product,seeproduct
subsystem,21
system,21

Sommer, Thorsten, 265
Sommerville, Ian, 129
Soul of a new machine, 146
Source Code Control System,seeSCCS
Stahl, Ragnar, 265
Standard

company�, 60
industry� in ICE, 180–181
SCM�, 4

Static correctness, 32,34
Statistics, 4, 6
Status, 4, 28, 53, 77, 79, 105

accounting
CM procedure,4

in ADELE, 26
in SHAPE, 27
maintenance, 138
product�, 3

statusfeature, 77, 79, 138
Stroustrup, Bjarne, 15, 195
Structure, 4

CM functionality area,6, 21–36
subjectfeature, 72
SUBSreduction, 165
Subsumption,85, see alsov

lattice, 86, 121
Subsystem

software�, 21
Successor,117
sunfeature, 239
SunOS, 109
Super-technical thing, 235
Supremum,seelattice
synchronizeoperation,155
Synchronizing workspaces, 149,155
Syntactic correctness, 32,35
Syntax tree

abstract�, seeabstract syntax tree
System

dynamically composed�, 25, 56
software�, 21

Index System library — Version 297

System library, 47
System model, 5, 18, 21, 109

SCM-specific�, 21–24
sysv-regexfeature, 136

T
Tag

configuration�, seeconfiguration
tagging

Tagging
configurations,seeconfiguration

tagging
target-archfeature, 163, 164
TAUT reduction, 165
Team

�-related functionality areas, 9–53
CM functionality area,6, 43–53
modeling�s, 146

teamfeature, 146
Team work, 3

CM procedure,5
tensefeature, 72
Terminological logic,seedescription logic
testedfeature, 75, 118, 189
TEX, 265
Text difference,seeDifference
Thread

version�, 31
Thue system, 162
Tichy, Walter, i, 9
To-and-fro copying, 44
Top,74, see also>
Transaction

long�, 43, see alsoworkspace
Trenker, Christina, 265
Trenkner, Christina, 220
Tryggeseth, Eirik, 57
TWICE, 180

U
#undef directive,190
Unification, 67

boolean�, 68
feature�, seefeature unification

Unified configuration management
model, 60–61
network for�, seeNUCM

Union, 72,78, see alsot
unix-flavourfeature, 96
Unlocking,148
updateoperation,150
Updating user workspaces,150
use-srandfeature, 189
userfeature, 142–152, 154–156, 169, 218,

219, 226, 227

V
van der Hoek, Andr´e, 60
Variable,72, 75

free�, 75
Variance, 10

managing�, 15–17
Variant,10, 118

and revision, 136–137
dimension, 10, 13, 98
heuristic to find best-fitting�, 56
identification, 12–13
interactive� selection, 17
managing several similar�s, 15–17,

20, 55–56
permanent�, 10, 56

identification, 12
using conditional compilation, 16

temporary�, 10, 48, 49, 56, 149, 154
for concurrent development, 48
for cooperation, 48
for multi-site development, 52
identification, 13

Variant set,118
Venn diagram, 93
verb feature, 72
Version, 5,9, 92

access
explicit �, 45–46, 225
implicit �, 46–47, 225
in virtual file system, 45–47

base�, 49
component�, 92
current�, seecurrency
default�, seedefault
differences, 13–14
dynamic� creation, 96–97, 135
graph, 10,10, 12, 19, 31, 57,113, see

alsoRevision graph
query, 28

298 Version (continued) — Ziehmann, Marc Index

search path,28–29
history,seerevision history
identification, 11–13, 91–93

in ICE, 189
kinds, 10
merged�, 49
planned�, 56, 113
preferred�, seepreference
relationship,15, 21–24, 58, 259
selection, 72, 93–96

caveats, 94
complexity, 247–248
in ICE, 197–200
incremental�, 95, 229–233
interactive�, 182

set,see below
shortcut, 227–228
space, 31, 58, 260
specification, 45
thread, 31
unplanned�, 56, 113

Version set, v, 65–66,92
accessing�

usingICICLE, 215–220
using theFFS, 223–235

changing�, 200–212
creating� as file, 212
file operations, 212
model, 91–159

applications, 179–250
operations onCPPfiles, 197–221
reading� as file, 212
removing� as file, 212
representation asCPPfile, 183–195
selection, 197–200
writing � as file, 200–212

Versioning
cooperative�, 10, see alsoworkspace,

141
dimensions, 9–11

complexity, 248
implications between�, 136

historical�, 9, see alsorevision
logical�, 10, see alsovariant
models, 10–11, 57–58
orthogonal�, 11

View
repository�, 47

Viewpathing, 49, 234

Visualization
of configurations, 31–32, 58

VOODOO, 11

W
Watermann, Rolf, 265
Westfechtel, Bernhard, 50
what feature, 72
wheelsfeature, 82, 83
Whitgift, David, 56
Wildcard

in CLEARCASE configuration rules,
28

Wolf, Alexander L., 60
Word problem, 162
Working context,142, see alsoWorkspace
Workspace, 6,43–48, 60,142, 141–159

as private directory, 44
in theFFS, 223, 226–228
production�, 150
realizing�

through application interface, 45
through virtual file system, 45–48

synchronizing�, 149,155
updating�, 150

wormyfeature, 86
Write

operation on version sets, 212

X
x-resolutionfeature, 97, 98
XCON, 68

Y
y-resolutionfeature, 97, 98
YACC, 195

Z
Zeller, Andreas, 77, 267–269
Zero element

respective tou, 78
respective tot, 79

Ziehmann, Marc, 213, 265

