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Preface

GenTLE ReEADER: This is a book about software configuration management, the
discipline to organize and control evolving software systems. In software con-
figuration management, @CM for short, one deals with the problem of several
people developing, building, shipping, and maintaining several copies of soft-
ware products, each with an individual set of changes applied to make it fit into
a particular environment. The aim of &CM engineer is to identify and control
these changes, such that all resulting software products are well-identified and
well-defined.

Software configuration management is a hard task, because few things are so
easy to change and so easy to propagate as software. Fortunately, a number of
automatedsCM tools and systems exist that can help enforcing and maintaining
SCM procedures. Unfortunately, there are many such tools and each comes with
its own SCM policy, which is often centered on a specific environment and thus
seldom interoperates, yet alone integrates with of@M tools. From theSCM
engineer’s point of view, this is an unfortunate situation as the entire development
process must be adapted to a sped@fis policy.

In this work, | have attempted to provide a common formal and adaptive base
for the technical aspects of software configuration management. The base | have
chosen for this integration ieature logica logic denoting objects by specifying
their possible attributes (or non-attributes). Characterizing objects by their fea-
tures is a common technique 8CM, and it seemed natural to me to choose a
logic based on this technique.

Using feature logic, | have been able to model and integrate consaan
functionality such as attributed components, repositories, work spaces, variant
sets, revision histories, or consistency checking in a single concept, valted
sion sets.\ersion sets group versions, components, and configurations by their
features.SCM functionality is realized through set operations. \ersions are se-
lected and refined through set intersection. Set union realizes the grouping of
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Vi Preface

versions to repositories. Subsumption and disjointness express inclusion and ex-
clusion of changes, structuring the version space.

Version sets do not introduce new concepts iBGM; instead, they expose
new ways of combining and integrating existing concepts and thus provide much
more flexibility in adaptingsCM systems to their users. In short, | have designed
the version set model as an attempt to integrate the current spectré@nof
functionality into a single, hopefully simple and elegant formalism, allowing for
adaptive combinations &fCM concepts with predictable effects.

In science, claims are justified by proofs; in engineering, claims are justified
by simulation. Applied computer science is both a scientific and an engineering
discipline. | thus have supplied both proofs and an implementation; the resulting
SCM systemICE (for Incremental Configuration Environm@nis presented and
evaluated in its own part at the end of this work. The version set model could not
have been conceived without its usability and efficiency steadily being verified in
ICE.

While conceiving and developing@E, | have resisted the temptation to en-
rich the wide spectrum of software engineering with yet another eclectic environ-
ment, another eclectic special-purpose formalism, and another eclectic configu-
ration language. Instead, | have desigi@# to work with well-establishe§CM
techniques and representations wherever possible, in order to keep the learning
curve flat and the integration smooth. It is my hope tg&will not only help to
demonstrate the effectiveness of the underlying version set model, but also be a
useful aid in addressing today’s practisaimM problems.

To make this book self-contained, the first part summarizes the state of the art
in today’sSCM practice and research, followed by an introduction to feature logic.
The version set model an@E come in individual parts, closing with answers to
frequently asked questions. In short, this book presents tod@Nsconcepts,
their common foundation, and some new applications. Enjoy!

Braunschweig A.Z
November 1996



Abstract

Software configuration managemestC{) is the discipline for organizing and
controlling evolving complex software systems. SevéxaM tools and systems
exist that automate and integra&8€M tasks like version identification, system
modeling, product construction, or team work coordination. However, the choice
of an SCM system is still a long-term commitment: EaslcM system comes
with its own SCM policy, which is often centered on a specific environment and
thus seldom interoperates, yet alone integrates with alaan tools. This is
unfortunate, as the entire software development process must be adapted to fit the
system’sSCM policy.

We wantSCM systems that adapt to their users, rather than vice versa. As a
foundation, we propose a unified versioning model, wbesion set modeNer-
sion sets denote versions, components, and configuratiofesatyre termsthat
is, boolean terms ovéfeature value-attributions. Througlfeature logica well-
established formalism for knowledge representation and logic programming, we
define the semantics 8iCMtasks and concepts. Our results are as follows:

Unified versioning. Version sets provide one single formalism to express all ver-
sioning dimensions as well as constraints on them, integr&ig con-
cepts like revisions, variants, workspaces, and configurations in one single
model. ThesCM policy is not constrained by decisions made in lo&EM
layers.

Integration of changes and revisions.Configuration constraints, expressed in
feature logic, allow us to capture the entire range of temporal versioning—
from the rigidness of versions-oriented models to the flexibility of change-
oriented models.

Consistency checking under ambiguity. Through feature logic, we deduce the
features and the consistency of configurations as well as derived compo-
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viii Abstract

nents and thus describe how features propagate ils@e process. In-
consistencies are detected even when the configuration description is in-
complete or ambiguous. Ambiguity is not only tolerated in consistency
checking; at allSCM layers, sets rather than single items are the primary
objects ofSCMtasks and procedures.

We have implemented the version set model in an experimsgtelsystem
namedICE for Incremental Configuration Environmenrt ICE, the version set
model shows up numerous user-visible benefits. Througlffisea virtual file
system, users can access version sets consisting of arbitrary combinations of re-
visions, changes, variants, and workspaces. Individual versions are accessed as
files; version sets as a whole can be handled via version directories or through
the well-known C preprocessor representation. On top ofEg specificSCM
protocols are realized efficiently through simple file operations on version sets.
These features mak€E a universal platform for individual well-structure&xtm
policies.



Zusammenfassung

Software-KonfigurationsmanagemesiCfv, auch Software-Verwaltunybefal3t

sich mit der Organisation und Kontrolle des Entwicklungsprozesses komplexer
Softwaresysteme. Heute gibt es zahlreisigd+Werkzeuge unsCM-Systeme,

die Aufgaben wie Versionsbezeichnung, System-Modellierung, Programmkon-
struktion oder Koordination der Gruppenarbeit automatisieren und integrieren.
Allerdings bedeutet die Auswahl ein8EM-Systems immer noch eine langfristi-

ge Verpflichtung: JedeSCM-System bringt sein eigenes Vorgehensmodell mit,
das oft auf eine bestimmte Umgebung zugeschnitten ist und deshalb nicht mit an-
derenSCM-Systemen zusammenarbeitet, von einer Integration ganz zu schwei-
gen. Das ist um so bedauerlicher, da die gesamte Software-Entwicklung an die
jeweilige Verfahrensweise angepal3t werden muf3.

Wir mdchtenSCM-Systeme, die sich ihren Anwendern anpassen, statt umge-
kehrt. Als Grundlage schlagen wir ein vereinheitlichtes Versionierungs-Modell
vor, das Modell derversionsmengen.\ersionsmengen kennzeichnen Versio-
nen, Komponenten und Konfigurationen duFeature-Terme Boolesche Terme
Uber Ausdutke der Art(EigenschaftWert). Mit Feature-Logikeinem etablier-
ten Formalismusufi' Wissensre@sentation und logische Programmierung, defi-
nieren wir Aufgaben und Konzepte d8eM. Im einzelnen erhalten wir folgende
Ergebnisse:

Vereinheitlichte Versionierung. Versionsmengen sind ein einheitlicher Forma-
lismus, mit dem alle Dimensionen der Versionierung als auch Querbezie-
hungen ausgedckt werden. Dadurch werd&SCM-Begriffe wie Revisio-
nen, Varianten, Arbeitsumgebungen, und Konfigurationen in ein einziges
Modell integriert. DassCM-Vorgehensmodell wird nicht durch Festlegun-
gen in untereisCM-Schichten eingescankt.

Integration von Anderungen und Revisionen. Konfigurationsbedingungen in
Feature-Logik decken das gesamte Spektrum zeitlicher Versionierung ab —

iX



X Zusammenfassung

von der Strenge der versionsorientiers&iv-Modelle bis zur Kombinati-
onsfreudigkeit deafiderungsorientiertesCM-Modelle.

Konsistenzprifung unter Mehrdeutigkeit. Mit Feature-Logik bestimmen wir
die Eigenschaften und Konsistenz von Konfigurationen als auch abgelei-
teter Komponenten und beschreiben so, wie sich Eigenschaft&Civh
Prozel’ fortpflanzen. Unstimmigkeiten werden auch dann entdeckt, wenn
die Konfigurationsbeschreibung unvodiatiig oder mehrdeutig ist. Mehr-
deutigkeit ist nicht nur bei der Konsistengfuhg zubissig; auf allesCM-
Ebenen arbeiten dieCM-Verfahren mit Versionsmengen statt \ersionen.

Wir haben das Modell der Versionsmengen in einem experimentgetam
System namen€E implementiert (CE = incremental configuration environment,
inkrementelle Konfigurations-Umgebung). IQE zeigt das Modell der Versi-
onsmengen zahlreiche Vorteilarfden Benutzer.Uber dasFFS ein virtuelles
Dateisystem, &iinen Anwender Versionsmengen bearbeiten, die aus beliebigen
Kombinationen von Revisionen, Varianten und Arbeitsbereichen bestehen. Ein-
zelne Versionen werden als Dateien angesprochen; Versionsmengen als ganzes
kdnnenuber Versions-Verzeichnisse oddyer die wohlbekannte C-8pirozessor-
Darstellung bearbeitet werden. NfiESals Grundlage lassen siSitM-Verfahren
durch einfache Dateioperationen auf Versionsmengen effizient realisieren. Diese
Eigenschaften mache@E zu einer universellen Plattfornuifindividuelle, wohl-
strukturierteSCM-Vorgehensmodelle.
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The State of the Artin SCM






Chapter 1

Configuration Management

We begin with a short presentation of software configuration management. We
show why software configuration manageme®CN) is important in creating
complex software, we show the procedures require8@y, and we give a brief
survey of theSCM models andsCM functionality areas as supported by today’s
automate@&sCM systems.

1.1 The Name of the Game

In software development, nothing is as persistent as change. Typically, we find
several individuals producing, changing, and exchanging common and individual
software parts, all oriented towards a common goal. Often, this common goal
is not a single static product, but a dynamic collection of components destined
to work with each other, where not all assemblies may result in a complete and
consistent product. There may be hundreds or thousands of such components,
with several hundred persons at different sites maintaining and changing them;
the entire development process becomes a continuous history of changes and im-
provements. To keep all these multi-version, multi-people activities under control,
the need foconfiguration managemeatises.

Configuration managemergi) is the discipline for organizing and control-
ling evolving systems. Configuration management is an old discipline, born out
of systems manufacturin@M mandates procedures for identification of compo-
nents and their assemblies, for controlling releases and changes, for recording the
product status, and for validating the completeness and consistency of a product
[IEE88, IEE9QQ]. RecentM definitions [Dar91] also include areas like construc-
tion management, process management, and team work control.

3
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1.2 From CMto SCM

Software configuration manageme8t) goes beyond theseM procedures in
several ways. First, few things are as malleable as software. This adds special
complexity to configuration management because changes are easy to make, and,
in fact, occur more often than in traditionaM areas. Second, software is easily
duplicated. There may be multiple copies of a software component, some private,
some public, each having its individual set of changes which may diverge in time.
Third, software is complex. Applying a change in a single component may in-
duce hard-to-trace failures in other components. It is these properties that make
software development difficult, and which mak#& significantly harder when
applied to software development.

SCM also differs from traditionaCM since all components are under com-
puter control. Hence, software configuration management can be widely auto-
mated, compensating for the added complexity. Automation applies to most of the
identification and control tasks, to construction management as well as to com-
pleteness and consistency maintenance. A€M tools can be integrated into
software development tools, which run on computers as well. Today, there are
severalSCM tools available that automa&cM procedures. Som@CM systems
encompass the enti8CM process by combining several tools and techniques. In
this chapter, we give a brief survey 8EM functionality, as addressed by these
systems.

1.3 SCM Procedures

A standard definition of configuration management [IEE88, IEE90] mandates the
following CM proceduregcited from [Dar91)):

Identification. Reflects the structure of the product, identifies components and
their type, making them unique and accessible in some form.

Control. Controls the release of a product and changes to it throughout its life
cycle by having controls in place that ensure consistent software via the
creation of a baseline product.

Status Accounting. Records and reports the status of components and change
requests, and gathers vital statistics about components in the product.

1The IEEE SCMstandards [IEE88, IEE90] denote componentscbrfiguration items the syn-
onymsconfiguration objecbr simply objectare also found.
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Audit and Review. Validates the completeness of a product and maintains
consistency among the components, ensuring that the product is a
well-defined collection of components.

RecentSCM surveys [Dar91] broaden this definition to include procedures
like construction management, process management, and team work control:

Manufacture. Manages the construction and building of the product in an
optimal manner.

Process ManagementEnsures the carrying out of the organization’s
procedures, policies and life cycle model.

Team work. Controls the work and interactions between multiple developers.

When applied to software development, th€sé procedures can be easily
carried out with computer support, since all software components are under com-
puter control. Several software configuration managen®Dtif tools and sys-
tems are available today, automating some or all of ti@deprocedures and
providing a wide range of functionality.

1.4 SCM Models

In [Fei91a], Peter H. Feiler made a first approach to clasgifiyl functionality.
He examines the software process as it is enforced by exi8tiWsystems and
distinguishes fouconfiguration management mode¢gch introducing specific
functionality:

Checkin/Checkout Model. The basicSCM model introduces the concept of a
repositoryholding multipleversionsof a product component. Developers
can copy versions from (check out) and to (check in) the repository.

Change-Oriented Model. As its name says, the Change-Oriented Model fo-
cuses orchangegather than on versions. In this model, versions are the
product ofchange seapplied to a baseline. This model is useful for prop-
agating and combining changes across users and sites.

Composition Model. The Composition Model extendsCM from the compo-
nent level to the system level, introducisgstem modelsiescribing the
system structure andonfigurationsdenoting versions of several compo-
nents.Consistencyrssues are also found here.



6 Configuration Management

Long Transaction Model. The Long Transaction Model introduces the notion
of aworkspacewhere developers are isolated from each other’s changes.

Since Feiler’s survey, many neBCM systems have emerged, and many have ex-
tended their initial functionality to incorporate functionality that was previously
found in otherSCM models. Although all of todaySCM systems are essentially
based on one of thescM model, and although no significantly n&&&M mod-

els have emerged, a more fine-grained approach is required to capture the entire
spectrum of functionality irBCM systems.

1.5 SCM Functionality Areas

In [Dar91], Susan Dart uses a typic&EtM scenario to define a set 8M func-
tionality areasusers expect from todaysCM systems, reproduced in figure 1.1
on the facing page. Although sons&M aspects are missing (notabkariants
anddistribution),it still constitutes a valid schema to capt@eM functionality.

Dart distinguishes between team-centered and process-centered functionality
areas. Theeam-centeredunctionality areas deal with thiechnical aspectsf
software configuration management:

Components. Identify, classify, store and access the components that form the
product.

Structure. Represent the architecture of the product.
Construction. Support the construction of the product and its artifacts.

Team. Enable a project team to develop and maintain a family of products.

In contrast to the team-centered areas,fdleress-centerefinctionality ar-
eas (shown in grey) cover management issues:

Auditing. Keep an audit trail of the product and its process.
Accounting. Gather statistics about the product and its process.
Controlling. Control how and when changes are made.

Process.Support the management of how the product evolves.
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Construction Structure
Building System Model
Snapshots Interfaces
Optimization Team Relationships
Change Impact Analysis Selection
Regeneration Consistency
Auditing Workspaces
Conflict Resolution
Families
History Versions
Traceability - ;
Logging ) Conflguratl_ons )
Versions of Configurations
Baselines
Project Contexts
Lifecycle Support Repository
Task Management Kinds of Components
Communication
Documentation Components
Access Control
Statistics Change Requests
Status Process Bug Tracing
Reports Change Propagation
Partitioning
Accounting Controlling

Figure 1.1:CM functionality requirements (after [Dar91])

In this part, we give an overview on the spectrum of functionality in today’s
SCMsystems, following the classification of Dart’s survey, and treaidgl mod-
els with their typical concepts. As our work is primarily concerned with the tech-
nical aspects 06CM rather than with the process areas, we focus on the team-
centered functionality areas and only sketch the process-centered functionality
areas. As a conclusion, we identify requirements for fuBE#® systems.

La maintenance des logiciels de grande taille est trés codteuse.
Cependant, ce theme est souvent ignoré des chercheurs.

— JEAN-MARIE FAVRE, Vers une représentation multi-langages
et multi-versions des programmes






Chapter 2

Components Functionality

We present the component functionality area, as realized idtibekin/Checkout

Model. A central repository, shared among developers, holds all component ver-
sions as they are created. Versions are accessed by copying component versions
from the repository to a private space (check out) and copy them back again into
the repository (check in). The Checkin/Checkout Model is the simplest and oldest
SCM model; its typical realizations are Rochkin@surce Code Control System
(scc9 [Roc75] and Tichy’sRevision Control SysteniRCS) [Tic85]. As an al-
ternative, we also take a look at tdange-Oriented Modelyhich focuses on
managinghangesnstead of versions.

2.1 Versioning Dimensions

Software products are commonly broken down into seveoatponentsyhich
are created and maintained by different people. As these people apply changes
to software components, they create new compomergions. Each version is
one of several instances of a single component. This implies that two versions
of a component should be more similar to each other than any two components
are. Depending on the context, the unqualified word component denotes either all
component versions or one single version.

Depending on the intentions of the creat®¢M literature divides versions
into threeversioning dimensiongEC95]; ideally, all these dimensions should be
fully orthogonal to each other.

Historical versioning. Versions that are created $oiperseda specific version,
e.g. for maintenance purposes, are caliedsions[Win87]. When a new

9
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revision is created, evolution of the original version is phased out in favor of
the new revision. In practice, a revision of a component is usually created
by modifying a copy of the most recent revision. The old revisions are
permanently stored for maintenance and documenting purposes; they form
the version history orevision historyof the component.

Logical versioning. In contrast to revisions, a variant is created ask@rnative
to a specific version. They are createdbitanchesthat is, parallel devel-
opment threads that may eventuallyripergedwith the main development
thread.Permanent varian@re created when the product is adapted to dif-
ferent environments. Variance can again arise in several dimensions, in-
cluding varying user requirements and varying system platforms, but also
variants for testing and debugging. Thegwiance dimensioneeed no
more be orthogonal and be subject to several constraints.

Cooperative versioning. A temporary varianis a variant that will later be inte-
grated (or merged) with another variant. Temporary variants are required,
for example, to change an old revision while the new revision is already
under development. We will discuss temporary variants in the context of
cooperation strategies in section 5.5.

2.2 \Versioning Models

Figure 2.1 on the next page illustrates the difference between the various version
kinds. The boxes denote various versions as they are created; an arrow from
versionA to versionB indicates thaB was created based @t The entire graph

is theversion graptof the component, showing how each version was created.

In a version graph, theCMdistinction between revisions and variants is prag-
matic; deciding whether a version is a revision or a temporary variant or a perma-
nent variant can only be decidadposterioriwhen taking the later version graph
into account. Upon creation of a new version, the developer must choose a ver-
sion kind depending on the expected history. Since the motives of the developer
may change, it should be possible to change the version kind later.

In mostSCM tools and systems, the versioning dimensions are addressed by
separate concepts; changing the version kind thus is a non-trivial task. Also, early
version control tools likessCCS[Roc75] orRCS[Tic85] were primarily conceived
for revision and change control; variance was managed by dedicated variant con-
trol tools like the C preprocessati®P [KR89], discussed in section 2.6.1.

1As stated in section 3.2.2, this is calleisaderived-fronrelation.
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Variant

Figure 2.1: Version kinds in a version graph

Recently, new versioning models have emerged that overcome the limitations
of version graphs. In [Rei89], Reichenberger coined the temmogonal version
managementas implemented in theOODOO SCMtool [Rei95]. In orthogonal
version management, the universe of all components, variants, and revisions con-
stitutes a three-dimensional space, titgect pool,from which projectionscan
be chosen to select groups of variants, revisions, or components, as illustrated in
figure 2.2 on the following page.

In[EC95], Estublier and Casallas also propose a three-dimensional versioning
model, using the historical, logical, and cooperative dimensions, as discussed
above. In contrast to Reichenberger’s orthogonal version management, however,
each dimension is accessed using different kinds of queries or services, according
to the specific needs.

2.3 ldentifying Component Versions

Along with the creation of new versions comes a consistent version identification
scheme. It is common practice ®«CMto use different identification schemes for
revisions as well as permanent and temporary variants.

2.3.1 Identifying Revisions

Revisions are typically identified bgevision numbersvhich reflect their cre-
ation date: the most recent revision is the one with the highest revision number.
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Components

\

Variants

Revisions

Object Project Revision Object
pool component group

Figure 2.2: The object pool and some of its projections (after [Rei89])

Numbering schemes include single integers—the first revision is named 1, the
second 2, and so on, as GLEARCASE [Leb94]—and pairs of integers as in
SCCS[Roc75] orRCS|[Tic85], sometimes called the release number and the level
number. An increment in the release number (for instance, from 2.2 to 3.1) indi-
cates a major change, an increment in the level number (from 3.1 to 3.2) indicates
a minor change. All revision control tools allow for identifying revisions by the
revision datge.g. the time the revision was created).

In the Change-Oriented Model, revisions are identified by a list of changes
applied to the baseline, as discussed in section 2.7. The individual changes
are named; a version identified bygfix-3, extension-5 thus has the changes
bugfix-3 andextension-5 applied.

2.3.2 Identifying Variants

Permanent variants are usually named instead of numbered, since they are not
implicitly ordered. One method, realized in tBeEARCASESystem is to assign
names to edges in the version graphuf.c@ @/main/new_GUI/color denotes

a path in the version graph of the compongmtf.c. First, the path to the main
variantis chosen, then the new graphical user interfacs)from this main vari-

ant, then the color variant of tlUl. As shown in the example, this identification
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scheme imposes a hierarchical order on the variants and is restricted to pathsin the
version graph: the specificatiabuf.c@ @/color does not make sense, because
the major variants are not specified.

Other SCM systems use an approach independent from the version graph.
They assign a set @ittribute/valuepairs, where each attribute reflects a variance
dimension. For instance, a component occurring in several variants for multiple
languages and multiple operating systems can be identified by two variance di-
mensiondanguageandoperating-systerranguagemay take values likenglish
germanfrenchand so on, whil®perating-systerns eitherunix, windows or mac
Such schemes are also calletfribution schemesThey are used in high-level
SCM systems likeADELE [Est85, Est88, EC94] or in thattributed file system
(AtFS) of SHAPE[LM88, Mah94] as well as in low-level variant control tools like
the C preprocessor, which we discuss in section 2.6.1.

For temporary variants, various identification schemes exist. Rt®and
SCCSway is to introduce additional numbering levels. That is, a variant of the
original revision 1.2 is named 1.2.1.1, with subsequent revisions 1.2.1.2, 1.2.1.3,
and so on. INCLEARCASE, there is no special distinction in identifying version
kinds.

2.4 Determining Version Differences

In order to determine changes made to software, users must be able to determine
the differences between versions. A basic procedure for this taektifle com-
parison[Tic84, MM85], as realized in th&/NIX DIFF program.DIFF takes two

text filesA andB as input and generates a minimal set of changes (i.e. line dele-
tions and inclusions) that are necessary to conento B. In figure 2.3 on the

next page, we show the outputmi-F applied to two text filesichy-cm anddart-

cm; in the DIFF output, lines occurring itichy-cm only are prefixed with £”;

lines occurring indart-cm are prefixed with >”. DIFF andDIFF-like tools are

the base of mangCMtools and systems, since they are convenient for reducing
the size of repositories (see section 2.5 for details).

Using DIFF is accurate for text data, since we can easily distinguish com-
mon lines from differing lines and manual changes are usually confined to small
regions. Differences that affect the entire file are not well handled bpitreal-
gorithm. This is especially true for non-text files, such as pictures, machine code
files, or compressed files, where a minimal change can affect the contents of the
entire file. In the last years, several improvements on the origir& algorithm
have thus been developed; it has been empirically shown that these improvements
show better performance thaiFF, notably on binary data [HVT96].
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diff dart-cm tichy-cm
2c2
dart-cm tichy-cm < management is a
Configuration Configuration -
management is a management is the > management is the
discipline discipline 4,5c4,5
for controlling of organizing and < for controlling
the evolution of controlling evolving < the evolution of
systems. systems.
> of organizing and
> controlling evolving

Figure 2.3: Finding textual differences withFF

To determine code differences in well-structured data, such as programs, a
structured representation is more effective than the textual representation. In sec-
tion 5.6, we discuss methods to determine code differences in abstract syntax
trees.

Historically, the primary objective of determining differences between ver-
sions is to save space when storing multiple versions at once, as discussed in
section 2.5. However, the difference must also be interpretable by humans to
find out what exactly changed. For these purposes, editors that keep track of
changes [MAM93, WG95] have been created; they track and express differences
in terms of user interactions rather than in terms of changed blocks of data.

2.5 Storing Component Versions in Repositories

As developers create new versions of components, old and new versions must be
stored persistently such that one can identify the product evolution and such that
earlier versions can be reconstructed.

2.5.1 SCM Repositories

Early SCMtools like SCCSandRCSintroduced the concept ofrapositorywhere

the component versions are stored together with the re&tatinformation. A
repository does not store each version on its own, since that would require too
much space. Instead, it exploits the commonality between versions by storing
only thedifference(also calleddeltag between versions. The mechanisms used
vary fromSCM system tocSCM system RCSstores the most recent version as full
text together with the differences (so-callexverse deltgso earlier versions. In

the SCCSsystem, each text block is tagged with the version(s) the block belongs
to. Most today’'sSCM systems are based on eitherR@Sor SCCSapproach.
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2.5.2 Database Repositories

Emerging from the requirements of computer-aided desigiD], substantial ef-

forts have been made to store composite and versioned objects in databases. The
common approach is to extend entity-relationship models by expécstion rela-
tionshipslike derived-fromrelationshipsijs-part-of relationships, and so on; we
discuss such relationships in section 3.2.2.

Recently, such database technology has also been introduced in software en-
gineering environments [Dit89]. For instance, IRSEN software engineering
environment is centered aroundgaaph databasehich supports version rela-
tionships [SS95]. But theeSENauthors also state that still there is no database
fulfilling all needs of software engineering environments [ESW93].

2.6 Managing Variance
2.6.1 CPP “Repositories”

A completely different “repository” concept used for variant management is real-
ized in the C programming language. All variants are stored in a single component
visible to the programmer; variant-specific parts are enclosed in C preprocessor
(CPP #if ... #endif directives. As part of the compilatioapPPselects a single
variant from the source code determined by a conjunction of attribute/value pairs.
CPPevaluates eachif -expression, with any attribute being replaced by its re-
spective value. The code piece enclosed bwthe... #endif is included only

if the #if -expression evaluates to a non-zero value.

As shown in figure 2.4 on the following page, invocation@#P with the
attributesTICHY set totrue andDATESset t01995 selects exactly the version
tagged with the formul@ICHY && DATE >= 1994

UsingCPPR specific environments are describeddmyfiguration fileghat de-
fine attribute values reflecting the properties of a specific environment. Such def-
inition files can also be generated automatically. Tools Ak@OCONF[Mac94]
run a series of tests to determine the features of the environment and create an
appropriate configuration file.

Itis common to seeonditional compilationas exemplified byCPP, as a pro-
gramming language feature. In our context, conditional compilation should rather
be regarded as a compiler- and language-independent version-control technique.
In fact, preprocessor use for other purposes than version control is highly dis-
couraged. In [Str94], Bjarne Stroustrup, the designer of thé frogramming
language, states that one of the aims eftGvas to makeCPPredundant and
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cm-defs cpp -D TICHY=true
Configuration -D DATE=1995 cm-defs
#if TICHY && DATE >= 1994 Configuration
management is the management is the
#else discipline

management is a of organizing and

#endif controlling evolving
discipline systems.

#if TICHY && DATE >= 1994

of organizing and cpp -D TICHY=false cm-defs
controlling evolving Configuration

#else management is a

for controlling discipline

the evolution of for controlling

#endif the evolution of
systems. systems.

Figure 2.4: Selecting versions witPP

to “banishCPPinto the program development environment with the other extra-
linguistic tools where it belongs”.

In the extra-linguistic context 8CM, conditional compilation is recognized
as a “flexible and general scheme” [GIJM91] and called “normal industry prac-
tice” [GMSW89]. The main advantage of conditional compilation is that vari-
ance is explicitly placed under the control of the programmer, who can view and
edit several variants at once. Conditional compilation is thus frequently used to
enrich revision-oriente8CM systems with orthogonal variance support. Unfortu-
nately, as variance grows, tl®Pfile can become so strewn wittPPdirectives
that it is hard to understand, yet harder to change. Hence, the need for dedicated
variant-handling tools arises.

2.6.2 Multi-Variant Editors

On the component level, the problem of handling multiple variants was addressed
by variant-specific editorgxemplified by theP-EDIT and MVPE editors devel-
oped byIBM [SBK88]. These editors follow thePP paradigm, but allow for
editing arbitrary version subsets. Only a single version is presented and edited,
but the color of each text part indicates whether the text part (and the subsequent
change) applies to the single version only or to several versions at once. For
transparency, the user can change the presented version while editing. A similar
functionality was implemented by Abrahamsen in ttrerparse-edit-mode for
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the GNU EMACS editor [Abr95], allowing users to examine and edit a restricted
view of aCPPfile. The CPRparse-edit-mode also allows users to color text and
mark text as read-only based on thePvariable settings. A third approach is
presented by Narayanaswamy [Nar89], where a variant-specific editor encloses
differing code pieces icPPlike directives.

When program code is stored not as text, but aalzsiract syntax trestruc-
ture editors can make variance explicit by supporting versioned subtrees and al-
lowing the user to switch between variants. Such interactive variant selection is
found in thePSG[BS86, SGS91, Sch95] an#SEN[ELN ™92, SS95] program
development environments. As the common code is stored in the common su-
pertree, the user can apply changes to all configurations by changing the common
supertree only. As shown in [Sch95], such approaches can be combined with syn-
tactical and semantical analysis, resulting in automatic consistency checking. The
problem is that changes occurring near the top of the syntax tree result in distinct
version subtrees, which may have identical, but unshared subtrees.

Multi-variant editors have not gained much acceptance. This may be due to
the fact that traditional techniques (such as conventional text editorsRipuais-
age) suffice in practice, or that users prefer open, tool-based environments to spe-
cialized program development environments. Another reason may be that recent
SCMresearch introduced other concepts for applying changes to several versions
at once, as discussed in section 2.7.

2.7 Managing Changes

In the concepts discussed so far, individuatsionsof components were identi-
fied and managed. As an alternative, one can see a version as the rebalgés
applied to some original version baselineThis is the basic idea of thehange-
Oriented Model,as realized in thesCM systemseEPOS[LCD*89, MLG193]
andAIDE-DE-CAMP [Har89], where changes, rather than versions, are identified,
composed and applied on baselines.

In the Change-Oriented Model, changes are individual entities. For instance,
DIFF output, as discussed in 2.4 on page 13, may be regarded as a change rep-
resentation. Related changes, which may involve several components, can be
grouped intachange set&lso calledpatche¥to ensure that they be applied as a
single entity.

Using a specialized stream editor, like tbh8lIX PATCH program, one can
apply change sets on a baseline and create the changed version from the original
version or vice-versa. As an example, consider figure 2.5 on the following page,
where the patclichy-patch (the output of théIFF run in figure 2.3 on page 14)
is applied to the baselirgart-cm. In dart-cm, PATCHremoves all lines prefixed
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tichy-patch

2c2
dart-cm < management is a patch dart-cm< tichy-patch
Configuration - Configuration
management is a > management is the management is the
discipline 4,5c4,5 discipline
for controlling < for controlling of organizing and
the evolution of < the evolution of controlling evolving
systems. systems.

> of organizing and

> controlling evolving

Figure 2.5: Applying changes witPATCH

with “<” and inserts the lines prefixed with>", resulting in the “patched” text
on the right (which is actually thigchy-cm text from figure 2.5).

The main differences between change-oriented and version-oriented models
are summarized in table 2.1 on the next page. The principal advantages of the
Change-Oriented Model over version-oriented models are:

A natural link to SCM processes.Most SCM processes arehange-driven A
customer or developer issueshange requesLR), which is considered
by a configuration control boargCCB), and finally incorporated into the
product afterCCB approval. The Change-Oriented Model allows changes
to be identified as separate entities and thus linking them with change re-
quests as these are processed.

Support for accounting and controlling is improved. Knowing the set of ap-
plied changes is important for determining the features of the final product.
For instance, one can always determine whether certain faults have been
corrected or whether special extensions have been made. Also, change sets
may reveal dependencies between components that do not show up in the
system model.

Changes may be applied to several variants at onceRepresenting changes as
individual entities allows users to perform a change on a single version and
to propagatehat change to a whole set of versions (caeubitior), just
as a patch can be applied to files other than those it was generated from.

Many change combinations are possibleln the version-oriented models, each
version incorporates all changes leading up to that version. In the Change-
Oriented Model, one can choose for each change set whether it should be
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Version-oriented models Change-oriented models
Version space version graphs product-level changes;
(revisions and variants); attributes controlling
version attributes change application
Configuration Y component versions base version- 5 changes
Product white box approach black box approach
structure (query references the structure)) (structure transparent to the query)
Version rules expressions over expressions over
version attributes change attributes
Constraints conditions on conditions on
version attributes change combinations
(e.g. consistent variant selection) (e.g.cy impliescy)
Versioning explicit implicit
(members of the version graph (any change combination)
Combinability vm A
(m modules inv versions) (v changes)

Table 2.1: Version-oriented vs. change-oriented models (from [CW96a])

applied or not. For instance, one may create a version that excludes all
changes but the latest one, which is not possible in version-oriented models.

A problem with change propagation is that the user may not survey how his
change to a single version is propagated to the remaining versions. Another prob-
lem occurs with the ability of applying and combining arbitrary changes: one
must make sure that illegal combinations are excluded. Each application of a
change se€ must ensure that all chang€sthatC relies upon are applied as
well.

Until recently, change-oriente®ICM systems did not allow users to specify
such mutually exclusive changes. Only combinations resultingciovlict were
automatically excluded—that is, the change cannot be applied because the origi-
nal lines are not found in the base lifién [Mun96], Munch describes theiCov
system, a constraint-based system that allows users to structure the configuration
space. It remains open, however, whether these constraints could actually be used
to model “traditional” version graphs and thus result in a uni§ei model.

Another recent approach that attempts to unify change-oriented and version-
oriented models is thaSGARD system [MC96], which is realized on top of
CLEARCASE In ASGARD, each user groups his changes according to a specific
activity. An activity is a group of related changes (e.qg. fixing bug #327, extending
the editor, changing the font resolution, and so on) and can thus be defined as a

2See section 5.6 for a description of conflicts.
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process resulting in ahange setThis simple and intuitive scheme is useful for
organizingSCM tasks and will help to introduce change-oriented versioning in
practice.

2.8 Discussion

We have identified several concepts used for maintaining evolving components.
Various versioning models are used to denote variants, revisions, and components.
As Conradi states in [Est95, p. 80], there is not yet a common agreement on
basic versioning models. At least, the versioning models can be identified and
classified; see [CW96b] for a detailed discussion.

Tools like DIFF can determine the difference (or change, or delta) between
versions automatically; this is useful for maintaining repositories in which a mul-
titude of versions can be stored in a compact fashion. Using toolsCHeor
multi-variant editors, users can apply changes to several versions at once. More
advanced tools, especially suitable for structured texts (e.g. programs) will be
discussed in section 5.6.

In contrast to the Checkin/Checkout Model, where developers copy individual
versionsfrom and to a central repository, the Change-Oriented Model focuses
on changedeing applied to a baseline. Managing changes instead of versions
allows for smooth integration into comm@tTM processes and provides much
flexibility in combining change sets. Until recently, the Change-Oriented Model
lacked a notion of inconsistency across change sets. This is now addressed by
constraint-based systems likeCoV, although it still seems difficult to integrate
both version-oriented and change-oriented versioning in a unified model.

Both the Checkin/Checkout Model and the Change-Oriented Model are pri-
marily concerned with single components; support for comporedationships
is poor. Such structure functionality is found in tBemposition Modelwhich is
discussed in the following chapter.

My second remark is that our intellectual powers

are rather geared to master static relations

and that our powers to visualize processes evolving in time
are relatively poorly developed.

— EDSGER W. DIJKSTRA, Go To Statement Considered Harmful

To look back to antiquity is one thing, to go back to it is another.
— CHARLES CALEB COLTON



Chapter 3

Structure Functionality

We extendsCM from the component level to the system level, using the concepts
of theComposition Model.The central concepts in the Composition Model are a
system modetiescribing the system structure armhfiguration ruleslescribing

which component versions are to be selected. Developers operate on configura-
tions by composing a system from its components and by selecting the desired
version for each component.

3.1 Describing the System Structure

To build a software product, components are assembled to faoftaare sys-
tem. To keep the terminology simple, we denote the set of all software com-
ponents that form a product asftware systemany subset thereof eftware
subsystemand any unbreakable item asmponentA software system together
with any non-software items (such as documentation) formsadftevare product.

An unstructured set of components is not enough to describe a software sys-
tem. A system models required that describes the architecture of a software
system, that is, its structure, its components, and how to build it [Dar91]. Since
the system model evolves with the software system, it must be subjet of
procedures; it is a basicM principle that the system model must be explicit,
unambiguous and managed as an item in its own right [Whi91].

3.2 System Models for SCM

System models are commonly defined by describingréiationshipsbetween
the software items—that is, software components, subsystems, and systems. The
simplest system model describes a system as the aggregation of its components.

21
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Its basic relationship is-a-part-of. Anitem A is said to bepartof an itemB if B
containsA. Usingis-a-part-of, one can decompose a system into subsystems and
atomic components and thus describe item hierarchies.

Recent time has seen considerable advances in system modeling, especially
with the introduction of modular and object-oriented approaches SEdf pur-
poses, specialized system models have been developed. Biesidpart-of re-
lationships, these also reflect the relationships between versions.

3.2.1 AND/OR Relationships

Among the first concepts that included version concepts in a system model were
AND/OR graphgMNR83, Tic81]. In anAND/OR graph, aggregates (systems and
subsystems) are modeled AND nodes; an edge leading from AND nodeA

to a componer€ indicates tha€C is a part ofA (is-a-part-ofrelation). To model
version alternatives, speci@R nodes are introduced. Each edge leading from
anOR nodeO to a component indicates a possible alternativ@;is a possible
versionof O (is-a-version-ofrelation).

As an example, consider th&D/OR graph shown in figure 3.1 on the facing
page. The systel@is present in two versions@and 20. Version 10 consists of
the subsysterR and the componet. Ritself comes in two versionsQand 20;
version 10 of Ris built from two arbitrary versions of the componeAtandB;
version 20 of R requires specific versions éfandB.

3.2.2 Database Relationships

One of the drawbacks of theND/OR graph model is that it does not distinguish
between different version kinds: there is no way to determine an ordering between
versions. Such distinctions were introduced in later models. In his survey on ver-
sion modeling in engineering databases [Kat90], Katz replacés-th&ersion-of
relation by two new relations: This-derived-fronrelation models revision histo-
ries; theis-a-kind-ofrelation modelgeneric componentsthe set of all versions

of a component. His system model distinguishes four types of relationships:

is-a-part-of: A componen# is said to bepartof a componenB if B contains or
usesA. Bis thus either a client o&, usingA’s functionality, or an aggregate
containingA. is-a-part-of relationships model component hierarchies.

is-derived-from: A componentA is derivedfrom a componenB if A is a ver-
sion based oB. Typically, A is a revision ofB; Katz does not distinguish
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Figure 3.1: AnAND/OR graph (from [Tic88])

between revisions and variants. Usiisgderived-fromrelationships, one
can determine the version graph.

is-a-kind-of: A componentA is a kind of B if A is an instance of the generic
componenB. is-a-kind-ofrelations unite specific versions of a single com-
ponent.

is-equivalent-to: Some applications, especialBAD, provide a variety of com-
ponentrepresentationsThese can be tied together usiisgequivalent-to
relationships.

An example ofis-derived-fromandis-a-kind-of hierarchies is shown in fig-
ure 3.2 on the next page. The componght.Layoutcomes in the five versions

INote that the ternaerivationis more frequently used for denoting the relationship between source
components and derived components.
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is-a-kind-of

[LNRNRENY _
[N is-derived-from

ALU[0].Layout

ALU[5].Layout

ALU[3].Layout

Figure 3.2: A database relationship graph (from [Kat90])

ALU[0].Layoutto ALU[5].Layout ALUJ[O].Layoutis the original version; both
ALU[4].LayoutandALU[5].Layoutare derived from the versiokLU[2].Layout

Since Katz’s system model originates from maintaining design data, it pro-
vides no relationships between target components derived from source compo-
nents, as discussed in chapter 4; Consistency issues (see section 3.6) are left un-
addressed as well. Such issues, specific to software construction, were introduced
in specificSCM models, such as the one realized in @enfiguration Manage-
ment Assistan{CMA), discussed in section 3.6.2. It remains unclear, though,
how SCM operations—transitions between relationship graphs—are to be mod-

eled and how constraint relationships such as consistency or compatibility are to
be verified.

3.3 Selecting System Configurations

From a system model, tt&CM system (and the developers) can determine what
components are part of the system. To work on a particular set of components,
they determine a&onfiguration. A configuration is a collection of components
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tailored for a specific purpose [Whi91]. Typically, a configuration meets the needs
of a particular environment or user, which is identified dynfiguration rules
denoting the components and their respective versions.

The configurations described by configuration rules can be grouped into three
configuration types.

Bound configuration. A bound configuratiofLCS88] describes an unambigu-
ous configuration independent from a specific context, as the current time
or the state of other components. Bound configurations are typically used
to identify product releases as shipped to customers.

Generic configuration. In contrast to bound configurationsganeric configura-
tion [Tic88] (also calledoartially boundLCS88]) describes an unambigu-
ous configuration dependent on the context; for instance, a rule specifying
the most recent version of a component. Generic configurations are typi-
cally used in software development and production.

Abstract configuration. Both bound and generic configurations denote an un-
ambiguous set of components and versions. In case the rules are ambigu-
ous, the configuration specification is incomplete. We call such a configu-
ration abstracbecause of the similarity to abstract superclasses in object-
oriented design (see section 3.3.6 for details); the synomlymamic con-
figuration[Kat90], configuration templatéFei9la, Sch95]configuration
family [PF89], andambition[LDC*89, MLG"93] are also found. Ab-
stract configurations allow for describing sets of configurations and have
recently found increased interest in the domain of dynamically composed
systemspPCS) [SM95a, SM95h].

The configuration rules as realized 8¢M systems are discussed below.

3.3.1 Tagging Configurations

SimpleSCMtools like SCCSandRCSprovide bound configurations: specific ver-
sions are tagged with a label ¢anfiguration tay identifying the configuration.
This allows for the definition of @onfiguration baselinecRCSandSCCSdo not

2The termdynamic configurations prone to confusion, since it is widely used in the context of
adaptive systems as the ability to modify the structure of an application while the application continues
to operate [WS95]. The termwonfiguration templatsuggests an instantiation instead of a refinement.
The termconfiguration familyimplies a finite, well-defined set of possible configurations, which
need not be, and the terambition is too closely related with change propagation, as discussed in
section 2.7.
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allow for specifying the set of components actually included in the configuration.
This is handled by th€oncurrent Versions Systef@Vvs) [Ber90], which extends

the tagging mechanism to software systems and thus identifies the set of compo-
nents in the configuration. In all these simpleM systems, generic configuration

is supported only through selection of the most recent version.

3.3.2 Boolean Attribute Queries

The configuration rules of more advance@M systems reflect the respective
identification schemes, as discussed in section 2.3. The basic idea is to use
boolean expressions which must be satisfied by the identification term of selected
version.

The option spaces described by Liet al.[LCD*89] is closely related with
the Change-Oriented Model, where each change can be applied or not. Conse-
qguently, configurations are described by a formula in propositional logic, where
each proposition (calledption) may be true, standing for a change to be applied,
or false, meaning that the change not be applied.

In ADELE [Est85, Est88, EC94], variants are identified &fyributes,where
each attribute can have an arbitrary value; thus, one is not restricted to boolean
values as in the option space. The user can designate a configuration by specifying
a boolean term based upon the desired attributes ADE:E configuration rule

window-systera= x11A (currentV status# experimental

includes all components in a configuration whose window system is X11; only
current or non-experimental components are to be included. Revisions are se-
lected in a similar fashion by imposing constraints on dage attribute (e.g.
date< 18.0289). Through this flexible and general schemBELE supports

both bound and generic configurations.

In Nicklin's context mode[Nic91], a similar scheme is used. As an exten-
sion, attributes can be undefined: referencing an undefined attribute results in an
undefined value of the selection term. The richest model of boolean queries, how-
ever, is found in theASON system [Wie93], where full first-order logic may be
used, including existential and universal quantifiers. These queries can also be
used as generabnfiguration constraintgs discussed in section 3.6.1.

3.3.3 Preferences and Defaults

As mostSCM systems cannot handle ambiguity, they provide means to make
selections unambiguous. The idea is to provide special configuration rules for
these tasks:
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Preferences.A preferencaule applies if the selection is ambiguous. It selects
one “most preferred” version out of the selection.

Defaults. A defaultrule applies if the selection is empty. It makes the selection
contain one “default” version.

As an example for preferences and defaults, considesit#PE system. In
SHAPE configuration rules are specified inPROLOGIike syntax. Each rule
denotes alternatives of boolean conjunctions; the rules are specified according to
their preference: the most preferred versions come first, the least (the default)
comes last.

Figure 3.3 shows SHAPE configuration rule that implements a change of
a component status from “saved” to “proposed” (components are either saved,
proposed, or published).

i_test_rule :— gt(status, saved), max(version);
eq(status, proposed), eq(test_switch, on);
ge(status, published), max(version);
cut(Cannot bind $+ — something’s wrong here!).

Figure 3.3: ASHAPEconfiguration rule

The first preference clause selects the most recently published version with
status saved or better. If the first clause fails, such a version is is not available.
Hence, the second clause chooses a proposed version dedicated for testing (with
a test switch set ton). If this clause again fails, the negtefaultclause applies,
stating that all remaining objects are to be chosen from the home baseline—that
is, the most recently published version. If this clause also fails, the final clause
issues a diagnostic and aborts the selection.

3.3.4 Preferences in Queries

Another approach for specifying preferences and defaults is foumthiabase
queries. When databases are used as component repositories, database queries
are used to retrieve specific componentversions. In [LL87], Lacroix and Lavency
point out that traditional database query languages are not sufficient for selec-
tion of configurations. Since configuration queries gutensionalthey denote
objects by their properties rather than by their name (or exact version specifi-
cations). But intensional queries may be ambiguous and result in more than one
selected version; tle®CM user must select the best suitable version manually. The
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select the instances of CONF
having
the version of MAIN
having
same TARGET as the version
of PROCESS-DATA and
same TARGET as the version
of GET-DATA
from which
prefer those
having
the version of MAIN
having STATUS = tested
prefer those
having
the version of PROCESS-DATA
having STATUS = tested

Figure 3.4: A database selection rule with preferences (from [LL87])

authors thus suggest to extend database query languages by preferences and de-
faults to make the selection process explicit. A self-documenting example of such

a database query, selecting component versions with a certain status, is shown in
figure 3.4.

3.3.5 Search Paths in the Version Graph

All query mechanisms discussed so far rely on versions tagged with a set of at-
tribute/value pairs; each query mechanism can be expressed by specifying a first-
order boolean formula which the selected versions must satisfy (for database se-
lection rules, second-order formulas may be required). Systems relying on other
identification schemes provide alternate configuration rules.

As discussed in section 2.3.2L EARCASE identifies versions by labeling
edges in the version graph. TBEEARCASEconfiguration rules are thusearch
pathsin the version graph. Search options can include the work areas, variants,
and revisions in either all components or selected subsets.

Figure 3.5 on the facing page illustrates the usage of configuration rules in the
CLEARCASESystem. Each rule, beginning with the keywaldment, contains
awildcard denoting the components it applies td"(applies to all components)
and aversion graph query.
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— Rules for maintenance to an old release:

— if the file is checked out, use this version.

element * CHECKEDOUT

— otherwise, use latest version on maintenance branch.
element * .../vs_fixes/LATEST

— otherwise, use the official V2 released version.
element * V2 -mkbranch v2_fixes

Figure 3.5:CLEARCASEconfiguration rules (from [Leb94])

If a query finds one or more versions, the latest version is taken; otherwise,
the next rule is tried. Each developer is assigned a set of rules describing his
particular environment.

3.3.6 Refinement of Configurations

Rather than disambiguating selections as soon as possible, adfevsystems
also handle abstract configurations, as discussed in section 3.3, and allow for
operating with several configurations at once.

The JASON system [Wie93] uses partial attribute descriptions to denote ab-
stract configurations. Abstract configurations are used as abstract superclasses of
further instantiated configurations; subclassed configurations inherit the attributes
of their superclassedASONthus realizes anbject-oriented5sCM model.

Figure 3.6 on the next page illustratBsSONconfiguration descriptions. The
configurationEMailSpecis defined as a subclass BlesignSpec an abstract
configuration denoting all electronic mail systems, inheritindoabkignSpeat-
tributes likecontentsversion or revision

Even more concrete (less abstract) configurations may be obtained through
further subclassing: Starting with an abstract configurationHikéilSpeg the
set of configurations is constrained through additional attribute specifications until
a fully instantiated (bound or generic) configuration is obtained.

3.4 Integrated Configuration Languages

Recently, specializedonfiguration languagdsave been developed that attempt

to integrate alSCM aspects of system modeling into one single formaliBaL,

the configuration language of tlRROTEUSsystem [TGC95], allows to express
variability in the composition of a system, including relationships between com-
ponents and versions, as well as the selection of a bound consistent configuration
(calledbindingin PROTEUS.
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In figure 3.7 on the facing page, we se@@L example modeling a family
of calculator programs namegialcProg. Theattributes section declares the
attributes by which the individual versions differ—in this case, one version has a
graphical user interfacexgui = true), and the other does not.

Theparts section declares the components of@acProg family; calc is a
member of theCalculator family, while math is a member of thenathlib family.

The user interface part, is only present in the graphical user interface version, as a
member of theXGUI component family; the non-graphical versiowgyi = false)
does not require such a component.

In PROTEUS primitive entities likeCalculator are mapped to physical files.
Again, this mapping can be subject to variability, as shown in figure 3.8 on
page 32—if theexpression attribute is set tanfix, the filesexpr.C andexpr.h
are chosen, and éxpression is set toreverse_polish, the filesrpn_expr.C and
rpn_expr.h are chosen.

Version selection is done by a simple instantiation of attributes; for instance,
by assigning the valuue to thexgui attribute and the valueeverse_polish to
theexpression attribute.PROTEUSalso allowspartial instantiationso refine the
selection incrementally.

The benefit of a full-fledged configuration language I@OTEUSIs that it
integrates sever&@CM aspects—in this case, system modelling, configuration se-
lection, and manufacturing—into one single formalism. The question is how far
such a formalism is more than the sum of its parts. If eBCM aspect is rep-
resented by yet another language feature, the language gets easily overloaded by
individual, non-orthogonal features.

DesignSpec: class

{
system: String,
contents: Document,
version: Integer,
revision: Integer

EMailSpec: family of DesignSpec
{

}

Figure 3.6:JASONconfiguration descriptions (from [Wie93])

system = “Electronic Mail System”
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family CalcProg
attributes

xgui: boolean default false;

end

parts
ui = if xgui = true then XGUI endif;
calc = Calculator;
math = mathlib;

end

end

Figure 3.7: Structural variability iRCL (from [TGC95])

3.5 Visualizing the Configuration Space

To keep track of the growing humber of possible configurations, users must be
able to conceptualize and visualize the configuration space. In this section, we
present some visualization techniques.

Version graphs. The first approach to visualizing the version space, and still by
far the most popular, is to display component-based version graphs and let
the user choose versions interactively. Version graphs are useful for sin-
gle components only and thus useful 82M tools realizing the Checkin/
Checkout model. In figure 3.9 on page 33, we see a revision graph as dis-
played inRCE[Xcc95, Tic95], arRCSsuccessor providing a graphical user
interface.

Version threads. To illustrate version selection for systems built from several
componentsyersion threadbave been suggested as notation, as shown in
figure 3.10 on page 34. Each system revision (shown on the left) consists of
one revision of each system component, as indicated by the specific version
thread. This notation does not support variants, even temporary ones, and
does not visualize consistency constraints.

Constraint formalisms. Both version graphs and version threads only show a set
of existing configurations, rather than visualizing the set of possible config-
urations. In [Gul93], Bjagrn Gulla presents a visualization of configuration
constraints using graphs. Nodes indicate configuration options, arrows im-
plications between options, diamonds stand for disjunctions and thick dot-
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family Calculator
attributes

expression: expr_type default infix;

end
physical
calc = (“Calculator.C”, “Calculator.h™);
expr = if expression = infix then
(“expr.C”", “expr.h”)
elsif expression = reverse_polish then
(“rpn_expr.C”, “rpn_expr.h")
endif ;
end
end

Figure 3.8: Mapping variability iftCL (from [TGC95])

ted lines represent mutually exclusive sets. Different abstraction levels are
obtained by defining new options as subexpressions (or subgraphs).

In figure 3.11 on page 35, users can choose between one of the mutually
exclusive option$M, X11, or SunView. After choosingX11, users have

the choice betweeHp9000, Dec, andSun3, while PM implies thelBM
machine just aSunView or Sparc imply the Sun3 machine.

As no technique is fully satisfying, it is obvious that the work on visualiza-
tion of configurations is still in its infancy. As Gulla himself states, “this is a
first proposal that will probably need refinements and validation in an industrial
environment.”

3.6 Interfaces and Consistency

Selecting an arbitrary configuration from a collection of components does not
suffice; as stated in section 1.3, the configuration must be consisteiSCMn
systems, we find maintenance of external consistency (respective to some spec-
ification) and of internal consistency (the syntactic and static correctness of a
program).
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Figure 3.9: Version selection fromRCE revision graph (from [Xcc95])

3.6.1 External Consistency

External consistencis consistency respective to a specification separated from
the software components. Typically, such a specification is coupled with the iden-
tification scheme; it can be expressed throaghsistency constraints the con-
figuration selection rule as discussed in section 3.3.

As consistency constraints usually apply to each possible configuration, they
are often separated from the actual selection rules. Each consistent configuration,
selected in a separate process, must satisfy these constraintiaSthiesystem,
for instance, allows to specifyonfiguration constraints first-order boolean for-
mulas on version attributes including universal and existential quantifiers. The
scheme is general enough to specify module interconnection constraints like “No
resource is provided by more than one component”, as illustrated in figure 3.12
on page 36.

Another generic approach is found in tBenfiguration Management Assis-
tant(CMA). In [PF89], Ploedereder and Fergany introduce the following relation-
ships to model source/target and consistency dependencies:

is-instance-of: Instance relationshipse used to model dependencies between
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Figure 3.10: Version threads (after [Gul93])

source components (e.g. source code) and derived components (e.g. object
code).

is-consistent-to: Two components are said to be consistent with each other if
“they correctly operate together”.

is-compatible-to: Two versions of a component are calleampatiblef
replacing one version with another still results in a consistent system.

Based on the semantics of the version attributes and these relationshipsiAhe
can determine the consistency of a configuration. However, as in M sys-
tems, consistency largely relies on user specifications.

3.6.2 Internal Consistency

In some cases, consistency violations can be determined automatically when the
actual contents of the software components are taken into account. For instance,
violations of thestatic correctnessf a software system can be verified. The sim-
plest way to determine violations is to rely on the build tools and check for failing
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Figure 3.11: A constraint diagram (after [Gul93])

build attempts; in chapter 4, we discuss h8®@M systems covering software
builds maintain the static correctness by determining the impact of a component
change and rebuilding all dependent components.

Besides this basic functionality, sons&€M systems infer and usiaterface
informationfor maintaining the static correctness for a configuration. Such an
approach is found in th&°SEN software development environment [ELEB2,

SS95]. Based on the module interfaces as specified in the components and the
inferred dependency grapiPSENcan ensure the syntactic and static correctness

of a configuration. In the proposed versioning model forrB&system [SGS91,
Sch95], such consistency violations can even be deduced for fine-grained changes
within components.

3.7 Discussion

The Composition Model extend®CM from the component level to the system
level. The system structure is expressed in a system model. Developers op-
erate on configurations by first composing a system from its components and
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Rule-2: constraint on (config: Configuration)
for-all comp-1, comp-2 in config.components:
comp-1 # comp-2 implies
for-all resource in comp-1.provides:
not comp-2.provides(resource)

Figure 3.12: AJASONconstraint specification (from [Wie93])

then by selecting the desired version for each required component. Several se-
lection schemes exist, from pattern-matching search paths in the version graph
via first-order boolean formulas to full-fledged database queries. Consistency is

ensured through appropriate selection schemes or through additional constraints;
SCM systems tailored for specific programming languages may also check for

internal consistency.

The Composition Model does not support changes as individual entities, as
does the Change-Oriented Model. As such, the Composition Model does not
provide special construction or team facilities. These facilities shall be discussed
in the following chapters.

Mahler: Is a configuration a description
or is it the result of applying the description?
Audience: Yes! (Laughter)

— SUMMARY OF SVCC’88 PLENARY DISCUSSION [Win88]



Chapter 4

Construction Functionality

Building a software system requires a system model enhanced with build infor-
mation. The simplest of these system modelshgiéd command filecontaining

a procedural description of the processing steps to build all derived components
of a configuration from the source components. Through more advanced system
models, a5CM system can support automated incremental software construction
and perform management of derived components.

4.1 Component Dependencies

For large systems, building a system from scratch can be very expensive, espe-
cially, if the system must be completely rebuilt after each change. The solution
to that problem is to determine the components affected by a change in a source
component. In general, a componénis said todependupon a componeri®

if a change inB might require changes iA such thatA remains correct. Whit-

gift [Whi91] distinguishes four types of dependency:

1. Animplementatiorof a component depends upon its specification.
2. A derived componerdepends upon its source components.

3. A software component depends upon the components whosgonality
it uses.

4. Documentatiorandprogramcode depend upon each other.

Most of these dependencies must be resolved manually after a change, but depen-
dencies of type 2 can be processed automatically thrauglemental construc-
tion.

37
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4.2 Incremental Construction

One of the first approaches for incremental software construction and probably
one of the most successful software tools ever written, was FeldnvexKE

tool [Fel79]. INMAKE, the system model is represented througdHakefile. The
Makefile declares the dependencies between source and derived components and
the processing steps to build derived components. At &80kE run, MAKE

checks the last modification date of all source and derived components. Each
derived component that does not exist or that is dependent on a younger source
component is rebuilt.

As an example, consider the simple Makefile shown in figure 4.1. Each de-
pendency is shown by a declaration of the fddmS; S - - - S5, meaning that the
derived componerid depends on the source componeng, ..., S,. The actual
commands buildin@ follow the dependency declaration. For instance tthe
component depends on the source comportentsandcommon.h; to build it,
the commandc -c tty.c is issued. For convenienc®BJECTS defines a list of
objects referenced &OBJECTS.

OBJECTS = tty.o display.o
editor: $(OBJECTS)
cc -0 editor $(OBJECTS)
tty.o: tty.c common.h
cc -c tty.c
display.o: display.c common.h
cc -c display.c

Figure 4.1: A simple Makefile

Should thety.c component be changed after a build, dieplay.o component
will not be rebuild, because it does not dependtgie. Only thetty.o andeditor
components will be rebuilt. Should tieemmon.h component change, all objects
must be rebuilt, since all depend oammon.h.

The problem withMAKE when used in aisCM context is thaMAKE does
not determine dependencies and that it does not know about component versions;
SOmeMAKE extensions likeGNU MAKE at least include conditional evaluation
and automatic check-out froRCSrepositories. Also, relying only on the mod-
ification date to determine changes may result in unnecessary rebuilds. These
problems were addressed by later build tools that allowed for automatic depen-
dency determination, versioned source access using the configuration selection
rules and for automatic identification of derived components with their prove-
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nance and build environment.

4.3 Determining Dependencies Automatically

With language-specific knowledge, build tools can automatically deduce depen-
dencies and the impact of changes. TN system [Cle88, Cle93], for exam-

ple, can automatically deduce dependencies by scanning source components for
appropriate statements. This scanning is language-dependent; for instance, com-
ponents written in the C or€& programming language are scannedtiniclude
directives.ODIN saves its derivation history across builds; this allows for deleting
intermediate components such as object files when the final system does not need
to be rebuilt.

Another language-specific approach is found in RAFIONAL software de-
velopment environment [FDD88, Mor88RATIONAL can determine the impact
of changes t@&DA programs—for instance, a change applying to comments only
does not cause any rebuilds.

An elegant and language-independent method for determining dependencies
is undertaken iIlCLEARCASE Through its virtual file system, discussed in sec-
tion 5.4.2, theCLEARCASE MAKE utility (called CLEARMAKE) monitors all file
accesses performed by the build commands and thus determines all dependencies
while the system is being built. For each derived compo@ertich file accessed
is considered a source component fias dependent upon.

4.4 \ersioned Software Construction

In all SCM systems supporting software construction, building a system is done
by specifying the desired configuration, as discussed in section 3.3. The main
problem is the identification of derived components, which must take the entire
build environment into account—that is, the versions of the source components
as well as the versions, parameters, and environment variables of the build tools.

In CLEARCASE, each derived component is tagged wittbil of material
(also callecbound configuration threawst BCT) describing the build environment.
The bill of material is determined automatically file access monitoring. The un-
fortunate side effect is that minor changes in the environment—for instance, the
change of an environment variable unrelated with software builds—may result in
an unnecessary rebuil€LEARCASEthus allows to distinguish betweenitical
environment aspects (those that cause a change in the derived components) and
non-criticalaspects (whose change does not imply a rebuild).

In the SHAPESystem, the user has a similar control about the settings that in-
fluence rebuilds. For each variant, the user can specify by WiMKE variables
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it is dependent upon. Hence, the change of a compilation flag may result in a re-
build, while the change of the installation directory may not. Similar approaches
have been undertaken by Kielmann [Kie92], who ugBeeLOGfor software con-
struction.

4.5 Attribute Propagation

The CAPITL system [RS91, AS95] uses a description logic caRedsistent ob-
jects with logic(POL) to identify components and to infer build plamL terms
are conjunctions ohame=- value pairs, calledattributes. Each component is
tagged with 22OL term denoting its attributes.

For the purpose of planning and building, six attributes are used:

code: a list of possible build expressions;

contents: the contents (e.g. source or object code) of the component;
provenance: the record of how the component was created;

form: its type when used as argument to a tool,

functionality: a description of what the component does; and
references: other components this component depends upon.

Through theprovenance attribute, each derived component is tagged with its
derivation historyand thus uniquely identified. Just asSHAPE, users can con-

trol which attributes cause differing variants and how attributes are propagated
from tools and source components to derived components.

As an example for attribute propagation, consider the tool specification rule
in figure 4.2 on the next page. The specificati@eLdebug describes aexe-
cutable C compiler whosdunctionality is to generate aobject_code from a
c_source. Thefunctionality F, which matches an entiROL term, is propagated
from the source component to the object component. Howevedbdesym and
opt attributes of the generated object codes differ. Tsedebug tool generates
debugging symbols and thus sets txg_sym attribute toyes; as it does not op-
timize, theopt attribute is set tmo. Using theCc_opt tool, these attribute values
are just inverted.

By making attribute propagation explicit and through its underlying well-de-
fined attribute logicCAPITL provides the most versatile identification scheme for
derived components found in todays<M systems. A$OL terms can also be
denoted as graphs (an alternate nan&ydic termg, they also provide a means
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Cc_debug: obj(
form = executable,
functionality =
func(in = obj(form = c_source, functionality = F),
out = obj(form = object_code(dbg_sym = yes, opt = no,
functionality = F),
contents = “(actual Cc executable code)”

),
Cc_opt: obj(

form = executable,

functionality =

func(in = obj(form = c_source, functionality = F),
out = obj(form = object_code(dbg_sym = no, opt = yes,
functionality = F),

contents = “(actual Cc executable code)”

)

Figure 4.2: Tool specifications DAPITL (after [AS95])

to unify attributes and relationships: each relatdnr» Y is represented by an
attribute inX with a value ofY and a name standing for the relation kind.

4.6 Optimized Software Construction

Most SCM repositories only store source components, since determining the dif-
ference between derived components (often binary files) does not lead to efficient
compression of the repository. MaiSCM systems provide aachefor derived
components (also calleabject poolor binary poo), where frequently used de-
rived components are stored.

When components are unchanged across versions, building a derived compo-
nent can be avoided when the derived component is still cached as the result of a
previous build. Such techniques are foungéiAPEandCLEARCASE of course,
the source components must not have changed in between. Besides caching de-
rived componentsCLEARCASE gains additional speed through distributed and
parallel construction. The correctness criteria for such build optimizations have
been formalized by Gunter [Gun96].
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4.7 Conclusion

Most SCM construction tools are descendantv#KE. Typical extensions in-
clude automatic generation of dependencies, versioned software construction that
propagate version identification from source components and tools to derived
components, and optimizations to reuse derived components from a central cache.

The more innocuous the modification appears to be,
the further its influence will extend
and the more the design will have to be redrawn.

— FYFE'S SECOND LAW OF REVISION



Chapter 5

Team Functionality

To allow for parallel work SCM systems provide the notion ofirkspacejso-
lating developers from each other’s chang&@M systems differ in the way work-
spaces are realized and in the spedcifioperation strategy-that is, how changes
are propagated across workspaces.

5.1 Cooperation through Workspaces

One of the central functionality areas $CM is team functionality.Team func-
tionality enables a team of developers to develop and maintain the software prod-
uct. The benefit of team functionality is that developers can work in parallel,
isolating individual developer’s changes from each other and coordinating the
propagation of changes.

The central concept in team functionality is therkspacegalso callediong
transactiondue to a similarity with database transactions [EGLT76, Gra81]). A
workspace is the individual area of a developer, isolating him from changes made
by others, and isolating others from his changes. Any propagation of changes
across a workspace boundary is an exp#civ operation.

A workspace is usually accessed as a file system. This is necessary because
the vast majority of software development tools cannot access its sources directly
from the repository, but requires sources in a file system instead. Hence, work-
spaces perform thimtegrationof a SCM system into a software development en-
vironment.

Other aspects of team functionality ar@operation strategiesdconflict res-
olution. When developers work in parallel, t&€M system must ensure that their
changes do not conflict with each other. This is realized through a cooperation
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strategy that either relies on locking components against changes or on merging
parallel changes. Finally, tr&CM system must provide support for projects that
span multiple sites.

5.2 Workspaces as Private Directories

The simplest workspace concept is that of a private file system (e.g. a user’s di-
rectory), copying versions from and to the central repository. This is the base of
the Checkin/Checkout Model, as discussed in chapter 2. Developers must copy
(or check ou} components from the repository into their workspace (a private di-
rectory), work with them and copy them baahéck in into the repository after
changes have been made. Besides the components the developer wants to change,
the workspace must also contain all components required for compilation, testing,
or searching; these must be checked out as well.

This component-based approach can be extended to systems; in fact, most re-
pository-base&CM systems following the Composition Model use this scheme.
The CVS system, for instance, allows for checking out all components of a sys-
tem at once, creating a private copy of the entire system source for each developer.
CVSprovides an automatic scheme that exports all changes from the private work-
space to the central repository and vice-versa, synchronizing the workspace with
the repository.

This “to-and-fro copying” scheme has one advantage, its simplicity. It also
has several disadvantages.

Copying is waste. Giving each developer a private copy of the entire system may
require huge amounts of storage resources. Copying can be affordable for
medium-sized projects; in fact, tl@/S developers state that the purchase
of additional mass storage for a new developer can be neglected when com-
pared to other work costs. But maintaining a copy for each developer is
unlikely for large systems with thousands and thousands of developers—
especially because every developer must build his own system copy.

Sharing is non-transparent. SomeSCM systems suited for large systems pro-
vide sharing mechanisms that allow developers to share environments. Un-
fortunately, sharing is non-transparent to the developers, who must take
additional care when accessing shared versions.

Components are copied away from version control.This is the central prob-
lem with copying schemes: a checked out component is no more under
SCM control. Neither can th8CM system save space by determining the
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version differences, nor can one USEM tools to determine the state of

a checked-out component, nor can build tools exploit equality of derived
components across workspaces. Developers can propagate changes and
component versions directly between workspaces, bypassirgfifeys-

tem.

These problems have led to the development of methods that allow developer
tools to access the repository directly, without the need of copying to and from a
repository. Using these methods, workspaces are actually parts of the repository
and fully underSCM control.

5.3 Workspaces through Application Interfaces

The first approach to overcome to-and-fro copying was the development of “stan-
dard” repositories that could be accessed through an application programmer in-
terface API). That is, all development tools must be extended such that they ac-
cess source components through the repository interface instead of the file system.

This approach has several advantages; in particular, it allows to overcome the
shortcomings of a file system, such as transaction insecurity, inappropriate object
identification, and so on. A developer’s workspace would consist of a configu-
ration rule, identifying the components and the respective versions. Developers
can share source components and derived components (which are stored in the
repository). For a survey of repository-based software engineering environments,
and the required repository techniques, see [BESS96].

The single, but fatal disadvantage of such encapsulated environments is that
still, a file system is the smallest common denominator between nearly all de-
velopment tools; the consequence is that even when using a standard repository,
users must still copy versions from and to the repository.

5.4 Workspaces through Virtual File Systems

The most successful approach to realize direct repository access is to provide a
virtual file systemmapping the repository into a file system. This ensures that
derived components are created within the workspace, placing them s@ther
control.

5.4.1 Explicit Version Access

On the component level, tieHAPEtoolkit provides a dynamically linked library
that interprets file names containimgrsion specificationsThis allows arbitrary
programs to access ti8HAPErepository directly, providing transparent version
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access. For instance, opening a virtual file fkeg.c:3.1 returns version 3.1 of
the fileprog.c. A similar approach is found thRATIONAL system.
A genericapproach is pursued in thaultiple dimensional file systertn-
DF9), as discussed by Fowlet al. in [FKR94]. In then-DFS, arbitraryservices
can be attached to a file system. For instance, a versioning service may provide
direct repository access through means of virtual file names.

Instead of extending file names with versioning informatiRCE provides
a library that hooks into theser interfaceRCE extends the standard file selec-
tion dialog with a version selection dialog, as shown in figure 3.9 on page 33.
Whenever a user selects a file for processing, he may also select a version to work
upon.

One problem is common to all these approaches: Versioning is explicit. There
is no way to switch between versions implicitly, without embedding the version
in the path name—or specifying the version in an interactive dialog. It may be
desirable, though, to access several components from a specific configuration,
without having to specify the version of each single component. This is realized
through implicit version access, as described below.

5.4.2 Explicit/Implicit Version Access

Instead of appending a version specification to a path nameARETL exten-

sible file system EFS prependshe version specification. Through changing
the current directory, @urrent versiorcan be selected that applies by default:
Through changing the current directory3@®.1:, all subsequent file accesses re-
fer to the respective 3.2.1 version. This method allows for both implicit version
access (using relative paths from a versioned directory) as well as explicit version
access (using absolute paths containing the version specification).

In the CLEARCASESsystem, explicit and implicit access are handled by differ-
ent methodsEXxplicit version access is achieved by appending the version spec-
ifier to the component name, as shown aboveCL&AARCASE version specifier
has the form @@/, followed by the path in the version graph. The color variant
of componentbuf.c can thus be accessed under the namd.c@ @/color, for
instance.

Additionally, CLEARCASEallows versioned access to entire file systems via
configuration rulesgiscussed in section 3.3.5. If a component is accessed with-
out a version specifier, the version according to the configuration rules is selected.
Using this two-fold schemeSLEARCASEallows explicit version access (by ap-
pending a version specifier) as well as implicit access (by specifying the config-
uration rule). ACLEARCASEWworkspace is thus defined by a configuration rule,
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providing a specifizview on the repository.

Another approach realizing both implicit and explicit version access is real-
ized in theSUN Network Software EnvironmenNGE) [Cou89], which realizes
the so-called_ong Transaction Modelln NSE, workspaces are also views on a
central repository. The workspace is mounted as a virtual file system in the user’s
directory; upon mounting, a specific configuration must be seletteé.per se
thus allows only implicit version access; by mounting different configurations at
different places, explicit version access can be realized.

5.4.3 Realizing Virtual File Systems

To realize virtual file systems, three major approaches can be found.

Replace the system libraries.In the SHAPE AtFS the n-DFS, andRCE, virtual
file access is realized through extended variants of the system libraries.
That s, file accesses containing version specifications are diverted to access
the repository instead. Programs must be linked with the specialized library
in place of the system library; in case the operating system supports shared
libraries, replacing the shared system library will suffice for dynamically
linked programs.

The advantage of this approach is its good performance; the disadvantage
is that, depending on the operating system, some or even all programs must
be relinked to include virtual file system access. Another problem is that
process size is increased with repository access code.

Provide a specialized\NFS server. TheNSEand theCAPITL EFSare realized on
top of a modifiednetwork file system(NFS) [SGK™85] server. NFS was
originally indented to allow network-wide file system access, but it can
also be used to create virtual file systems by modifying\thg server.

The advantage of theFS-based approach is that any programs can access
the virtual file system without modification; theFS server is easily in-
stalled and incorporated in existing heterogeneous environments. The dis-
advantage is thatFSlowers performance significantly, especially in con-
trast to direct local file system access.

Extending the system kernel. The CLEARCASE system bypasses tihNFS bot-
tleneck by extending the operating system kernel with specialized device
drivers, providing an abstract file system interface or directly replacing disk
device drivers.
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As all programs access their file systems through the kernel, the kernel ex-
tension approach allows for a wide range of system-specific optimizations.
TheNFSbottleneck for local file systems is also avoided. The drawback is
that realization and installation are non-trivial tasks.

5.5 Cooperation Strategies

When several people work in parallel, it is important that their changes be coor-
dinated such that one change does not, by accident, undo the effects of another
change. As this is a key element 3CM, eachSCM system realizes a specific
cooperation strategy.

5.5.1 Conservative Cooperation Strategies

Conservative cooperation strategies prevent conflicting changes using a simple
locking scheme.Developers working on a specific component version or con-
figuration can lock it against further changes. While a version or configuration
is locked, other developers are excluded from creating new revisions. They are
allowed, however, to create temporary variants, that is, a branch in the revision
history.

Explicit locking is the scheme followed lRCSandSCCS it is also used in
systems using the Composition Model suchCA&§ARCASE In CLEARCASE
a workspace initially is read-only: to change a component, a developer must ex-
plicitly create a temporary variant and ensure that his configuration rule gives him
access to this variant. Besides explicit locking, this scheme has the benefit that
read-only components are shared across workspaces; hence, creating a workspace
in CLEARCASEdoes not require additional resources.

Locking a version or configuration is inappropriate when a developer makes a
major change over a long time, since this prevents other developers from making
quick fixes. Hence, developers are allowed to create temporary variants instead,
starting an individual development path. All changes made in this individual path
must eventually be integrated with the changes made in the original development
path, which may or may not be difficult.

5.5.2 Optimistic Cooperation Strategies

In contrast to conservative strategiesamtimistic strategy by default allows par-
allel changes; changes are integrated in a later stage. In an optimistic strategy,
each developer is assigned individual temporary variants to work uporc\u®e
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andNSE systems, for example, realize optimistic cooperation strategies through
workspaces.

When aCVs or NSEworkspace is created, temporary variants are created for
all configuration components, resulting in a multitude of branches. This scheme
allows developers to perform changes to any component without further explicit
branching. Despite abundant branching and creation of temporary variants, opti-
mistic strategies need not be inefficieNSE implements a “copy-on-write” pol-
icy where unchanged components are shared between the originating version in
the repository and the derived workspace; a similar technique is founigas
pathingin then-DFS.

Optimistic strategies are appropriate when the number of expected conflicts is
low—for instance because parallel development is made on disjunct subsystems,
making conflicting changes unprobable.

5.6 Merging and Conflict Resolution

In both conservative and optimistic cooperation strategies, parallel changes must
eventually be integrated anerged.To see how this can be done, we take a look at
the conflict resolution strategies as foundsioM systems. Each of the following
strategies creates a so-calmérged versiothat integrates the changes from two

or more temporary variants.

5.6.1 Textual Merging

The most frequently found mechanism for change mergingxtual merging,
as realized in th&NIX tool DIFF3. The DIFF3 program performs a three-way
comparison between two temporary variavitsandV, and their common ances-
torVp, the so-calledbase versionvy, V2, and\p are scanned in parallel. Each text
fragment that occurs iW; andV; is included in the merged versid. If a text
fragment differs betweevh andV,, then only the text fragment different frov
(that is, the changed one) is includedvh A text fragment different in all three
versionsVy, V, and\y indicates aconflict. the text fragment has been changed
both inVy andV,. Such a conflict must then be resolved manually.

The principal limitation of textual merging is that the content of the text is not
considered. Whether two changes conflict or not is simply determined by size of
text fragments compared: the smaller the textual distance between two changes,
the higher are the chances that they be flagged as in conflict with each other.
Even if no conflicts are detected, the results of textual merging must be carefully
inspected.
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Base revisionVy
MODULE M;
VAR Colour: (White, Grey, Black);
BEGIN
Colour := White
END M.
- Variant V,
VAR Colour: (White, Grey, Black); TYPE CoIOLfrType - (Wh|t.e, Grey, Black),
VAR Colour: ColourType ;
BEGIN
BEGIN
Colour := Grey
END M Colour := Black
. END M.

Merged revision M
MODULE M;
TYPE ColourType = (White, Grey, Black);
VAR Colour: ColourType ;
BEGIN
Colour :=?
END M.

Figure 5.1: Syntax-based merging (from [Wes91])

5.6.2 Syntax-Based Merging

Automatic merging becomes more effective if internal consistency is ensured, as
discussed in 3.6 on page 32. This requires knowledge about syntactical invariants
that must hold after merging operations.

In [Wes91], Westfechtel describes a generic merging algorithm working on
abstract syntax trees, realized in tIRSEN system. Each node class (identifier,
structure, or list) is treated by a differemterge rule.As an example, consider
figure 5.1. In varianV;, the assignment t€olour was changed froriVhite to
Grey. In variantV,, a new typeColourType was introduced, the type of the
Colour variable was adapted, and tBelour assignment was changedBtack.

The merge rule for lists states that insertions in one variant be applied in the
merged versioM as well. HenceM contains the new typ€olourType intro-
duced inV,. Name changes applied in one variant only are also reflectdbti in
hence the type change for t@®lour variable inV; is propagated tv. Conflicts
may still occur if a substructure is changed in both variants. Hence, the third



5.6 Merging and Conflict Resolution 51

change inV,, the Colour assignment value conflicts with the changé/inand
must be resolved manually. Using textual merging, all three changes would have
been in conflict because they are too close together.

Westfechtel's syntax-based merging also ensures a certain amount of internal
consistency by preserving the context-free correctness and detecting context-free
conflicts. Besides the context-free syntax, it also takes the binding of identifiers
to their declarations into account, detecting anomalies and conflicts with respect
to binding changes. However, it relies on determining the differences between ab-
stract syntax trees, which is expensive, or on logs of tree manipulations generated
by the editor.

Westfechtel's work has been extended by Schroeder in [Sch95], ensuring the
correctness of the statical semantics even for incomplete subtreespPgsiogn-
text relations [Sne91, SGS91]. Recent work in syntax-based merging includes
collaborative work in structure editors, as in tREB@LNER project [MAM93,
MAO96], as well as the integration of incremental analysis with version manage-
ment [WG95]. Syntax-based merging programs that do not rely on an external
abstract syntax tree have also been presented [Buf95].

5.6.3 Semantics-Based Merging

While syntax-based merging guarantees the syntactic correctness of the merge re-
sultM, one still has no guarantee about how the executigmaviorof M relates
to the execution behavior of the merged varidntandVs. A first attempt, based
on denotational semantics, is found in [Ber94], but the first approach that per-
formed truesemantics-baseuierging was presented by Horwitz, Prins, and Reps
in [HPR89]. Their algorithm relies on the assumption thabavior differences,
rather than textual or structural differences, are significant and must be preserved
in M.

The algorithm works on @rogram dependency grafRDG) representation
for the programs to be merged. Each node stands for a program statement; edges
indicate control and data dependencepmygram slicas the subgraph of BDG
that can reach a given component. To determine interference of changes, the
algorithm determines therogram slicesn V; andV, that are changed from the
baseVp and the slices that are unchanged frdgn The changed and unchanged
slices are then merged, and if there is no interference, a merged prdfjiam
produced from the merged slices. The algorithm ensuresMhaaptures the
changed behavior of boty andV, as well as the behavior that was unchanged
from the bas&/.

While the original algorithm [HPR89] had severe restrictions on the class of
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programs it could be applied upon, it was later refined by Binkley, Horwitz, and
Reps in [BHR95] and now constitutes a mature algorithm for multi-procedure
merging.

5.7 Multi-Site Development

SCMis not only a problem of several people working on multiple versions. Often,
these people also work atultiple sites.This imposes another technical challenge
on SCM systems, as local version access must not be slowed down by low con-
nectivity between the sites.

DistributedSCM is a relatively new feature iBCM systems. We can distin-
guish four ways to realize distribution:

Use a central repository server.BothRCSandCVS have been extended for dis-
tribution. The resultindRCS[OG90] andDCVS [HK92] tools rely on a
client/server relationship between logatS or CVS clients and a central
repository server. For instance, if a local user checks @@ gversion, the
localRCSclient fetches the version from the remote cerR@srepository
server. The drawbacks @RCSandDCVS are that all operations depend
on the reachability of one single server and that traffic is huge since entire
versions (or configurations, asCVs) are transferred.

Propagate changes across site€€ommunication overhead between sites can be
reduced if sites share a common baseline and transmit changes instead of
versions, as in the Change-Oriented Model. This approach has been un-
dertaken in theMISTRAL tool [Gad95], realizing distributedCM in the
ADELE system. However, all difficulties of change propagation apply, as
discussed in section 2.7.

Assign each site an individual workspace Another possibility to manage dis-
tributed SCM is to assign each site an individual workspace or temporary
variant. This is the base of thULTISITE tool [AFK*95], which enhances
the CLEARCASE system with distributedM. To maintain consistency,
each site has branches in its repository representing the other sites; these
branches are updated periodically. Each site can only modify its local
branch, but merge in changes made at other sites. This simple and real-
istic solution fits practical users needs, as the authors claim, but relies on
frequent merging.

Use a distributed repository. The most recent approach to distributad is the
usage of adistributed repositorjthat allows to access versions transpar-
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ently from arbitrary sites. On top of théetwork for unified configuration
managemen{NUCM) prototype [vdHHW96], a variety ofM models can

be realized through a combination of three generic models (storage, access,
and distribution). The initial implementation 8fJUCM realizes a distrib-

uted, decentral repository using peer-to-peer relationships between local
CM repositories.

5.8 Process Functionality Areas

So far, we have discussed tteam-centeredspects 05CM. In contrast to these
more technicalissues, theprocess-centeretlinctionality areas covemanage-
ment issuesAs this is beyond the scope of this work, we only give a brief intro-
duction on each of these functionality areas, following Dart’s survey [Dar91].

5.8.1 Auditing Functionality

An important feature irsCM systems is amaudit trail or change historywhere

the SCM system logs all changes made to the developed product. Such an audit
trail usually includes @hange commendetails on the reason and effects of the
change. EvergCM system that supports revisions maintains such audit trails and
provides simple tools to print, filter or analyze the trail.

5.8.2 Accounting Functionality

The accountingfunctionality area, as found iBCM systems, includes mecha-
nisms to record statistics about the product and the process. The questions that
accounting must answer include the current status of a component, whether a
change requesCR) has been approved by the configuration control board, which
component version implements a spectfik or how many faults per month are
detected and corrected.

5.8.3 Controlling Functionality

Controlling functionality assigns work to individual developerccess control
means granting or revoking version acceStange controprovides procedures

by which changes are requested, authorized, scheduled, and tracked. Change con-
trol includes on-line support fathange requesta,developer’s request to change

a component, androblem reportsstressing the circumstances and consequences

of a fault, as well as procedures to propagate changes across different versions of a
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product (e.g. from an experimental version to the released version). Finally, con-
trolling functionality also must track faults and report how, when, and by whom
they are dealt with.

5.8.4 Process Functionality

The functionality areas discussed so far can be subsunmoeass functionality.
Process functionality is the significant area of all non-techrécah functional-

ity. In short, SCM systems should support the life cycle model and policies of
the user’s organization; identify tasks to be done, how and when they are com-
pleted; as well as basic facilities to direct information about relevant events to the
appropriate people and facilities for documenting the product knowledge.

5.9 Conclusion

The centralSCM concept to realize cooperative work is the notion ofvark-
spacepreventing developers from interfering with one another’s work. A work-
space usually comes as a file system and thus integrate€Msystem into the
software development environment. Various concepts for the realization of work-
spaces exist, the most advanced being a virtual file system with both explicit and
implicit version access.

To coordinate changeSCM systems either provide conservative cooperation
strategies that rely on version locking, or optimistic cooperation strategies that
rely on a later conflict resolution between parallel changes. Conflict resolution is
realized through merging of changes, where textual merging is the most versatile
and semantics-based merging the most secure approach.

RecentSCM systems also support development at geographically distributed
sites with low connectivity. The pragmatic approach is to assign each site a sepa-
rate workspace; future repositories may be realized in a distributed manner.

Besides the technical, team-centered functionality, process functionality areas
cover the management part®EM, which is not discussed in this work.

While process management and control are necessary
for a repeatable, optimized development process,
a solid configuration management foundation for that process is essential.

— DAVID W. EATON, Configuration Management Frequently Asked Questions

In any case, it must be borne in mind that,
tools can be encapsulated whilst users can not.

— JACKY ESTUBLIER and RUBBY CASALLAS,
The ADELE Configuration Manager
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Future SCM Requirements

There can be no doubt that todagsM systems largely satisfy Dart’s require-
ments onCM functionality [vdHHW95]. For each functionality, we have iden-
tified a large number a6CM concepts as realized in one or m@eM systems.
Some commerciagdCM systems, such a3LEARCASE, provide satisfactory solu-
tions for each require@M functionality.

Since Dart’s survey, new requirements and problems have emerged. We iden-
tify five major problems in currer8CM systems, which also constitute require-
ment areas for futur8CM systems.

6.1 Improved Support for Variant Sets

SCM still has poor support for manipulating sets of configurations, or abstract
configurations. As a simple example, consider the editing of multiple versions.
The number one technique for variation in the small, the C preproce3Béy (
fails when variance becomes too large. As Gentleetal. state in [GMSW89],

Code containing conditional compilation directives becomes quite
unreadable when variants associated with different factors interact.

In fact, large variance leads to a lose-lose situation. Either commonality between
variants is exploited, then th@PPdirectives become too complex, or commonal-
ity is not exploited, then code duplication follows:

Interleaved directives are incomprehensible, and the code expansion
of conditional compilation directives can be intolerable.

55
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The alternate technique, change propagation from a single vatiamtthe re-
maining variantsy as discussed in section 2.7, is still considered inferior than
“classical” approaches such as preprocessing. In [Whi91, p. 44], Whitgift states:

This approach is better than revising battandY manually, but it
only works well whenX andY are very similar. Even then the tech-
niques described in the next two subsectia@®Hand multi-variant
editors] are a more reliable way of managing similar permanent vari-
ants.

The only consequence can be to keep the number of permanent variants as small
as possible. Not only can they seldom be handleg®p systems. More even,
common software engineering principles like abstraction, parameterization, gen-
eralization, and localization are far better ways to keep software variable than
to introduce variants for every new environment. But these techniques can only
apply to permanenfplannedvariance, not to temporary variance as it may re-
sult anytime during parallel development. Hence, the need to manipulate several
variants at once is still present, and insufficiently covered by to&&}g sys-

tems [Mah94].

6.2 Consistency of Abstract Configurations

Another problem oB5CM systems regarding abstract configurations is the lack of
determining theiconsistencyAs Schmerl and Marlin point out in [SM954], this
is especially important in the domain of dynamically composed systBmS){

DCSare composed incrementally, and therefore some of the compo-
nents may not yet be bound (meaning that it is a partial configura-
tion). It is still desirable to analyse this partially bound configuration
so that we can answer questions about what comprises the system,
and whether or not the partially bound configuration is inconsistent.

Unfortunately, today’'sCM systems rely on completely bound configurations to
determine consistency. Even where ambiguity is allowed, 2DELE configu-
ration rules, heuristics to find the single “best-fitting” variant are applied to make
the configuration bound.

6.3 Beyond Version Graphs

Lack of support for abstract configurations may be founded in inadequate ver-
sioning models that do not tolerate ambiguity. Among the $&M concepts that
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in principle tolerate ambiguity is the Change-Oriented Model, as it allows to ap-
ply changes to several versions at once. The advantages of the change-oriented
model are the disadvantage of the version-oriented models and vice versa:

Change-oriented models: the drawback of flexibility. The strength of change-
oriented models is that arbitrary change combinations are possible—that
is, all change combinations that do not result in a conflict. This strength is
also its major weakness, as users cannot ensure that the change application
results in a consistent configuration.

Version-oriented models: few change combinationsVersion-oriented models
focus on the creation of versions, instead of changes. Hence, the number
of actually existing versions is much smaller. Each change resulting in
the creation of a new revision implies all previous changes leading up to
that revision, thus ensuring change consistency. But this rigidity also has
its drawbacks: creation of versions including arbitrary changes is always
explicit, as is the application of changes to multiple versions at once.

Unfortunately, both models cannot be used to simulate each other. In the
change-oriented models, recent approachesHikeV [Mun96] have begun to
introduce consistency constraints. But it is still unclear how a “classical” version
graph would be realized through these constraints. On the other side, simulating
the Change-Oriented Model through version-oriented models reveals the weak-
ness of the version graph paradigm, since the arbitrary combination of changes
results in a much larger number of potential versions than could possibly be
maintained through revision graphs. Moreover, it is still an open question how
revisions and changes are to be integrated with logical and cooperative version-
ing [EC95].

6.4 Unified Versioning Models

The divergence of change-oriented and version-oriented models is the largest dif-
ference betweeSCM versioning models, but by far not the only on8CM in
general suffers from a multitude of incompatible versioning models, as Conradi
and Tryggeseth complain in [Est95, p. 80]:

Is the versioning model linked to the data model, the product model
(schema), the transaction model (uni-version subdatabases), or is it
independent? At what granularity are “deltas” expressed, computed
and merged—on the base of whole files, text lines, or syntactical
entities? And how is versioning combined with e.g. inheritance and
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parameterization? Does basic versioning only apply to atomic and
textual objects, and not to composites or to the entire database?

How to version relationships, and thus configurations? How to ex-
press intentional version selection, and how to express constraints,
defaults and preferences for such selections? Is the selection based
on symbolic attribute values, that together constitute a version space?
Can the constraints and attribute domains evolve over time? Given a
system model with objects and relationships: is the product selection
(AND-closure) done before the version selection within each group
(OR-choices), or vice versa, or intertwined?

It is also symptomatic that hardly no visualization techniques beyond version
graphs exist. To summarize, citing Gulla from [Gul93]:

The lack of proper conceptual models and visualization techniques
is a serious draw-back that limits the use and usefulness of current
tools.

6.5 Flexible Process Support

The multitude of versioning models may be the effect of the multitudeam
processes and models as they are realiz&€Civ systems. In his survey on con-
figuration management models in commercial environments [Fei91a], Peter H.
Feiler closes with:

CM capabilities can be found not only @M tools and environment
frameworks, but also in development tools. Integration of such tools
into environments raises the need for differeim models to inter-
operate. Therefore, it is desirable to evolve to a unii&td model
that encompasses the full rangeGM concepts and can be adapted
to different software process needs.

Things have not much changed since Feiler’s study, except that the problem is
generally accepted. In the fifth international workshop on software configuration
management [Est95, p. 136], Jacky Estublier states:

There is a large consensus, includ®@M designers and vendors,
thatSCM must include, in one way or another, some process support.
This is a major change in relationship to previous workshops, where
most industrials considered this topic as academic.
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CM Policy

Quality assurance, CM Process, etc.

CM Protocol

Transactions, workspaces, etc.

CM Primitives

Tool primitives, Operating system operations, etc.

Figure 6.1: Three levels @M services (from [BDFW91])

Estublier also points out that almost all todag&M systems ignore other process
tools, and that only a few, includirgPOSandADELE, provide a layer on top of
which process support tools can be built. He concludes with:

Most think the major challenge for futur@CM tools will be the
process dimension. In the future, it is expectedsam tool will be
selected based on its ability to support processes. The current state
of practice is pretty far away from ideals.

6.6 Improved SCM System Architectures

Good process support means a flexible process support. This flexibility must be
obtained through the architecture®tM systems.

In their report on the state and future of automated configuration manage-
ment, Brownet al. suggest dederated architectur®r SCM systems, as shown
in figure 6.1. Each service domain represents a virtual machine layer of ser-
vices [BDFW91]:

CM Primitives layer. The CM primitives layer provides a set of primitive oper-
ations that would be supported in a particutat tool, or provided as part
of an environment framework. For example, basic versioning capabilities,
data object locking, and access control are typical of the services at this
level.



60 Future SCM Requirements

CM Protocol layer. TheCM protocol layer supports one or more of il con-
cepts and models. At this level the operations are independent of underly-
ing implementation techniques. For example, operations of check in/out of
data items from workspaces, transaction management, and coordination of
change sets would be provided.

CM Policy layer. TheCM policy layer makes use of theM protocol operations
to encode some procedures specific to an organization. For example, these
could be company standards for handling change requests, quality assur-
ance procedures, and so on.

As Brownet al. state,

The advantage of using three layers of service domains in providing
CM support is that many of the issues that are often confused can be
drawn out in isolation, and the relationships between different ele-

ments more clearly expressed.

In [vdHHWO95], van der Hoek, Heimbigner, and Wolf recognize that most of
today’sSCM systems follow this architecture. But they also state that there is an
increasing lack of flexibility, the higher the level considered:

CM systems allow some restricted flexibility at the low level (e.g.,
one can choose to us&Es a file system, or ®BMS), and even less
flexibility at the middle level (e.g. the naming and locking mech-
anisms are usually fixed). At the high level of process, second-
generatiorcM systems either provide no explicit support for express-
ing policies or they provide particular processes for a specific task,
such as change controAQELE is a notable exception to this.)

Van der Hoeket al. conclude that the lack of flexibility at the lower architectural
levels is the cause for bad process support, and that alternative architectural views
might lead to novetM solutions.

6.7 A Unified SCM Model

For Brownet al, the key to flexibility inSCM lies in the combination of a feder-
ated architecture and a unifietl model. As they summarize in [BDFW91],

We believe that progress will have to be made in three areas in order
that futureCM support as outlined in our federated vision can be
realized in practice.
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First, the spectrum of concepts and the four conceptual models have
to be integrated into a unifiedM model whose semantics are well-
defined. This will result in a common set of interface€to services.

Second, the service-based approach of the federated environment ar-
chitecture can provide a migration path from the current state of
CM services (being provided in a fragmented manneChlytools,
environment frameworks, andASE tools) toward the notion of a
common repository and shared environment framework services, but
still accommodating heterogeneity in software development environ-
ments.CM will be a key component of such a federated environment
architecture by being a service domain in the form of a set of proto-
cols, which are derived from the unifi&M services model.

Third, the set ofcM services reflected in the unified model will pro-
vide a virtual machine layer on top of which process adaptation can
be performed. Process adaptation results in encoding elements of the
software process in a software development environment, in this case
those aspects of the software process that relatamto

These are the issues we have addressed in this work.

Although there is a bunch of appropriate techniques
and powerful tools, none of them is sufficient
for solving all involved problems.

— AXEL MAHLER, Variants
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Chapter 7

A SCM Foundation

In chapter 6, we have found that “the major challenge for fua@#®tools will be
the process dimension” and that a flexiBied policy can only be attained through
flexibility at the lowest levels, notablynified configuration management model.
This unifiedSCMmodel, as postulated by Brovetial. [BDFW91]must integrate
all four conceptuabCM models as discussed by Feileei91aland have a well-
defined semantics.

In this chapter, we try to determinefarmal foundationfor such a unified
SCM model. We discuss the properties of such a uniet model, using the
requirements of chapter 6 and their implications, and ideigw foundations
fitting these properties.

7.1 First Foundation: Sets

As stated in section 6.1, most of tode§GM systems lack support for manipulat-
ing variant sets. But also configuration sets, thaalsstract configurationfck
properSCM support. Generally, version and configuration sets play an important
role in three areas:

Inheritance. Abstract configurations can be used as templates for further refine-
ment. See section 3.3.6 for details.

Ambiguity support. Abstract configurations and version sets allow manipulat-

ing several versions and configurations at once. Se€®#rconcepts in
section 2.6.1 and thembitionconcept in section 2.7 for a discussion.

65



66 A SCM Foundation

Consistency. In dynamically composed systems, inconsistency in configurations
must be detected even if the configuration is incomplete. See section 6.2
for an example.

We conclude that a unifie8CM model should beet-orientedather tharobject-
oriented, as manipulating sets generalizes manipulating single objects. For in-
stance, editing a set of versions or checking a set of configurations for consistency
subsumes editing a single version or checking a single configuration. Conse-
quently, the unifiedsCM model should support version and configuration sets as
first-class objects.

7.2 Second Foundation: Attribution
Attributes and relationships play an important rol&i@M versioning models.

Identification. All of the selection schemes discussed in section 3.3 rely on that
either versions or changes be tagged with attributes. Attribution is one of
the few techniqgues common to the wh&eM area. We recognize attri-
bution as a key element for identification and selections in a unifad
model.

Propagation. As anySCMidentification scheme mustinclude composed and de-
rived objects as well, there should be a well-defined relationship between
the attributes of a simple component version and the attributes of a set of
objects. This includes the propagation of attributes from versions to com-
ponents, from components to configurations, from source components to
derived components, and from changes to change sets.

Relationships. To handle propagation, the unifi&CM model must allow de-
scribing the relationships between components, sudk-mstance-ofre-
lationships to model derivation @-a-part-of relationships to model com-
position.

The most advance8iCM system in this field is th€APITL system, discussed in
section 4.5; its attribution and propagation schemes should be considered in a
unified SCM model. It also shows how attribution can be generalized to include
relationships, provided the underlying attribution model is rich enough.

We conclude that the unifieBCM model should be attribute-oriented: at-
tributes should be used for identification and selections. It should also describe
how attributes propagate between components, using the component relation-
ships.

1Pun intended.
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7.3 Third Foundation: Unification

In SCM, attribute expressions are used for both identification and selection. This
duality is illustrated by th€PPandJASONsystems:

Strong identification, weak selection.Across allSCM systemsCPP, the C pre-
processor, realizes the most genélahtification scheméArbitrary logical
and arithmetic expressions involving attributes are used for variant identifi-
cation; see section 2.6.1 for details. Version selectiobARis done using
a conjunction of attributes.

Strong selection, weak identification. The most generaelection schemis re-
alized in theJASONsystem, which uses full first-order logic over attribute
expressions, as discussed in section 3.6.1JABON individual versions
are identified by a conjunction of attributes.

It is remarkable that strength in identification comes with weakness in selection,
and vice versa. Such restrictions are necessary to keep selection deéitlable.

less we decide to ignore variant set support such as providehythe unified
SCMmodel should support the smallest common superset of both approaches and
thus rely onunificationtechniques to match selection terms with identification
terms.

7.4 Putting it all Together
We have found that the unifieeCM model should be

set-oriented: Supports manipulating consistent sets of versions and configura-
tions.

attribute-oriented: FollowsSCMconventions for the identification and selection
of objects and allows for predictable identification of composed and derived
objects.

unification-oriented: Encompasses the largest possible common subsstiaf
identification and selection schemes.

We now discuss adequate foundations to express the semantics of our unified
SCM model. Basically, there are three candidates for g8/ foundation,each
with its own pros and cons.

2If we combined the strength of both systems, we would be challenged by general arithmetical
problems; for instance, whether a version identified by@heexpressiom > 2 is matched by the
JASONSselection termia, b,c € N(a" 4+ b" = c"). Such problems are undecidable in general, although
some of them may be eventually proved [Wil95].
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7.5 First Candidate: First-Order Logic

The first candidate for aBCM foundation is very general and widely known.
Booleanfirst-order logicis the base of sever&CM selection schemes, includ-

ing JASONs; evenCPPs arithmetic version identification may be replaced by
boolean first-order terms without much loss. First-order terms may be used for
both identification and selection, usibgolean unificatiofBoo47, BJSS90] to
match identification and selection terms.

The expressive power of first-order logic is no doubt sufficient for describing
the semantics of a unifieeliCM model. But first-order logic is far too general; it
lacks the central property of being attribute-oriented. As we have already seen
how important attributes are in tl&M area, this implies that aBCM function-
ality like selection through attributes, attribute propagation, or inheritance of ab-
stract configurations requires explicit formalization using first-order axioms and
rules. We would have to set up another formal layer in terms of first-order logic
in order to describe these attribute fundamentals.

7.6 Second Candidate: Description Logics

As an alternative to first-order logic, there are several formalisms that denote sets
of objects by their attributes (calledles), subsumed under the terdescription
logics or terminological logicsTheir most important domains are:

Knowledge representation.In the domain of knowledge representatiamn-
cept descriptionsalso calledframes[BL84, Neb90, NS89], are used to
represent sets of objects by attribute/value combinations.

Configuration of technical systems.To configure technical system#&ermino-
logical configuration systemike CLASSIC[BMPS*91a, BMPS 91b], K-
REP[MDW91], BACK [Pel91],LOOM [Mac91], orkKRIS [BH91, BFHT94]
are more and more preferred to domain-specific configuration systems like
XCON [McD82, McD84] or customizable systems liRe AKON [CGS91].
These terminological systems rely on description logic as a semantic foun-
dation to identify component properties as well as to express configuration
constraints.

All these description logics combine attribute descriptions with full boolean set
semantics, including set union (disjunction) and set complement (negation). This
makes them ideal choices f8CM selection and identification schemes—and last
but not least, they already have been used to describe and solve configuration
problems. However, attribute propagation from components to composites must
be explicitly stated for each single role.
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7.7 Third Candidate: Feature Logics

A special subset of description logics deature logicsHere, attributes are called
features In contrast to roles, features afienctional each feature of a compo-
nent can have only one value. The features of composite objects are implicitly
determined from the unified features of their components. Typical applications of
feature logics are:

Language analysis.In the semantic analysis of natural language [KB82, Kay84,
SUP*83], feature logics are used to represent and propagate grammatical
information—for instance, how the features of a sentence are determined
by the features of its verb.

Programming. In programming languages, attribute/value combinations are fre-
quently used inrecord structures.Ait-Kaci was the first to study such
structures mathematically, calling thegnterms[AK86]. The resulting
Y-term calculus is the formal foundation of tfRROLOGIlike program-
ming language&OGIN [AKN86] and LIFE [AKP91], usingfeature uni-
ficatio SAK9Q] instead ofPROLOGSs syntactic unification. A variant of
LOGIN, called CONGRESS s the base of th€APITL build planner dis-
cussed in section 4.5.

The advantage of feature logics is that they provide a natural way of attribute
propagation from components to composites—a property that already has been
successfully exploited in theCM domain. The disadvantage of the feature log-
ics listed is that onlyconjunctionsof attribute/value combinations are supported;
negations or disjunctions are not allowed. This restriction would severely con-
strain identification and selection schemes, not to speakbarithmetic expres-
sions, or quantifiers IBASON

7.8 Conclusion

For theSCM domain, we need the best of three worlds:

Boolean operationsas in first-order logic. This is a must for modellisgM
identification and selection schemes.

Attribute descriptions and set operations as in description logics. These for-
malisms are needed for identifying versions according to their properties.

Attribute propagation and unification as in feature logics. This is needed to
describe the features of derived and composed objects.
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Fortunately, there is a special feature logic that includes quantification, disjunc-
tion, and negation over attribution terms, forming a full boolean algebra while
preserving the functional nature of features and describing how features propa-
gate from components to composites. This logic, described by Smolka in 1992,
and simply calledeature logicjs presented in chapter 8.

| was to learn later in life

that we tend to meet any new situation

by reorganizing;

and a wonderful method it can be

for creating the illusion of progress

while producing confusion, inefficiency, and demoralization.

— PETRONIUS ARBITER



Chapter 8

Feature Logic

After a short excursion into the evolution of feature logic, we give an informal
overview. For a deeper understanding, we present the formal syntax and seman-
tics of feature logic, based d8Bmao92]

8.1 The Evolution of Feature Logic

Feature descriptions and feature logic have two sources. The first source is ori-
ented towards boolean formulae, providing for the declaration and specification
of linguistic knowledge. Thdexical-functional grammalfKB82], of Bresnan

and Kaplan, as well as ShiebePaTR-II formalism [SUP 83] and Johnson's
attribute-value logi¢Joh88] use boolean combinations of features, constants, and
variables.

The second source is oriented towards set-denoting feature expressions, called
feature termsn this work, used in programming languages and knowledge rep-
resentation. This includes Kayfsinctional unification grammdiKay84], Ait-

Kaci's Y-term calculusfAK86, SAK90], and the logic of Kasper [KR86] and
Rounds [MR87]. These feature terms also have much in commoncaithept
descriptionsised in knowledge representation [BL84, Neb90, NS89].

In [Smo092], Smolka unified these two approaches and showed that the dif-
ferent feature descriptions can be embedded into first-order predicate logic with
equality.

We have chosen Smolka’s feature logic a&GM foundation. Not only does
it provide a simple and clear semantics, but it also allows us to desstbe
concepts by attribution without losing the expressiveness of boolean first-order
logic.

71
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8.2 Feature Logic in a Nutshell

We begin with an informal overview of feature logi€eature termslenote sets
of objects characterized by certain features featureis a functional property
or attribute of abstract objects. In their simplest form, feature terms consist of a
conjunction of(feature value)-pairs, calledslots, where each feature represents
an attribute of an object. Feature values include literals, variables, and (nested)
feature terms.

As an example, consider the following feature tefmwhich expresses the
linguistic properties of a natural language fragment:

tensepresent

predicate[verb: sing agentx,whaty],
subject[x,num singular, personthird],
objecty

This term says that the language fragment is in present tense, third person sin-
gular, that the agent of the predicate is equal to the subject, and so on. In other
words,T denotes the sentence templatesingsy”.

The syntax of feature terms is summarized in table 8.1 on the facing page,
where we denoteariablesby x, y, z; featuresby f, g, h; constantdy a, b, ¢; and
feature terms denoted I§ T, andU. Feature terms are constructed using the
well-known boolean set operatiorgersection, unionand complement.Each
of these set operations may also be interpreted as logical constraint on the object
features, representing the set of objects satisfying this constraint. For instance, let
S=[f:a], the set of all objects whose featuféhas the valua, andT = [g:b],
the set of all objects whose featugehas the valud. Then,SNT = [f:a,g:b]
may be read as the intersection®&nd T as well as the set of objects whose
featuref is a andwhose featurgis b. Similarly, SUT = {f:a,g: b} is the union
of SandT as well as the set of objects whose featfiis a or whose featurg
is b. As feature terms form a boolean algebra, all boolean transformations like
distribution, de Morgan’s law etc. hold for feature terms as well.

Feature terms have two important properties which make them especially suit-
able in the context c$CM.

Each feature of an object may have only one valueThis property is due to the
functional nature of features. For instance, the téosdososuniX is
equivalent tol, the empty set. This property is useful for selection and
consistency checking.
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Notation Name Interpretation

T (also[]) Top Ignorance

1 (also{}) Bottom Inconsistency

a Atom

X Variable

f:S Selection The value off is S

f:T Existence f is defined

f1 Divergence f is undefined

flg Agreement f andg have the same value
f1g Disagreement| f andg have different values
~S Complement | Sdoes not hold

SMAT (also[ST]) | Intersection Both SandT hold

SUT (also{S,T}) | Union SorT holds

S—»T Implication If Sholds, therl holds
S&T Equivalence | Sholds if and only ifT holds
(9 Quantification| There is anx such thaSholds

Table 8.1: Syntax and interpretation of feature terms

Feature terms always allow for further specialization. Every feature term can
be refined by specifying further features, like subclasses in object-oriented
models. This property allows for attribute propagation and abstract config-
urations.

In this chapter, we give a formal definition of features and feature terms,
closely following Smolka’s definitions in [Smo092] and further clarified by Fischer
in [Fis93]. For each operator in table 8.1, we give its denotational semantics and
show its respective properties.

8.3 Features and Feature Algebras

The definition of features as functional properties implies that we can model fea-
tures agartial functionghat, applied to abstract objects, result in a siffgkgure
value. For instance, the featues of a componenk may beos(X) = unix. The
functional nature of features also implies that each feature of an object may have
only one value.
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We now define these properties of features formally, introdufgagure alge-
brasas interpretations of feature descriptions.

Definition 8.1 (Feature algebra, Feature)A feature algebra is a pair(D',-)
consisting of a nonempty sé&', called thedomainof |, and aninterpretation
function-' assigning to every atoman elemend € D' and to every featuré a
set of ordered pair§' C D' x D' such that the following conditions are satisfied:

1. If (d,e) and(d,€) are inf', thene = € (features are functional),
2. Ifa#b, thena #£b' (unique-name assumption),

3. If f is a feature ana is an atom, then there exists doc D' such that
(@,d) € f' (atoms are primitive). o

The first condition captures the functional nature of features; the third definition
restricts the application of features to non-primitive objects.
For the denotation of variables, we introdueassignments

Definition 8.2 (Assignment) Let | be a feature algebra. Anassignments a
mapping from the set of all variables to the domait.of o

The set of all-assignments is denoted ass\].

8.4 Syntax and Semantics of Feature Terms

We now introducefeature termsa denotation for sets in feature algebras. For
each construct, we give its syntax, followed bydenotatior§, C D', wherel is
afeature algebra, arde Asgl] anl-assignment.

8.4.1 Top and Bottom
Top denotes the entire universe of objects, bottom the empty set.

Definition 8.3 (Top) The symbolT denotes the entire domain of the feature al-
gebral:

Ty =D

Definition 8.4 (Bottom) The symbolL denotes the empty set:
1l =0
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8.4.2 Atoms and Variables

The primitives of feature logic are atoms and variables.

Definition 8.5 (Atom) An atoma is a primitive object for which no features are
defined. An atom denotes a singleton set containing itself:

8 = {a}

Definition 8.6 (Variable) A variablexis a placeholder for some feature term. Its
denotation is the term it stands for:

Xy = {a(x)}

A variable is calledreeif it is not bound by any quantifier.

8.4.3 Selection

The basic operation of feature logic $&lection,denoting the objects where a
feature has a specific value.

Definition 8.7 (Selection) The termf: Sdenotes the set of all objects whose fea-
turef has a valu&

(f:9) ={deD'|Jec S:(de) e f'}

For instance, the feature tetestedtrue denotes all objects whose feattested
has a value ofrue.

In feature logic, there is no distinction between objects and feature values.
Hence, feature values may be feature terms again, denoting other objects. As an
example, considezxistenceAs follows from definitions 8.3 and 8.7, a terT
(Existencé denotes all objects for which the featurés defined with an arbitrary
value:

(f:T)y ={deD'|3ecD"(d,e) e f'}
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Note that the suggestive L doesnot stand for all objects whose featufeis
undefined, but for the empty set instead. As follows from definitions 8.4 and 8.7,
f: L = 1 holds for alll anda:

(f: 1) ={deD'|3ec 1|:(d,e) € f'}
={deD'|3ec0:(d,e) e f'}
=0
=10
Hence, we need an alternate construct to capture undefined features.
8.4.4 Divergence

A feature may beindefinedon certain objects.

Definition 8.8 (Divergence) The setf1 is the set of all objects whose feature
is undefined:

(f1)y ={deD'|vee D" (de ¢f'}

8.4.5 Agreement and Disagreement
Special notations exist for sets of objects whose features have equal or unequal
values.
Definition 8.9 (Agreement) The setf | g is the set of all objects for which the
featuref has the same value as the featgrre
(flg)={deD'|JecD"(d,e € f'nd}
[m]

Definition 8.10 (Disagreement)The setf 1 g is the set of all objects for which
the featuref has another value than the featgre

(f1g)y={deD'|3eéecD":(de) cf A(e)cg rne#€}

Assuming that we classify compilers by their host and target architectures, we
may thus specify a cross-compilerfasst-archt target-arch Note that agreement
and disagreement imply that both featufeendg be actually defined.
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8.4.6 Complement

The set complement respectiveTds denoted by the complement sign*

Definition 8.11 (Complement) The set~S denotes all objects other than those
denoted by&.

(~9o=D'-§,

When speaking of features rather than objects, the teBmay also be read
asnegationHence, the terrt = operating-system-windowsdenotes all objects
whose featur@perating-systens not windows This must not be confounded
with the termT’ = ~operating-systemvindows which consists of the objects of
T as well as of the objects whose featoperating-systeris undefined.

The definition implies that the well-known equivalentis set complements

apply:
~T =1
~~S=S8

8.4.7 Intersection

Intersections are used to denote objects by several features.

Definition 8.12 (Intersection) We write SO T for the intersection o§andT:
(SNT), =S, NT,
[m]

When speaking of features instead of objects, terms $KeT may also
be read axonjunction. As an example, the termi = author. zellerr status
experimentatenotes all objects whose author is Zellgrd whose status is ex-
perimental.

Feature conjunctions occur very frequently. We thus introduce the more con-
venientmatrix notationfor feature terms, which traces back to the very roots of

1Smolka [Sm092] uses the symbol.
2See definition 8.25 on page 85 for a formal definition of equivalence.
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feature logic [Kay79]. In matrix notation, conjunctions are surrounded by square
brackets, such that the following equivalences hold:

=T

[§ =S

Hence, the feature terii = age 30rmood happymay also be written a§ =
[age 30,mood happy.

Definition 8.12 implies associativity, commutativity, and idempotency of in-
tersection:

(SNT)MU = SN (TNu)
SNT=Tns
Sns=s

The neutral element respective to intersection jshe zero element respective to
intersection isL.

SNT=S
Snl=1

Intersection with a complement is the empty set:
SN~S=_1
Intersections and complements as feature values céftdzéto the top level:

[f:(SNT)] = [f:§N[f:T]
[f:~S = [F: TN ~[f:S

8.4.8 Union
Unions are used to denote alternatives.

Definition 8.13 (Union) The termSuU T denotes the union @andT:

(SUT), =9,UT]
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Again, when speaking of features instead of objects, the union operator has
the meaning of a booleafisjunctionoperator. As an example, consider the term
T = operating-systendosL! operating-systenunix, denoting all objects whose
operating system iBOS or UNIX.

In matrix notation, conjunctions are surrounded by curly braces, such that the
following equivalences hold:

{}=1
{S}=S
{S[L,&,---,S‘]}ES:LU&U"'U&

Hence, the ternT = statusproposed. statusexperimentamay also be written
asT = {statusproposedstatusexperimentdl or, according to definition 8.13, as
T = status{proposedexperimentg|.
Again, we can deduce associativity, commutativity, and idempotency:
(SUT)UU =S (Tuu)
SUT=TUS
SIS

Respective to union, the neutral element.ighe zero element i$.

Sul=S
SUT=T

Union with a complement is the universe.
SU~S=T
Regarding unions and intersections, distribution and absorption rules apply:

(SuT)NU =(snu)u(Tnu)
(SNT)UU =(suuU)n(Tuv)
su((snT)=Ss
Sn(suT)=S
De Morgan’s laws apply as well.

~(SNT) = ~SU~T
~(SUT) = ~SM~T
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Unions as feature values can also be lifted to the top level:
[f:(SUT)]=[f:quIf:T]

8.4.9 Implication
The implicationS— T is a short-hand notation fe¢SLI T:

Definition 8.14 (Implication) The termS— T denotes all objects which areTn
ornotinS

(S=T)y= (D' -S) UTq

All rules for implications are deduced from the equivalence
S—»>T=~SUT
The following absorption rules have practical relevance:

(S—>T)NS=T
(S=»T)N~T=~S

8.4.10 Equivalence
The equivalenc&+ T is a short-hand notation f¢6— T) (T — 9):

Definition 8.15 (Feature equivalence)The termS— T denotes the objects that
are either irSandT or in neitherSnorT:

(S T)a=((D'-%)UTe)N((D' - Ta) US)

All rules for equivalences are deduced from
SeT=(S->T)N(T =9
which can also be expressed as

So T =(SNT)U(~SM~T) .
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8.4.11 Quantification
The final element in the syntax of feature terms is existential quantification.

Definition 8.16 (Existential quantification) The term3x(S) defines the union
of all setsSwherex is instantiated by some object:

(EIx(S))'u =U ga[x<—d]

deD!
[m]
Here, the ternu[x « d] stands for thenstantiationof x with d: If a is anl-
assignment and € D', thena[x « d] denotes thé-assignment obtained from
by mappingx to d rather than tax(x).

Again, 3x(S) may be interpreted as denoting features rather than objects: a
term3x(S) then denotes all objects where there exists anch thaSis satisfied.

Our presentation of the syntax and semantics of feature terms is now com-
plete. As a summary, consider table 8.2 on the following page: Given a feature
algebra and al-assignmenti, the denotatiorof a feature ternsin | undera is
a subset oD' defined inductively as shown.

8.4.12 An Interpretation Example
As a simple example for the interpretation of feature terms, let

D' = {BICYCLE, CAR, TRUCK, ONE, TWO, FOUR, SIX }

be some domain, letHeeLs andrassencErSe features, and let be an interpre-
tation function such that

wheel$ = wHEELS

= {(BicYcLE, TwO), (CAR, FOUR), (TRUCK, SIX) }
and

passengefs= PASSENGERS

= {(BicYCLE,ONE), (CAR,FOUR), (TRUCK, TWO) } .

Furthermore, let us interpret the atom@1,6 as 1 = ong, 2' = Two, 4' = Four,
and 8 = six.
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Ty =D
=0

8y = {a'}
X = {a(}

(f:9={deD'|Jecq,:(d,e) €'}
(f1)y ={deD'|veeD"(d,e) ¢ f'}

(flg)y={deD'|3JeecD"(d,e)c f'ng'}
(ftgh={deD'|3ee ecD"(de cf A(e)cd rnete}
(~9)k =D' ¢,
(snT) =9,nT,
(suT), =9,uT)
(S=T)a=(D'-K)UTq
(sm)@, (D' =) UTg)N((D' - Ta) US)
)ch U g0([>«—d]
deD!

Table 8.2: Formal denotation of feature terms

The denotation of the feature te!®s= [passenger®] under the feature alge-
bral = (D',-') and somé-assignment: is then determined as

S, = [passengerg)]}
= {d e D'|3e€ 2:(d,e) € passengets
={deD'|Jee {Two}:(d,e) € PASSENGERS
= {d e D' | (d,Two) € PASSENGER
= {TRUCK} .
The termT = Ix[passengerx, wheelsy] is interpreted as
T4 = Ix[passengers, wheelsx]}

= Ul[passengerx,Wheelsx]g[x(_d]
deD
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=---U[passengers, Wheelsx]'a[XHFOUR] U--- .

We focus upon the assignmentodvith Four, giving

Ta=-U ([passengerx]L[XFFOUR] N [Wheelsx]'q[XHFOUR]) U
which reduces to

Ta=:U ({d €D' | Fe€ Xy rour: (d:€) € passenge?%ﬂ---) U
---U({d e D' | Je € {Four}: (d,e) € passengetg N---) U---
--U({d € D" | (d,FoUR) € PASSENGERY

N{d e D'|(d,Four) € wHeeLS}) U---

+-U({d € D' | (d,FOUR) € PASSENGERS\ (d, FOUR) € WHEELS}) U -+
This leaves only thear element as possible interpretation:

To =+ U ({car} N {cAr}) U---
All other assignments fox result in the empty set, giving

Ta = 0U ({cArR} N {cAR}) UD
= {car} .

Existential quantificatiortx(S) in feature terms, as in the example above,
imposes some decidability and complexity problems. Existential quantification is
thus often implicitly expressed through equivalent agreement and disagreement
terms. The ternT = Ix[passengerx,wheelsx] can be expressed through the
equivalentT = passenger$wheels for instance. The algorithms discussed in
this work all require that their feature terms be free of existential quantifiers.

8.5 Properties of Feature Terms
8.5.1 Redundant Forms

Smolka observes that most of the introduced feature term forms are redundant
and may be reduced to six primitive forms.
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Definition 8.17 (Primitive feature term) A feature term is callegrimitive if it
contains only the forma, x, f:S, ST, ~S, and3x(S). O

Proposition 8.18 Every feature term can be rewritten in linear time to an equiv-
alent primitive feature term by using the following equivalences:

ft=~(f:T) 1 =xM~X
flg=3I(f:xMNg:x) T=~1
f1+g=3I(f:xMg: ~x) SUT = ~(~SM~T)
S—T=~(SN~T) ST =~ SN~T)N~(TN~Y)
Proor.Follows from definitions. o

8.5.2 Special Feature Terms

We now introduce the notions ofosed, quantifier-free, basendsimplefeature
terms.

Definition 8.19 (Closed feature term) A feature term is callealosedif it has
no variables. o

Definition 8.20 (Quantifier-free feature term) A feature term iqquantifier-free
if it contains no quantificationsx(S). o

Definition 8.21 (Basic feature term) A feature term ishasicif it is quantifier-
free and contains only complements of the fremor ~x. o

Every quantifier-free feature term can be transformed into a basic feature term,
where negations occur only at the atom and variable level.

Proposition 8.22 Every quantifier-free feature term can be rewritten in linear
time to an equivalent basic feature term by using the following equivalences:

~f:S=ftuf:~S ~1l=T
~fr=fT ~T=1
~ftg=ftugtuflg ~(SMT)=~SU~T
~flg=ftugruftg ~(SUT)=~SMN~T
~~S=S S»T=~SUT
SeoT=(~SUT)N(~TUY)
Proor Follows from definitions. o
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Definition 8.23 (Simple feature term) A feature term issimpleif it is basic and
contains no unions. o

Definition 8.24 (Disjunctive normal form) A feature term is indisjunctive nor-
mal form (DNF) if it has the formS U --- U S,, where allS,, ..., S, are simple
feature terms. o

8.5.3 Equivalence

The meaning of an expressi&3:= T is the intuitive one.

Definition 8.25 (Term equivalence) Two feature termSandT are calledequiv-
alent(written S=' T or S= T where unambiguous) &, = T, for every feature
algebra and anl-assignmentr.3 o

Using this equivalence notion, we find that feature terms constitute a boolean
algebra.

Proposition 8.26 Let f be the set of feature terms, as defined in section 8.4. Then
(f,u,M,~, L, T) is a boolean algebra under the equivaleate

Proor. All properties required for boolean algebras (commutativity, associativity,
idempotency, absorption, distribution, etc.) apply. o

8.5.4 Subsumption

In our SCM context,subsumptions frequently needed for eliminating redundant
feature terms and to express implications.

Definition 8.27 (Subsumption) A feature termS is said to besubsumedy a
feature ternT (writtenSC T or T 2 S)if §, C T holds for every feature algebra
and everyl -assignmendr.* o

The following propositions hold for all feature terr8sT, U:

sCsS (8.1)
SCTNTCS=S=T (8.2)
SCTNTCU=SCU (8.3)

3Smolka [Sm092] write§ ~ T instead ofS=T.
4Smolka [Sm092] says th&is includedby T, written S T.
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as well as

SATCS f.SCf.T & SCT SCT
SCSuUT ~SC~T & TLCS 1CS.

As subsumption is reflexive (8.1), antisymmetric (8.2), and transitive (8.3), it im-
poses gartial orderon feature terms—for instance, we havel [fruit: appld 3
[fruit: apple color: greerj O [fruit: apple color: greenwormy.nol 3 --- J L. This
order constitutes a lattice structure in the set of feature terms.

Proposition 8.28 The set of all feature term$ and subsumption constitute a
subsumption latticéf,C) with a supremum o$U T and an infimum o8N T for
allSTe f.

Proor. Follows from proposition 8.26 on the page before. o

8.5.5 Consistency

The notion ofconsistenfeature terms is important for defining the consistency
of a configuration.

Definition 8.29 (Consistency)A feature termSis called coherent oconsistent
if there exists a feature algebraand anl-assignmentt such thatg, # 0. A
feature term is called incoherentimconsistentf it is not consistent. o

Definition 8.30 (Mutual consistency) Two feature ternBandT are calledcon-
sistent with each othdf their intersection is consistent—that is,Sf1T is con-
sistent. o

Definition 8.31 (Disjointness) Two feature term$ andT are calleddisjoint if
their intersection is inconsistent—that isSf1 T is inconsistent. o

Both deciding subsumption and equivalence can be tracked down to deciding
consistency.

Proposition 8.32 Consistency, subsumption, and equivalence of feature terms
are linear-time reducible to each other:

Sinconsistents S= L (8.4)
SCT & Sr~Tinconsistent (8.5)
S=T & SCTATLCS (8.6)

Proor. Follows from definitions. o



8.6 Conclusion 87

8.6 Conclusion

Feature logic combines boolean formulas with attribute descriptions. Its basic
notions arefeaturesfunctional properties or attributes of abstract objects, and
feature termsgenoting sets of objects by their features. Feature logic has a con-
venient and natural set notation, describes objects by attributes, and provides a
suitable notion of consistency. Feature logic thus fulfills our requirements for a
SCMfoundation, as discussed in chapter 7.

In this work, we always interpret feature terms as sets of objects, unless oth-
erwise specified. “Traditional” set notation will not be required, with one single
exception: We writdS| to express theardinality (the number of elements) of a
set denoted by the feature teBunder a given interpretation. All other required
notation is already provided by feature logic, as introduced above. Having pro-
vided the necessary foundation, we now apply feature logic in the contegihgf
developing a layer ofM primitives on top of feature logic.

In the first place, Herodotus,

you must understand what it is that words denote,

in order that by reference to this

we may be in a position to test opinions, inquiries, or problems,
so that our proofs may not run untested ad infinitum,

nor the terms we use be empty of meaning.

— EPICURUS, Diog. Laert, Epicurus, X, 37
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Chapter 9

Versions and Components

Let us now return to th6CM domain. In this part, we show how feature logic can
be used to describ®CM tasks and concepts, and how a unif@ivi model can
integrate the common fol@CM models.

We begin with theSCM primitives layer, that is, basic versioning and access
capabilities. We introduce the conceptrefsion setssets of component versions
denoted by feature terms. We show how the features of components are modeled
as alternatives over the features of the individual versions, and demonstrate how
specific versions are selected by intersection.

9.1 Identifying Versions

According with theSCM standards, as stated in section 1.3, we consider that the
object of interest iSCM s a family of software product€ach of these software
products breaks down in sevemdmponentseach of which may exist in sev-
eral component versiong\ component version is an unbreakable, unambiguous
configuration item.

In our setting, a component isseetof component versions and thus identifi-
able by a feature term. Each of the individual component versions is identified by
a singleton subset. To bind these component versions together, we must assume
at least one common feature across all component versions. Hence, we assume
that each component can be identified uniquely viabjectfeature assigning
each component a simple (unambiguous) component identifier.

Definition 9.1 (Component) A components a setk C [objectk], wherek is a
simple feature term uniquely identifying the component. o

91
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For instancelobject printer] denotes a component, Hiruit: appld does not.

A component versiois uniquely identified by a singleton component. As a
matter of convenience, we use the same name for singleton sets and the object
they denote. Hence, eomponent versiomeans both a singleton set and the
object contained in that set.

Definition 9.2 (Component version) A component versiolis a componenK
with K C [objectk] and|K| = 1, wherek is a simple feature term uniquely iden-
tifying the component. o

Definition 9.3 (Abstract component) A componentK is called generic oab-
stractif it occurs in more than one version, i K| > 1. o

As an example, let

printer; = [object printer, print-languagepostscrip}
printerz = [object printer, print-languageascii

denote versions of grinter component, distinguished by their input language
(PostScript orSCIl). The term[object printer] then denotes an abstract compo-
nent, since it occurs in (at least) two versions.

Definition 9.4 (Bound component) A componentK is called unambiguous or
boundif it occurs in exactly one version, i.¢K| = 1. O

Following our example, if both component versigmsnter; and printer, are
bound, the abstract compongobject printer] comes in exactly two versions.

We now abstract from components and speak of versions alone. A collection
of arbitrary components in arbitrary versions is callegtegision set. We still
assume that abjectfeature exists.

Definition 9.5 (Version set) A version sets any seV LC [object T]. o

For consistency, &ersionis a singleton version set. This implies that a compo-
nent version is both a component and a version.

Definition 9.6 (Version) A versionis any version se¥ C [object T] such that
V| =1. o
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The features of a component are modelechlisrnativesover the features
of each component version. That is, a component isuthien of its individual
component versions:

Definition 9.7 (Components vs. Component versions) A componenK exist-
ing in n component versiong, Vs, ..., Vy, is determined as the union of &t

K=ViUVol---UVoa= | | Vi . (9.1)

1<i<n

]

Featured of the component itself (a®bjectk]) are the same across all com-
ponent versions, and hence can be factored out thréaghVi) Ul (F MVy) =
Fr(VilVs).

As an example, reconsider our printer setting. Pphieter component itself is
determined as the union pfinter; andprinter;:

printer = printery LI printer,
= [object printer, print-language{postscrip;ascii}] .

The termprinter can be read either as union of the component vergioinger;
and printery, or as the features of th@inter component, which is “the printer
language is PostScript @iSCII”".

9.2 Selecting Versions

To retrieve individual versions of a version set, the version set is intersected with
a selection terncontaining the desired features. For any versionTseind a
selection terng, we can identify the versions satisfyi&dpy calculatinglT’ =T 1
S—that is, the version set that is a subseSafs well as a subset af. If T' = 1,
selection fails—F' does not denote any existing version.

For instance, consider the printer example from section 9.1. In figure 9.1 on
the following page, we have represented some version sets using the well-known
Venn diagramsgach curve represents a set enclosing the denoted objects. We
see that selectin§ = [print-languagepostscript from printer returnsprintery,
sinceprinter; is a subset 08 (that is,printer; C S), while printer; is not (that is,
printers C ~S).

Formally, we haveprinter S= (printer, U printerz) M S= (printer1 M S) L
(printer2M'S) = printery LI L = printer;. Here,printer, M S= L holds since the
print-languagefeature may have only one value.
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[print-languagepostscrip}

object printer, object printer,
print-languageascii print-languagepostscript

[object printer]

Figure 9.1: Selecting component versions

The selection term may be an arbitrary feature term. For instance, we may
select any printer exceptintery, by selecting

S= ~printen
= ~[object printer, print-languagepostscrip}
= ~J[object printer] L ~[print-languagepostscrip}

Obviously, we haverintern S= printer,, since(printer; L printery) M ~printery
= printery holds.

Due to the semantics of feature logic, there is a potential danger in selec-
tions. Since every non-existing feature must be specified as explicitly as every
existing feature, a selection with non-specified, orthogonal features may resultin
counter-intuitive results. For instance, select®g [colors 4] from printer =
printery L printer, would result in the entirgrinter set, although theolorsfea-
ture is neither defined nor undefined in e@ecimter; andprinter,. Which is even
worse,printer Sresults in a new termaugmenteavith the colorsfeature from
S
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printerr[colors 4]
= [objectprinter, print-language{postscriptascii}, colors 4]

Although this behavior makes sense in a set-theoretic context, it is undesirable for
SCM selection purposes. Fortunately, this behavior can easily be avoided in an
implementation by disallowing non-orthogonal selection terms. In section 19.5,
we discuss techniques for safe interactive exploration of the version space.

To conclude, the ability to use boolean expressions for both identification and
selection complies with the requirement forificationas stated in section 7.3. It
allows our model to encompass attribute-oriented identification schemes as well
as attribute-oriented selection schemes. Alas, the expressiveness of feature logic
comes with the cost afiP-completeness, which implies exponential time com-
plexity for selections in the worst case. Fortunately, all of todag# tasks can
be realized efficiently, as we discuss in chapter 14.

9.3 Making Selections Unambiguous

As our selection scheme is set-oriented, the result of each sel&ctioha se-
lection T = T M Siis just another version set and may thus be ambiguous. To
make our selection unambiguous, we may give a second selectioStand se-
lectT” =T'NS, give a third selection terr8’, and so on, narrowing the choice
set incrementally until a singleton set is selected, containing the desired version.
Such technigues can be used to explore the configuration space interactively, nar-
rowing and extending the selection as desired. We discuss such interactive tools
in section 19.5.

As discussed in section 3.3, m@&TM tools make their selection unambigu-
ous as soon as possible, usicapfiguration ruleso express preferences and de-
faults. The semantics of such complex selection schemes can be described on
top of feature logic, by definingreference operatoenddefault operatorsrhich
handle ambiguity and inconsistency.

Definition 9.8 (Preferences and defaults)The preference operatdrand-then”
and thedefault operatotor-else” are defined as

S if S is unambiguous (i.6S| = 1),
S NS  otherwise

S if S is non-empty (i.eS # 1),
S otherwise

S and-therg, = {

S or-elses, = {
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where the equivalencdsr (S and-thersp) = (T NS and-thed M) andT M
(Sior-else) = (TS or-elsel M) hold. o

Using “and-then” and “or-else”, we can express preferences and defaults in
our selection terms. For instanc®= ([current T]or-elsgfixed true]) first se-
lects the current version, and, if there is none, a “fixed” current version. The se-
lection S= ([os uniX and-therunix-flavourbsd) selects theJNIX version and,
should this choice be ambiguous, #88D variant.

Another practical extension are additional constraints, for instance quantifica-
tion, arithmetic constraints or function interfaces. Such constraints can be handled
as additional constraints in Smolka’s feature unification algorithm when deciding
about the inconsistency of simple feature terms; they can be evaluated as soon as
their variables (features) are instantiated [Sne91]. Well-known constraint solving
systems like the Simplex Method or language-specific consistency checkers, as
discussed in section 3.6.2, may help to decide about inconsistence. Such con-
straints are discussed in section 18.5.

Users must be aware, however, that the usage of preferences or additional con-
straints may lead to unresolved constraints due to undecidability. Such unresolved
constraints can be avoided by using extensions either only for version identifica-
tion or only for version selection, making preferences and additional constraints
useful extensions in many environments.

9.4 Dynamic Version Creation

So far, we have thought of components as a union over a finite set of versions.
But it is also conceivable that specific versions dymamically created and in-
stantiatedjust as they are requested. As an example, consider a component
network-interfacéhat can be customized with a specific network address. As the
number of network addresses is (in theory) infinite,ibavork-interfaceompo-

nent is the union over an infinite set of possible versions. Hence, the features of
network-interfacdbecome

network-interface= [object network-interfaceaddressT]

which means that for any version (subsethefwork-interfacethe addressea-

ture must be defined. ACM system may now be set up such that a selection
network-interfacel [address127.0.0.1] would actually instantiatethe generic
network-interfacecomponent with a version for the address D271, creating
versions on-the-fly as needed. In practice, this specific example would probably
not be implemented via 8CM system, but through some run-time configuration
mechanism (which may again realize the version set model).
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As a moreSCM-specific example, considehange setsas discussed in sec-
tion 2.7. As (more or less) arbitrary combinations of change sets are possible, an
SCM system should be set up such that these versions are created only when re-
quested. A selection term likehange-41T,change-42T], for instance, would
result in the creation of a version with the changes 41 and 42 applied. We fur-
ther discuss this idea of representing change sets and dynamic version creation in
chapter 11.

9.5 Assigning Features to Versions

We close this chapter by discussing the question which features of components
and versions are significant and how these should be modeled in feature logic.
The specific attribution methodology is part of higlsM layers (notably the
protocol and policy layers); in order to maintain flexibility at these layers, we do
not impose more meaning than necessary on specific features.

There are only few existing attribution methodologies; we have already dis-
cussed the€APITL methodology in section 4.5; another frequently-cited scheme
is faceted classificatiofPD87, OHPDB92]. However, we can supply some gen-
eral guidelines imposed by feature logic.

9.5.1 Variants must be Disjoint

Definition 9.2 requires that each component version be singleton and thus un-
ambiguous. This implies that the intersection of any two different component
versionsV; andVj must be empty, ok MV; = L. For instance, consider the
following terms:

screen = [object screendepth 1]
screen = [object screenx-resolution1024 y-resolution1024

screen andscreen do not identify two distinct component versions, as their
intersection is non-empty:

screen rscreen
= [object screendepth 1, x-resolution1024 y-resolution1024

is the set of all screens with depth 1 and a resolution of 202824 pixels. To
havescreen andscreen denote two unambiguous varianésreen must include
resolution features, aratreen must include alepthfeature.
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9.5.2 Feature Values keep Versions Disjoint

A simple way to keep versions disjoint is to assign each of them a common feature
with differing values. For instance, two variants for th®IX and WINDOWS
operating systems would be easily distinguished viamgrating-systerfeature:

0s, = [object os operating-systendog
0% = [object 0s operating-systenuniy
As all features,operating-systentan have only one value. Hence, selecting
the UNIX variant [operating-systenmuniy automatically excludes theOS vari-
ant[operating-systendog and vice versa.
The alternative, introducingosandunixfeatures, is less convenient, since the

alternative operating system must be excluded explicitly; this would only make
sense if we expected some future version to supportbetk andDOSvariants.

9.5.3 Features Model Variance Dimensions

Re-consider thecreenexample. Let us assume that in fact, arbitrary combina-
tions of depth and resolution are possible. In this case, both depth and resolution
constitute orthogonal variance dimensions and should be modeled by different
features. With dynamic version creation, each of these instantiations of depth and
resolution could be created on-the-fly, makingsheeencomponent a union over

an infinite number of possible component versions, or

screen= [object screendepth T, x-resolution T, y-resolutionT] .

9.5.4 Alternatives may Denote Multiple Features

Sometimes, a single version supports several alternativessnhatt-printerbe

a specific printer component may determine automatically the language of its
printer data and thus support several languages at once. This can again be mod-
eled asalternativefor instance as:

smart-printer= [object printer, print-language{ascii, pcl, postscrip}]
wheresmart-printeris a singleton set; thus, the selections

smart-printerr [print-languageascii ,
smart-printerr [print-languagepostscrip} ,and
smart-printerr [print-languagepcl|

all return the same component version.
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9.5.5 Constraints Exclude Feature Combinations

It is often easier to specify theon-existenceof certain feature combinations
rather than to specify all existent combinations. This is especially true for dy-
namic version creation. Sudeature constraintare best modeled as common
features of the component. A screen with one plane, for instance, is monochrome:
it can only show either black or white pixels. This general constraint can be ex-
pressed through an implication

C = (planes1 — colors 2) = ~[planes1]Li[colors 2] ,

stating that the screen has either more than one plane (strictly spoken, any other
number of planes than one) or two colors. This constraint may become part of the
common features of thecreencomponent:

screen= (planes1 — colors 2) M (screen U - - - LIscreeR)

which makes the relationship betwegalanesandcolorsexplicit and saves users
from specifying it in each term denoting the component versions.

9.6 Discussion

Using feature terms for both identification and selection of version sets constitutes
an expressive and general scheme. By handling version sets instead of individual
versions, we allow ambiguity as well as dynamic creation of versions. Through
preference and default operators, we can model disambiguation as foe@iin
systems.

Flexibility has its drawbacks. Using complex terms for identification as well
as for selection may result in exponential time complexity. Selection with orthog-
onal terms leads to counter-intuitive results. Finally, there are only few attribution
methodologies that would help classifying versions according to their features.
All three issues must be and can be addressed at the tggielayers.

When you have mastered numbers,

you will in fact no longer be reading numbers,

any more than you read words when reading books.
You will be reading meanings.

— HAROLD GENEEN, Managing






Chapter 10

Composing Configurations

Having discussed how individual components are versioned, we can now turn to
collections of components, apnfigurationsWe discuss how features propagate

from components to configurations, and how the features of a configuration are
determined by the common features of its component versions. We show how
common features are used as a means to determine consistency, and discuss how
configurations integrate with other versioning concepts discussed so far.

10.1 Extrinsic and Intrinsic Features

In chapter 9, we have seen how features propagate from versions to components:
Each feature of a component version becomes an alternative feature in the compo-
nent itself. The next questions are: how do features propagate from components
to configurations, and how do these features interact with each other? Basically,

there are two alternatives.

Feature unification. The features of the configuration are determined by the
common (i.e. unified) features of the component versions; these common
features determine the component versions. For instance, adftinglag
version to a configuration makéss dog a feature of the entire configura-
tion, excluding all norbOSversions in other components.

Feature union. The features of the configuration are determined by the united
features of the component versions; component features do not interact. For
instance, when composing a configuration from two componatsr—=
[object vectol andmultiset= [object multiset, the features of the configu-
ration should bgobject {vector multiset |—that is, the objects aneector
andmultiset

101
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A solution to this dilemma is to distinguish betweextrinsicfeatures, which are
unified, andintrinsic features, which are not.

Definition 10.1 (Extrinsic and intrinsic features) Features of acomponentver-

sion are eitheextrinsicor intrinsic. A dependent oextrinsicfeature of a com-
ponentis a feature that determines the features of other components in a configu-
ration. An independent antrinsic feature is a feature that is not extrinsic. o

Extrinsic features are typically features that must be common across all com-
ponents, for instanceperating-system customesr bug-fix-377 Intrinsic fea-
tures are often process-driven and used for identifying purposes onlgiker,
date or change-log Theobjectfeature is also an intrinsic feature.

We first discuss the treatment of extrinsic features, including a larger example,
and than turn to the integration of intrinsic features.

10.2 Unifying Extrinsic Features

In chapter 9, we have seen that in our model, feature terms may be used for
identification as well as for selection purposes. Until now, we have identified a
component version by its intrinsic features. But we may also use the feature term
of a component version to specify the features of its environment, notably the
features obthercomponent versions—that is, extrinsic features.

As an example, consider a simple portabi® ROM player built from ascreen
and adrive component. Each comes in two versi@tseen= screen LI screen
anddrive = drive; U drivey, where

screen = [object screenresolution high, drive-speedhigh]|
screen = [object screenresolutionmedium
drive-speed{high, mediumlow}]
drive; = [object drive, drive-speechigh|
drive; = [object drive, drive-speedmediun}

that is, screen is a high-resolution screen, which requires a high-speed drive,
andscreen is a medium-resolution screen, which also works with medium- or
low-speed drives.

Indeed, the version set model does not make a distinction betmerid-
ing andrequiringfeatures. In thescreencomponent, therive-speedeature is
required; in thedrive component, thelrive-speedeature is provided. The only
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statement we can make is that any configuration osthreenanddrive compo-

nents should excluderive, if screen is included. This leads us to the general
idea that each configuration shoultherit the features of its components, and
that the common features of the components determine the features of the config-
uration:

Definition 10.2 (Configuration features) Let C be a configuration ofi compo-
nents with the extrinsic featurég, Ko, ..., K,. Then,C has the features

C=KiMKaM---MKy= [] K . (10.1)

1<i<n

m}

As a simple configuration example, consider @@ ROM drive. The config-
uration ofscreenanddrive has the features

C = ([resolution high, drive-speechigh]
U [resolution mediumdrive-speed{ high mediumlow}])
M ([drive-speechigh] L [drive-speedmediun)
= [resolutionhigh, drive-speechigh|
LI [resolutionmediumdrive-speechigh|
LI [resolutionmediumdrive-speedmediun ,

that is, actually three possible configurations with different resolutions and drive
speeds.

Even without handling of intrinsic features, we already see that a configura-
tion will again be represented as a set and may be possibly ambiguous. We also
see that composing a configuration is very much like selection: each component
in the configuration imposes its constraints on the other components. This scheme
can be used for checking consistency with regard to the features, as discussed in
the next section.

10.3 A Unification Example

As a larger example for illustrating configuration consistency, consider figure 10.1
on the next page. We see three source components of a text editor, where each
component comes in several variants. We can choose between two operating sys-
tems @osandunix), four screen typesfa tty, x11andnews, and two screen de-

vice drivers lumbandghostscript. Thedumbdriver assumes that the screen type
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Screen device

Figure 10.1: Consistent configurations in a text/graphic editor

can handle the data directly (expressed through the variablthe ghostscript
driver is a separate process that can convert postscript data into a bitmap. The
component features imply that at most one version of each component can be
included in a bound configuration.

Let us now compose a consistent configuration from these three source com-
ponents. We begin by selecting the operating system, and choadestersion.
This implies that we cannot choose tkEl or newsscreen types, since (in our
example)dosdoes not support them: Formally,

[os dos screen-type{ega tty}] 1 [screen-type{x11 newg | = L

due to the differingcreen-typéeatures—we cannot ugé 1or newsscreen types.
We can, however, choosgaor tty screen types, as indicated by plain lines.

As final component, we must choose a screen device dgharstscriptcan-
not be chosen, since it requiresncurrentto be true, which is not the case under
dos Thedumbdriver remainsp is instantiated tditmapor ascii, depending on
the screen type, making our choice completditor can be built in &gaand atty
variants, inheriting the features of its source components. As an alternative, con-
sider the choicgos unix], as indicated by dashed lines. Again, each path stands
for a consistent configuration.
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The ability of treating component features as configuration constraints al-
lows for arbitrarylocalizationof configuration constraints: components can be
tagged with constraints regarding their usage, but global constraints regarding
(sub-)systems are permitted as well. The drawback is that one single language
must be used to specify constraints, to specify the component features, and to
select component versions. With feature logic, we hope having chosen a well-
established foundation with sufficient richness of expression.

10.4 Handling Intrinsic Features

We now show how to propagate intrinsic features in configurations. As stated
in the introduction, it makes perfectly sense for intrinsic featuresdiknor or
status to differ across componentsbjectfeatures even differ by definition. To
keep these intrinsic features from constraining other component versions, we lo-
calize them, that is, we make them depend on the specific component.

A possible approach to localize intrinsic features is to prefix all intrinsic fea-
turesf with the component name This would result in orthogonal features like
tty-authoror screen-statusA more elegant alternative is to express this depen-
dency explicitly in feature logic, using implicatiofisbjectk] — T that enforce
the versionT whenever the componeitis required. The idea is to create a
configuration termwith these implications that automatically selects the desired
version(s) from each component.

To construct such implications, we define a speagjregation operatofhe
operator f,” is similar to “r”, but has a special handling of intrinsic features:
instead of unifying them, it makes them dependent on the specific component;
objectfeatures are stripped altogether.

Definition 10.3 (Aggregation) Letl = {f1: T, f2: T,..., fa: T} be a feature term
denoting intrinsic features. L&andT denote components with

S= [objects|1ST1S" and
T = [objectt]nT' NT" | (10.2)

such thatS", T” C | denote the intrinsic features, aBJT’ Z | denote extrinsic
features. Thaggregatiorof SandT, written SH, T, is then defined as

Sm T =S nNT'n ([objects] — S’) 1 ([objectt] - T") . (10.3)
]

Every aggregatioH, T selects version subsets frgobject s| and[objectt]:
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Proposition 10.4 Let SC [objects] andT C [objectt] denote components, and
| denote intrinsic features, as described above. Then,

[objects|n(Sm T)C'S (10.4)

holds.
Proor.Let T = [objectt] M T'MT”, as in (10.2), satisfying the requirements of
definition 10.3 on the preceding page. Then, we have
U = [objects| (S, T)
= [objects] M (ST 1 ([objects] — S’) 1 ([objectt] - T")) . (10.5)
We reduce the first sub-formula, following the pattém (A — B) = AMB:
[objects] M ([objects] — S) = [objects| 1 (~[objects|US')
= [objectg M S’ (10.6)
as well as the second, following the pattérf (~A — B) = A:
[objects] 1 ([objectt] — T") = [objects| 1 (~[objectt]LT")
= [object ] (10.7)
and can reformulate (10.5) using (10.6) and (10.7) to
U = [objectgn(SNT'nS")
= ([objectsmSNS") NT’
=snT' .
HenceU = [object§| M (SA,; T) = SN T’ C S, which was to be shown. o

Using the aggregation operator, we can extend definition 10.2obj#ctfea-
tures and intrinsic features and formally define how all kinds of features propagate
from components to configurations.

Definition 10.5 (Configuration vs. components)Iif we have a configuratio®
composed ofi componenty, Ko, ..., K, with K; C [objectk;], and a terni de-
noting the intrinsic features, the configurati®ns identified by

C= [objectkll_lkzl_l---l_lkn]l‘lKlm| Koy -+ - F Ky

= [objectky Lika LI -+ - LiKq] M |T|_| Ki (10.8)

1<i<n
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[objectiterator] C [object containet

[accesssequentid|
[author.tor] [author: lisa]
Figure 10.2: Creating a configuration from two components

that is, objectfeatures are united, intrinsic features are made dependent on the
respective component, and all other features are unified. o

As an example, consider two components

container= [objectcontaine;author lisa, access{sequentialrandon}]
iterator = [object iterator, author.tom accesssequentigl .

Let | = [author. T] be the set of intrinsic features. According to definition 10.5
on the preceding page, the configuratidoontainingcontaineranditerator is

C = [object {containetiterator} r (containerr, iterator) |
= [object {containeriterator},accesssequential
(object container— authorlisa), (objectiterator — author.tom)] .

Not only does the terr@ unify the extrinsic features aontaineranditerator
to [accesssequentigl As illustrated in figure 10.2, it also ensures that whenever
thecontainercomponent is selected, Lisa’s version is returned:

Cr1[object containef C [author. lisa]
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and that whenever thigerator component is required, Tom’s version is returned:
Cr1[objectiterator] C [authortom] .
Likewise, requesting Tom’s version returns ttexator component:

CrJauthor.tom C [objectiterator] .

10.5 Properties of Configurations

We can now define some properties of configurations formally, according to defi-
nition 10.5 on page 106.

Definition 10.6 (Configuration) A configuratioris a seC C [object c], wherec
is a feature term identifying the set of configuration components. o

Definition 10.7 (Consistent configuration) A configurationC is called consis-
tentwith respect to its features@ # | —that is, if the number of possible con-
figurations is non-zero. o

Definition 10.8 (Bound configuration) A configurationC is called unambigu-
ous orboundif it is an aggregation of component versions; formalyis bound
if it is a setC C [object c] such thatC| = |c| holds. O

Definition 10.9 (Abstract configuration) A configurationC is called ambigu-
ous, dynamic, oabstractjf it is not bound; that is|C| > |c| holds. =

Definition 10.10 (Generic configuration) A configurationC is called partially
bound orgenericif it is abstract and a true subset of the configuration universe;
that is,|c| < |C| < |[object T]| holds. o

We see that the informal definitions given in section 3.3 can now be put more
precisely through well-founded formal definitions.

10.6 Configurations and Ambiguity

As configurations are again ordinary version sets (albeit containing several com-
ponents), all selection properties for component versions apply, as discussed in
chapter 9. A configuration can be dynamically created, for example; but it can
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also occur in multiple versions. We have already seen how ambiguity in a compo-
nent propagates to all configurations containing this component. But ambiguity
may also affect the actual set of components contained in the configuration.

As a simple example, consider a problem occurring in the 4.1 release of the
SunOSoperating system. The system librdifyc comes in two versions: one
dynamic version for dynamically linked programs, and one static version for sta-
tically linked programs. Both libraries are identical, except for one minor differ-
ence: Thestrerror() function is only contained in the dynamic library. This means
that programs using this function must include their astrerror component if
compiled statically, and omit this component if compiled dynamically.

For simplicity, let us assume a program with only one compopesgram
and without any specific features. Using version sets, the alternative configura-
tionsC are modeled as

C = [object program ~linkage statid (10.9)
LI [object {program strerror}, linkage statid
= [object progran]
M ([object strerror, linkage statid LI ~[linkage statid)
= [object progran] M, (linkage static— object strerror) . (10.10)

The disjunctive form in (10.9) shows what the actual configurations look like.
The implication constraint in (10.10), however, explicitly states that whenever
static linkage is required, tharerror object must be contained as well. These
two possibilities of expressing alternatives—enumeration or constraints—will be
discussed further when dealing with revisions and changes in chapter 11.

As the components of a configuration may be configurations again, we can
describe a full system model by compositiofg)(and alternatives.(), similar
to AND/OR graphs discussed in section 3.2.1. Through transformations of the
configuration term according to the rules of feature logic, arbitrary interchanged
selection and composition stages are possible. Additionally to compositions and
alternatives, complements may be used to express that a specific versimi set
be included in a selection—for instan@ = S ~T contains all configurations
of Sthat do not contaiff. As versions, components, and configurations are all
modeled by version sets, all version set operations can be applied equally, making
configurations first-class objects.
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10.7 Features of Derived Components

Closely related to the composition of configurations is dieeivationof compo-

nents from a set of source components, as discussed in chapter 4. To determine the
features of derived components, we use a variation of definition (10.8). Again, de-
rived components must be consistent, which implies thasthece configuration

be consistent as well. To ensure consistency across multiple derivation stages,
each derived component must inherit the extrinsic features of its source compo-
nents, just as a configuration inherits the extrinsic features of its components.

Definition 10.11 (Derivation) Let a componenK C [objectk] be derived from
nsource componenk§;, Ko, ..., Ky, and let a ternh denote their intrinsic features.
K is then identified by

KLC [objectk] NKy A Ko Ay --- Ay Kn

C [objectk]r [+ Ki , (10.11)
1<i<n
The termKy A, --- /) Ky is calledsource configuratioof K. o

The explicit setting of th@bjectfeature removes all implications generated
by the aggregation operator—only extrinsic features remain to be unified. As an
example, consider the editor example from figure 10.1 on page 104. Let us denote
the three components by

os= [object os author.tom ,
screen-type-= [object screen-typgauthor.lisa] ,and
screen-device- [object screen-devicauthor. john| ,

respectively; let the intrinsic features be= [author. T]. If we derive aneditor
component from ®OSEGA configuration, it is identified by

K C [object editor]
M ([object o0s author.tom,screen-type{egatty}, concurrentfalse

M| [object screen-typgauthor.lisa,
screen-typeega screen-datebitmay

M| [object screen-devicauthor. john,
screen-devicglumhdata D, screen—dataD])

C [object editor, screen-typeega concurrentfalse
screen-datebitmap screen-devicelumbdata bitmag ,
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that is, theobjectfeatures and intrinsic features of the source components are
stripped, and all extrinsic features are unified.

10.8 Discussion

By raising the version set model from components to configurations, we have
supplied a uniform denotation for components and systems with uniform query
mechanisms. In our model, configurations are full first-class objects; in fact, a
component is just the special case of a configuration with a single component.
Ambiguity is allowed in configurations just as in components; even the set of
components can depend on other features. Extrinsic features are propagated to
configurations as well as to derived components, while intrinsic features remain
dependent on the specific component.

Our configuration setting also has some drawbacks. While feature propaga-
tion from versions to components was simple and smooth, feature propagation
from components to configurations is much less elegant, due to the variety of
feature interactions in configurations. With the distinction between intrinsic and
extrinsic features, and the special handlingobjectfeatures, we hope having
supplied solutions for modeling the large majority of feature interactions.

Uniting objectfeatures has the desired effect of excluding all components
which are not part of the configuration. But using a union for what should ac-
tually be a set value has some unfortunate side-effects, notably when talking
about ambiguous configurations. For instance, how shall a configu@tien
[object {a,b,c}] be interpreted: as a configuration of three componarisand
c; or as an ambiguous configuration involving eitagb, or c?

To solve this problem, the best solution for that problem would be a feature
logic enhanced with set values. Smolka [Sm092] discusses such an extension
of feature logic, generalizing feature termsdoncept descriptionsjsing set-
valued features calletbles. objectcould then be represented as role instead of
a feature, allowing multiplebjectvalues. Unfortunately, Smolka does not give
a consistency notion for concept descriptions, let alone a consistency-checking
algorithm like feature unification. In [Man94], Manandhar presents an alternative
feature logic whose consistency notion encompasses set values. But Manandhar's
logic has no complement operator and hence no negation. The integration of
set-valued features or roles in a feature logic including a consistency-checking
constraint system remains an open problem.

In the absence of roles, there isadh hocsolution forSCM systems interpret-
ing feature terms: always use thédenest possible seln our case, this results
in C being interpreted as set of three objects, as was our intention. Ambiguity is
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still possible as soon as other features are involved. For example, consider
C' = { [devicex11 object {a,b,c}], [devicewin,object {a,b}]} .

GivenC'’, anSCM system would interpret the outer union as alternative, because
the united version sets are disjunct; there is no unambiguous widenest possible
set. The inner unions, however, can be interpreted as set valueg .as in

As is often the case,

providing information about the system as a whole
implies properties of individual components.

— DEBORAH L. McGUINNESS, LORI ALPERIN RESNICK and CHARLES ISBELL,
Description Logic in Practice
Interchangeable parts won't.
— LAWS OF ASSEMBLY, Il



Chapter 11

Changes and Revisions

We shall now turn fronplannedversions, that is, versions as they occur in the
final product, tounplannedversions, that is, versions as they occur during soft-
ware development and maintenance. In this chapter, we show how to model re-
visions and changes through feature logic. The basic idea is to identify revisions
by the applied changes, as in the change-oriented models. By expressing
sion constraintawve constrain the versioning space by disallowing specific change
combinations—up to revision graphs as in the version-oriented models.

11.1 Revision Graphs

In section 2.7, we discussed the Change-Oriented Model, where revisions are the
result of changes applied to a baseline. In our model, we also assume that new
revisions are created by applying changes on existing revisions. In contrast to the
Change-Oriented Model, we still focus on versions and do not treat changes as
separate entities. However, videntify revisions by the changes applied and the
changes not applied.

Let us denote the revisions of a version setRyR;,Ro,..., and so on;
81,02,03,... denote individual changes. Each revisRyris created by applying
a change; to some originating revisiorR;, . .., R—for instance, the change
results in revisiorR;. The exception to the rule is thselineRy, which has no
associated change.

A simple way to illustrate the relationships between revisions and changesis a
version graphas discussed in section 2.2. In this chapter, we shall useision
graphwhere each derivation between revisions is annotated with the associated

113
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o
5 R> &
R —= R — 5, 34 >~ Rs
Rs — R4 56
Re

Figure 11.1: A revision graph

between two revision® and R; means thaR; was created by applying the
chang®; onR;. Since this implies the®; is older tharR;, revision graphs repre-
sent the evolution of a version set in time.

As an example of a revision graph, consider figure 11.1. Most revisions have
one single origin—for example, revisidRy was created by applyins on the
baselineRy. But there is also a case ofultiple origins RevisionRs was created
from R, andR4 by applying the changss.

Individual revisions can be uniquely identified by the included and excluded
changes. For instance, revisiBpincludes the chang®, and excludes all others.
RevisionR4 includesd,, &3, andds, and excludes®,, d5, anddg. RevisionRg
includes all changes excepy.

But why should one care about identifying revisions by their changes? The
answer is: if there ara changes, there might be up tB izvisions—that is, one
revision for each combination of included and excluded changes. Assigning revi-
sion numbers is convenient for a small set of revisions, but if there is a large num-
ber of changes that can be applied independently, any linear numbering scheme
for revisions soon runs out of numbers.

With a given revision graph, it suffices to state only a few of the included and
excluded changes to identify individual revisions. Let us take a look at figure 11.1.
To identify revisionRg, it suffices to state that the changgshould be included.
Likewise, to selecRs, we only need to state th& should be included and that
should be excluded.

This simplification is possible because revision graphs exprmeghcations
between changes. For instance, applyingdthehange implies that thi& change
be applied as well—there is no revision includidgand excludingds. Hence,
when selecting a revision that includes the chabyeve do not need to specify
that the implied changess, 62, andd; are to be included as well. Likewise,
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excluding the changé, means that the changes implyidg are excluded as
well—that is,&s anddg, since they implyd, to be applied.

In this chapter, we show how to identify revisions just by stating included
and excluded changes, and how to use implications between changes to structure
revision graphs.

11.2 Identifying Revisions

We now formally define the notions of changes and revisions. We begin with
introducingdelta featureswhich we use to identify changes.

Definition 11.1 (Delta feature) A delta features an identifierd; denoting the
application of some change o

Delta features are convenient for grouping revisions into version sets, called
delta sets.

Definition 11.2 (Delta set) A delta sethi = [§i: T] is the set of objects where
the chang&; has been applied. o

In figure 11.1 on the facing page, the deltasgtontainsgR4, Rs, andRs; the
delta sef\g containdRs alone; and the delta s&t contains all revisions excepb.

Since we want to identify revisions by the excluded changes as well, we in-
troduce a short-hand notation for the complement of a delta set:

Definition 11.3 (Nabla set) The complement of a delta set is calledbla set,
written as[); = ~A; = [§i1]. It denotes the set of objects where the chalideas
not been applied. o

In figure 11.1, the nabla s&} identifiesRy alone, while(ls contains all revi-
sions excepRs.

To ensure that each revisid® is associated with a delta s&t and a nabla
set[d;, we define\p and[y accordingly.

Definition 11.4 (Ao, () We defineAg = T anddy = ~Ap = L. o

Intersections of delta and nabla sets are useful for identifying revisions.

Definition 11.5 (Revision features)For a given revision graph, the features of
each revisiorR, are
R = (ApM---MA) M Ok M-+ M 0)
M (Cngpa ---N ) 1 (Oj4a M-+ 110s) (11.1)
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where eachd; is a change leading up to a revisiBn
e Ri,...,R¢_1 are ancestors d#.
e Ri1,...,Rmare direct descendants &f.

® Rmni1,...,Rj are indirect descendants Bf—that is, descendants of the
direct descendan®1,...,Rm.

e Rj11,...,R are neither ancestors nor descendantof o

For the revision graph in figure 11.1, definition 11.5 yields the following re-
vision features:

Ro=0in O 03MOa M O M Og
Ri=A O3 OaM Os M Og
R=ANNAN0O3M 0N Os M Og
Rs=AM0Ox1 AzM0aM Os M Og (11.2)
Ry=A1M 01 A3 Ag M1 s M g
Rs=A1TMT AT A3T1 AgT1 A5 11 g
Re=A1M oM A3 AT O M Ag

Figure 11.2 on the next page illustrates the relationship between delta sets
and revisions for the revision graph given in figure 11.1. We see that each delta
set contains exactly those revisions where the change has been applied; likewise,
each revision is contained in the delta sets denoting its changes.

If we create arevision seta version set containing revisionsRgSor SCCS
repository,for example), we can select individual revisions by stating the ex-
cluded or included changes. As an example, let us create a revisi®cset
taining the revision®y,...,Rs, as determined in (11.2). According to (9.R)is
determined as

R=RyURIURURsUR4URsURs .

Arbitrary version sets can now be selected frBrby specifying a conjunction

of applied and non-applied changes, denoting paths in the revision graph. For
instance, the selectidR A4 denotesR4 and its descendank; andRg, as they

all include thed, change (formallyR4 LIR5 LIRs T RMAy); sinceRy, ... ,Rs do not
include thed, change Ry ---MR3 C [y), they are excludedyp IR LIR; LIR3 C
RM4). The selectiorRM [Az, Us] returns the single revisioRy, sinceRs, the

only other revision including the change, also includes the change and is

thus excluded byls = [851].
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A% As

AV A3 AV AV

Figure 11.2: Changes and revisions

Generally, to select a single revision, it suffices to include the change lead-
ing up to that revision and to exclude the changes leading up to its immediate
descendants.

We conclude with a few formal definitions regarding revision sets. In a re-
vision setR, we call a revisiorR;j an ancestorof R if R contains no revision
including the changg; while excludingdj—that is,A; C A;j holds.

Definition 11.6 (Ancestor, Descendant)n a revision seR, consider a pair of
revisionsR C RandRj C R. If i # j holds andR (A M 0;) is inconsistentR; is
calledancestoof R andR,; is calleddescendansf R;. o

An immediate ancestor is calleatigin; an immediate descendant is called
successor.

Definition 11.7 (Origin, Successor)In a repositonR, letR;,...,R¢ be the an-
cestors of a revisioR;. EachR C RjU--- LRy is calledimmediate ancestasr
origin of R; if there is no chang&m, # & such thalRy, is a descendant ¢ and
an ancestor oR;; revisionR; is calledimmediate descendant successoof R,.

[m]
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11.3 Revisions and Variants

The introduction of delta features allows us to distinguish revisions from variants

formally. Basically, a revision is a version set that cannot be refined any further

by specifying more delta features in a selection term. For instance, the feature
termR = [object foo,A47] denotes a revision R= RMA; = RM G holds for all

i #47.

Likewise, a variant is a version set that cannot be refined any further by spec-
ifying any more non-delta features in a selection term. For example, the term
V = [object bar,testedtrue] denotes a variant W =V 1 [f: T] =V n[f1] holds
for all featuresf such thatf # objectandf # testedandf is not a delta feature.

Neither variants nor revisions are necessarily singleton: A variant may still
come in multiple singleton revisions, and that a revision may come in multiple
singleton variants. If a version set can no more be refined, we have a singleton
version following definition 9.6 on page 92.

Here come the formal definitions, beginning with refinement. A t€mafines
a termSif T M Sis different fromSand non-empty. Like cardinality, refinement
can only be determined for some given interpretation.

Definition 11.8 (Refinement) A feature termT is said torefinea feature terng
if SIT #SandSNT # L hold. o

If a version set cannot be refined by stating more delta features, we call it a
revision.

Definition 11.9 (Revision set, Revision)A revision sets a version seR that is
a subset of some delta or nabla set. A revisiorBsstcalled arevisionif there is
no revision seR such thaR refinesS. o

If a version set cannot be refined by stating more non-delta features, we call
it a variant.

Definition 11.10 (Variant set, Variant) A variant setis a version seR that is
not a revision set. A variant s&is called avariantif there is no variant se¥
such thav refinesS. o

Note that a versioW may be a revision as well as a variant:

¢ If V is distinguished from another version via a delta feature dhhlyas
created by applying a change and is thus a revision.
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¢ If V is distinguished from another version via a non-delta feature Wnily,
a variant.

e If V is distinguished via delta features as well as via other features, there
was a change that affected other features as Weal;a revision as well as
a variant.

In section 12.5, we will further investigate the relationships between delta
features and other features.

11.4 Revision Constraints

In (11.2), we have seen that the terRsdenoting the individual revisions may

become quite large—each Bj, . . ., R, containsn primitives. If we represent the

features of the revision s&in DNF, as stated in (11.2R containgn+1) x n=

n? + n primitives, resulting in quadratic time behavior for any repository accesses.
In this section, we discuss an alternate representatioR,fasing an inter-

section ofrevision constraintsthat is, implications between delta sets. Using

revision constraints, the revision $&from (11.2) can be expressed as

R= (Az — Al) 1 (Ag — Al) 1 (A4 — Ag) 1 (A5 — Az) 1 (A5 — A4)
N(Ag — Aa) M (A2MA3 — As) M (AN As — L) (11.3)

that is, one single implication for each edge in the revision lattice as well as one
single implication for each integration. Not only does such a representation save
much space, it also immediately reflects the structure of the revision graph. Be-
sides that, the constraint representation is much easier to maintain when new re-
visions are added, since all we have to do is to interBewatith an additional
constraint.

When selecting revisions froR all revision features are created by applying
revision constraints—every revision constraintRns reduced to some delta or
nabla set. As an example, consider the seled®oi\5, which should returiRs,
as defined in (11.2). Following the general scheme

(Ai—)Aj)I_IAi:(DiI_IAj)I_IAi:AiI_IAJ s (11.4)
we begin with intersecting the constraints involvibgin (11.3) and obtain

(A5—)A2)|_IA5:A2|_IA5
(A5—)A4)|_|A5:A4|_|A5 ,
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that is,RMAs C Ay andRMAs C A4 hold. Consequently, we can intersect the
other constraints with, or A4 to eliminate alternatives:

(Az—)Al)I_IAZZA]_I_IAZ
(A4—)A3)|_IA4:A3I_IA4

and find thaRM As C A; andRMAs C Az hold. RMAg C [ also holds:
(M2MAs — L)NA=0sMA, .
The remaining constraint is trivially reduced to

(DoMA3 = As)MAs=TMNAs .

We obtainRMAs as

RMAs = (A1 MAI M AN A M A4 AN T M) MAs
=AMA N A3NTALMTAs M g
=Rs .

As another example, consider the selectml;, which should returiRy, as
defined in (11.2). We now rely on a variant of (11.4), namely

(Ai—)AJ)I_IDj:(DiI_IAJ)I_IDj:DiI_IDj s (11.5)

in order to reduce revision constraints to revision features. Intersecting the first
two constraints in (11.3) withl yields

(Az—)Al)I_ID]_:DzI_ID]_
(Ag—)Al)l_l[b:[bl_lul ,

that is,RM; is a subset ofl, anddz. Hence,RM 0; = RM 0, M s holds, and
we can intersect the other constraints withto obtain further features:

(A — A3) Mg = 04N s
(85— M)y = TN
(Ae—)A4)|_I[|4=D6|_I[|4
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_
Do —= B < = A
° PN g A4Q€A5>i>l
6

Figure 11.3: A revision graph as subsumption lattice

The last two constraints are easily reduced to

(MpNA3 = As)N =T
(MNhg— L)NL=TN

We obtain

ROy = (NOsNO4NOsNOsM 0N TAT) M Dy
=innnansn Uy
=Ry .

11.5 Constraints and Lattices

How does one obtain these revision constraints? Revision constraints are deduced
from therevision lattice.The revision lattice is the subsumption lattice obtained
from the subsumption relation between delta setd; Iif A; holds, requesting the
changed; implies thatd; be applied as well. Using (8.4) and (8.5), we have

ACA & A0 =1 .

Consequently, if\i C A;j holds, there is no revision such thitis applied, but
d; is not.

These subsumption relations between delta sets can be visualized in a graph.
The revision lattice for our example is shown in figure 11.3. In the revision lattice,
the supremum of any two revision sé{sandA; is the set of ancestor revisions
A LIA;; their infimum is the (possibly empty) set of integrated revisiyisA;.

We see that the revision lattice is isomorph to the revision graph, as shown in
figure 11.3; the only difference is that we have addedelement to complete the
lattice. The structure similarity does not surprise—the revision graph is structured
by change implicationd; — &;, which correspond to the subsumption relations
Aj J Aj in the revision lattice.

Using the revision lattice, we can compu&ision constraints
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Definition 11.11 (Revision constraint) For any two delta set; andA; in a re-
vision lattice, letAry J (A L Aj) be their lowest common ancestor (supremum),
and letd; ; C (4 AA; j) be thelr (possibly empty) highest common descendant
(infimum) in the revision lattice. Theevision constrain€; j is defined as

Gij = (AU —>AH)I_I(AiI_IAj —)Aﬂ) (11.6)
o

In the common case of changes that imply each other (thAt i3,4A;), revi-
sion constraints take a much simpler form:

Corollary 11.12 If A J Aj holds, the revision constraif j is

C,j=4j— A (12.7)

Proor.We haveAr; = A and4 j = Aj. Consequently,

Cij = (AiUA) = Ap) N(AINA] — A )
= ((GnO)uas) n(Gug)ua;)
=0ua)nT

=Aj = 4,

which was to be shown. o

Constraints involvindyg are trivial.

Corollary 11.13 Forall j, Cj o =Coj = T holds.
Proor.Because of (11.75j0=Coj =Aj 2> Do =Aj =+ T =T. o

As an example of revision constraints, consider the revision graph in fig-
ure 11.3 on the page before, where we have

C2,4 = (Az UAg — Al) M (Az NAg — A5)
as well as
C276 = (AUAg — A1) M (A2MAg — L) .

The conjunction of all revision constraints in a revision graph is catleat
straint representatioof the revision graph.
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Definition 11.14 (Constraint representation) Given a revision lattice with delta
setsAy,...,An, the constraint representatid of a revision graph is defined as
the conjunction

c=[]¢Gy, (11.8)
1<i<n
<j<i
where each revision constrafdt; is defined according to (11.6). o

It now turns out that this conjunction of constraints, as defined in (11.8), is
equivalent to the union of revisions, as defined through (9.1), and thus constitutes
a suitable representation for revision graphs, as demonstrated in section 11.4. The
proof is given in section 11.6.

11.6 An Equivalence Result

In this section, we show that the conjunction of constraiyiss defined in (11.8),
is equivalent to the union of revisiof as defined through (9.1). The road map
to the proof is as follows:

e Inlemma11.15 on the following page, we show that a selecti@nsitating
the included and excluded changes actually contains the desired revisions.

e Inlemma 11.16 on page 125, we show that this selection does not return
any other revisions.

e Proposition 11.17 on page 127 combines lemmas 11.15 and 11.16 and
states that we can select a single revidirfrom C by specifying the in-
cluded and excluded changes.

e Lemma 11.18 on page 127 applies proposition 11.17 to revision sets and
shows that we can select a revision and all its descendant<from

e Finally, theorem 11.19 on page 128 applies lemma 11.1&tshowing
thatR = C holds.

We begin with some selection results. First, we show that we can select a
revision R¢ from C by stating the change leading up R and excluding the
changes leading up to its descendants. Lemma 11.18 on page 127 sta®gsshat
at least a subset of such a selection.
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Lemma 11.15 LetC be a constraint representation, as defined in (11.8)Raad
RolU--- LRy be a union of revisions. For all revisioRs C R, with 0 < k < n, we
have

ReCCnan [ G, (11.9)
k+1<I<m

whereRy. 1, ...,Rn are the immediate descendantdpf
Proor. According to (8.5), (11.9) holds if and onlylif, defined as

U =RM~(CNAM 1M MOn)
is inconsistent. We apply de Morgan'’s laws, obtaining
U =R (~CU~ (AN D2 M-+ M0y)) -
Because of (11.1) C AxM Oky1 M-+ -1 0Oy holds. Hence, we have
U =R~C

and we see that (11.9) holds if and onlyRf C C holds. We replac€ by its
definition (11.8) and obtain
U - Rkl_l N(C]_’Zl_l e ﬂCn’nfl)
=RcM(~CyoU---LU~Chn-1)
= (RcM~Cyo)U---U(RcM~Chp-1) ,
that is,U is inconsistent if evenR M ~Cij is inconsistent. For each pdifj,
using (11.6), we evaluat& 1 ~GC; j to
R¢M~GCi j = R¢IM N((Ai UAj — Aﬁ) NAnA; — Aﬂ))
=R (((AiuA)NOF) U (&NA NG ))
= (ReM (4 UAJ)HDH) U (ReMAMA; I_IDM)

LetU’ = (4 I_IAJ') M DH andU” = (& I_IAJ') noj such thaRkl‘INCi,j =u’'uu”
holds. We distinguish four cases: o

1. ReCAiMA;. Dueto (11.1)R«C A must hold as well, which implieR M
u'c A0 = L. AsR is the integration oR; andR; or a descendant,
we haveRy C Aij and thunu” C Aijjntj=L.
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2. R« C [0 nAj. RevisionRy inherits the features dk; and all of its ancestors.
Asincase 1R C Aﬁ must hold as wellR¢MU’ = L holds. Sincdr, C LI,
R«U” C G NA; = L holds.

3. Rk C AinLj. Same as case 2, above.

4. ReC O nO;. We haveReU' C (G M0)) M (A UAj) C L; as in case 2,
R«MU” = 1 holds.

In all four casesRcM (U’ LU") = R(M~C; ; = L holds for each pair, j, resulting
inU =R ~C = 1. SinceU is inconsistent, (11.9) holds, which was to be
shown. o

Lemma 11.16 states thBf is also a superset of the same selection.

Lemma 11.16 LetC andR be defined as in lemma 11.15 on the preceding page.
For all revisionsR¢ C R, with 0 < k < n, we have

Raacnan [ G, (11.10)

k+1<I<m

whereRy, 1, ..., Ry are the immediate descendantdRpf
Proor. As stated in (8.5), (11.10) holds if and onlydf, defined as

U=~RMNCNAM 1M+ M0m
is inconsistentRy takes the general form
Rq=(A1M--- M) M (Ckger M- -1 0
I_I(I]m+1l_l---I‘IDJ)I‘I(Dj+1I_I---I_IEIn) ,

where allA; and [ are defined according to definition 11.5 on page 115. The
inverted form is

Nsz(|:|1|_|---|_||:|k)I_I(Ak+1I_I---I_IAm)
U(Amir U UA) U (Aj4 U UAR)
such thatJ evaluates to
U= (U UB) U (Dksal - UAy)
U (Ampa - LA U (Ajy1 L - LAR))
I_ICI_IAkI_I|:|k+1I_I---I_I|:|m .
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We shall now show that none of the alternatives-iRx can be satisfied. We
begin with the alternativelSi LI A1 LI - - - LI Ay. These are explicitly excluded by
the selection termy M Oy, 1M - - - M Oy @and we obtain

U= (01U U0 1) U (Bmpa - LA U (Ajyr -+ LA))

We continue with eliminating the ancestor alternatives. SRge..,R¢_1
are ancestors dR, we haveAry = A; for 1 <i <k-—1. ConsequentlyC C
Ck= Ak — 4 holds anoCI‘IAk C A for 1 <i<k-1. Hence, the alternatives
Dl LI--- U0 1 cannot be satisfied and may be omitted, resulting in

U= ((Bmpal---UA)U(Aj41 U+ LAR))
ACAM Ukga M-+ 0m

We continue with the descendant alternatives. The same applies to the indirect
descendants ¢¥. SinceRq,1,...,Rnare direct descendantsif, we havaﬁﬁ =
Dfork+1<i<mandm+1<I<j. AsaboveCCC)=A=A=0—=0
holds and thu€ N0 C [ fork+1<i <mandm+1<I| < j. This removes the
alternatives\my 1 U - - - LIA;j, resulting in

U=(Aj1U---UA)NCAM Oegpa M---M 0y

We close with the remaining alternatives. The revisiBps;, . .., R, are nei-
ther ancestors nor descendant®afFor eachR; with j+1 <i < n, let us check
if R andRy integrate:

¢ If R andR integrate in some revisioR,, we haveA; x = A. Then,C C

Cix C (AiNAk — &) holds, and we hav@ My = A — A = 00 — 0. But
R is a descendant dfx. As shown above, this implies th@t1 D, 1M1+ - 11
On C 0 and we hav€ AN Dy 1 M ---N 0Oy E O

e If R andRy do not integrate, we ha\ﬂ,_k = 1. Inthis caseCC Gy C
(AinAg — 1) =0 UG holds, and we have iy C 0.

In either caseC M A M Ogyrq M---MOn E 0 holds for allj + 1 <i < n—and this
eliminates the remainindy; alternatives.

U=1nCnAgM ks M---MOy
=1 .

HenceU is inconsistent and (11.10) holds, which was to be shown. o



11.6 An Equivalence Result 127

Proposition 11.17 combines lemma 11.15 and lemma 11.16. It states that we
can select a revisioR from C by including the change leading up B and
excluding the changes leading up to its descendants.

Proposition 11.17 Let C andR be defined as in lemma 11.15 on page 124. For
all revisionsR¢ C R, with 0 < k < n, we have

Re=Cnaan [ G, (11.11)
k+1<I<m

whereRy, 1, ..., Ry are the immediate descendantdRpf
Proor. Follows from (11.9) and (11.10) via (8.6). o

Proposition 11.17 implies that the selectiom 4A; returnsR; and all its de-
scendants.

Lemma 11.18Let C andR be defined as in lemma 11.15 on page 124. For all
revisionsRy C R, with 1 <k < n, we have

CMAk=RURG1 L URy (11.12)

whereRy, 1, ..., R, are the descendants &f.

Proor. We prove (11.12) via structural induction. R has no descendants,
(11.12) holds because of (11.11). OtherwiseRets,...,Rn be the direct de-
scendants oRy and let us assume that (11.12) holds Ryt 1, ..., Ry, Starting
with (11.11), we obtain

Re=Cnag [] G

k+1<I<m

This can be expanded to

Rk|_|< L] C|‘|A|> = (CﬂAkﬂ [ D|> |_|< L] C|‘|A|>
k+1<I<m k+1<I<m k+1<I<m
By applying (11.12) for alt\, 1, .. .,Am on the left-hand side, we get

Rkl_l---l_an:<C|‘|Ak|‘| [ D|>|_|( L] CI‘IA|>

k+1<I<m k+1<l<m

=Cn ((AkﬂHngu) y <k+1|§|gmAl>>
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Applying the absorption rule yields

RU---LUR,=Cn (Aku | A.)

k+1<I<m

EachR in k+1<I| <mis a descendant dk. Because of (11.7), we have
CLC A — Ag and thuLn (Ax U A) = ClAg, which results in

ReU---URy=CmAk .

We have shown that (11.12) holds for aRy without descendants, and for
anyR if it holds for its descendants. Hence, (11.12) holds foRall o

Lemma 11.18 on the page before also states that the the two revision set rep-
resentations are equivalent.

Theorem 11.19A revision setR can be represented as union of all revisiBRs
as defined in (11.1), or as intersection of revision constr&ifs as defined
in (11.6). Both representations are equivalent:

R= || Re= [] Gij (11.13)
0<k<n 1<i<n
I<j<i
Proor. Follows from (11.12)C=Crnip=RyURiU---URy =R o

11.7 Discussion

In section 6.3, the integration of change-oriented models and version-oriented
models turned out as a majeiCM research issue. We have seen that feature
logic is descriptive enough to model ordinary revision histories, as in the version-
oriented models; arbitrary change combinations, as in the change-oriented mod-
els are still possible. By submitting changes to revision constraints, the version
set model captures the entire range of temporal versioning—from the rigid revi-
sion graphs of versions-oriented models to the loosely structured change space of
change-oriented models.

Revision constraints are easily constructed from the revision graph. Their in-
tersection is equivalent to the union of all revisions. This equivalence, as stated in
theorem 11.19, again shows the expressive power of feature logic: besides sim-
ple constraints such as stating unique feature values, we can express implications
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between features that are sufficiently complex to model entire revision graphs. In
chapter 12, we further discuss revision constraints, especially their maintenance
in repositories and their integration with variants and configurations.

There was general agreement

that end-users of applications were not interested in a version model
but were interested in the changes made in previous versions
and, at a more abstract level,

in the features offered by different versions of the system.

— IAN SOMMERVILLE, Sixth International Workshop
on Software Configuration Management






Chapter 12

Constraints and Repositories

Having considered the static aspects of revision graphs, we now turn to some
dynamicaspects, answering questions like: How does a repository representation
change when a new revision is added? How does it change, should an old revision
be removed? As illustrated in this chapter, maintaining the revision constraints is
no more complicated than in “classica88CM systems. Furthermore, we discuss
the integration of revision constraints with variants and configurations.

12.1 Creating Revisions with a Single Origin

We begin with the problem of adding a single revision to a repository. According
to (9.1) and (11.1), adding a new revisiBnto a repositornyR results in tagging

the old revisions witt} and adding the new revisid®, resulting in a new repos-
itory R’:

R =(RNO)UR (12.1)

But this straight-forward approach again leads us to an inefficient representation
of R, since the constraint form @k is lost and the terniR; can be quite long.
The constraint structure & can be conserved, however, if we know the revisions
Rj,...,Rk from whichR; originates; or, in other words, which changgs. .., o«
are implied byd;.

As a simple example, consider adding a new revi§ipio the revision graph
shown in figure 11.1 on page 114. In our setting, revisiris a descendant of
Rs; the resulting new revision graph is shown in figure 12.1 on the next page.

131
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o1
%R
! :Rsi“ R42

Figure 12.1: Adding a revisioR; with a single originRs

67 R,

Starting from (12.1), we have

R =(RNO;)URy

— (RMO7) U (RsMA7)
(RI_ID7) (RI_I|:|2|_IA5|_IA7)
(|:|7|_| |:|2|_|A5|_|A7))
D7I_I|:|2) (|:|7I_IA5)I_I(|:|7I_IA7)
bUD)N(O7ulg)N T
(7 Lde) M (L7 U L)
A7 — DNe) M (DM2MA7 — L)

R
RM(
RM(
RM(
RM(

which is exactly the constraint form we should expect from theorem 11.19 on
page 128.

We conclude that asCM system adding a new revisid® with one single
origin R; need do no more than to add one additional consti@int- Aj) to
the representation of the repository term. If the integratioR; agfihd some other
revision does not exist, the appropriate constraints must be updated as well—as
in our example, where the old constrajip MAg — L) is subsumed by the new
constraintAxMA7 — L).

12.2 Adding Revisions with Multiple Origins

Adding a revisionR; with multiple originsR;, ..., R« is more complicated, as it
results in theremovalof constraints, namely those constraints which previously
prohibited the integration of the changgs. . ., o«

As an example, assume revisi® were based ofs as well asRg, as il-
lustrated in figure 12.2 on the next page. In this case, the Rroan no more
contain the constraind, MAg — L). Let R’ hold all other constraints frorR
such thaR=R'M(A2MAg — L1). Adding revisionR; to the repositonR would
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o Ry 5 Rs
:%$M }Ry

Figure 12.2: Adding a revisioR; with two originsRs andRg

then result in

R =(RMNO;)URy

= (RMNO7) U (R'MAsMAsMA7)

=(R'M(Guls)N7) U (R MAsMAs A7)

=R'M(((3u0s) NO7) U (As AT AY))
=R'M((QuOs) U (AsMA6)) M (D21 Os) UA7) M (D7 U (A5 T1A6))
=R'M(GuOsUA7) M (D7 U (AsT146))
=R'M (A2 A — A7) T (A7 — AsMAg)

= R”I_I(AzI_IAe—)A7)I_I(A7—)A5)I_I(A7—)A5) ,

that is, the old constrair{\, M Ag — L) is replaced byA; M As — A7) and two
new constraint$A7 — As) and(A7 — Ag) are added.

We deduce a general scheme for the incremental maintenance of revision con-
straints:

Proposition 12.1 (Incremental maintenance of revision constraints)
The general scheme for adding a revisirio a repositonRis:

1. For each origifr;j, add a constrair@; j = Aj — Aj toR.

2. For each paifj,k of ancestor revision®;, Ry, replace the old constraint
AjMAc— Lin Rby AjnAg — A

3. For each ancest®; and any non-integrating revisid, replace the con-
straintAjMAm — L in Rby AiMAm — L.

Proor. Added constraintsThe new constraints added are an immediate conse-
quence of theorem 11.19 on page 128: step 1 adds the constraiRsafiod its
origins, step 2 adds constraints fiéras new descendant, and step 3 adds con-
straints forR and non-integrating revisions. All remaining revisidRisare non-
origin ancestors oR;; the constraint€; x are subsumed b§; ; added in step 1
and the unchanged constra@)y.
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Removed constraintsThe constraints removed in step 2 are no more ade-
quate, as the descendantjfandRy now exists a®;. The constraints removed
in step 3 are subsumed by their replacement constraint in conjunction with the
implications added in step 1. o

We see that maintaining the revision constraints is no more difficult than main-
taining a revision graph in “classicabCM systems.

12.3 Removing Revisions

Although removal of revisions is seldom desirable inSM context, it consti-

tutes another example on the usage of revision constraints. The straight-forward
approach to removing a revisid® from a repositonR is to intersecR with the
complement oR;, resulting in a new repositoiy’:

R =RM~R (12.2)

From (12.2), we can immediately deduce an appropriate constraint representation.
Remember thal®, is selected fronR by specifying the changsy and excluding

all later changed, ..., A leading up to the immediate descendant8phamely
R;j,...,R«. Hence, we can transform (12.2) to:

R =Rr~(ROA NG M---M0)
:RI_I(NRI_IDiI_IAJ'I_I---I_IAk)
= RM (4 —)Ajl_l---I_IAk) ,

that is, we simply add a new constraint stating that, whenever the chiqigo
be included, one of the later changgs. . ., A is to be included as well.

As an example, reconsider figure 11.1 on page 114. Removing re\gsion
from the repositoryR would result in a new repositofy with an additional con-
straint

R’ZRI_I(A3—>A4) ,

ensuring that, whenever tldg change is requested, thg change is included as
well—and vice versa, as the old constrgify — Agz) is still part of R
12.4 Orthogonal Changes

So far, we have only considered “classical” version graphs, where changes imply
each other more or less rigidly. In the Change-Oriented Model, this setting is
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=

Figure 12.3: Orthogonal changes

different: arbitrary combinations of changes are allowed, unless they result in a
conflict. We call these changesthogonalsince they are independent from each
other.

The versions resulting from the possible change combinations cannot all be
depicted, due to their large number. In figure 12.3, we see five chdnges 05,
each resulting in a sét;, ..., As; where this change has been applied. All versions
resulting from change combinations are identified by an enumeration of included
and excluded changes. The only restriction in our example is that the chi@anges
andos cannot be integrated; hendg, andAs are not orthogonal, but disjoint.

How is such a version set represented? Following (11.6), each con&raint
withl<i<5andi<j<5is

Ci,j = (AiuA; —)Aﬁ) NAnA; — Aﬂ) ,

but sinceAH: A U A andAﬂ: AiMA; holds for alli, j in R, we have
Gij=T

except forCy 5, which is

Cs5= (Mg A5 — L)
=L Uk

Hence,R=Cy5 = 4 LI [J5 is the only constraint required to represent the set of
all versions as shown in figure 12.3.

Obviously, a repository dealing with orthogonal changes would use dynamic
version creation, as discussed in section 9.4. The repository would create versions
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= [bsd-regexT] 2 A
|
[object regex C } 1
j j
== [sysv-regexT] ——= Ay

Figure 12.4: Combining delta features and variant features

as required by integrating the requested changes and applying them to a baseline;
this is also the wayRCSrepositories are organized internally.

We see that revision constraints can be used to model both the safe, but
rigid version-oriented models as well as the flexible, but unsafe change-oriented
models. The higher the number of specified constraints, the lower the number
of remaining change combinations—from the flexibility of the Change-Oriented
Model with virtually no constraints to the rigidness of the version-oriented mod-
els with a small set of versions easily enumerated and tested. In our model, both
models are just two extremes in a wide range between safety and flexibility.

12.5 Changes and Other Features

So far, our examples have only covered delta features, modeling historical ver-
sioning through changes. How would other features modeling relationships, vari-
ance, or workspaces be integrated? The answer is simple: they are used just like
delta features, with implications expressing constraints—but not only implica-
tions between changes, but between values of arbitrary versioning dimensions.
As an example, consider th@NU REGEX library used for compiling and
searching regular expressions. The initial version&lf) REGEX came with
a BSD UNIX interface, while the later versions came witfP@SIX UNIX inter-
face. Unfortunately, there is no version supporting both interfaces, and both are
maintained individually, as illustrated in figure 12.4—the chabigapplies to the
BSD versionbsd= [objectregex bsd-regexT] only, while the changé, applies
to thePOSIXversionposix= [object regex posix-regexT] only.
Obviously,A; andA; are disjoint, as are their respective superbstsregex
andposix-regex According to theorem 11.19 on page 128, this disjointness can
be expressed through the constraibisith

C = (A1 — bso) 1M (A2 — posiX M (bsdr posix— L)
= [objectregex} 1 (A; — [bsd-regexT]) 1 (A2 — [posix-regexT])
M ([bsd-regex] LI [posix-regex])
= [object regex bsd-regexT , posix-regex, Ui, [b]



12.6 Changes and Configurations 137

LI [object regex bsd-regexT , posix-regex, Az, [b]
LI [object regex bsd-regex, posix-regexT, Uy, (]
LI [object regex bsd-regex, posix-regexT, [h,Az]

that is, [objectrege) comes in four variants, depending on whethergis® or
POSIXinterface is chosen and whether the respective change has been applied or
not.

We now create & GEXversion supporting both theOSIXand theBSD in-
terface. To do so, we apply a chan@ieto bothbsd-regexandposix-regexinte-
grating both versions. The resulting subsumption lattice is identical to figure 12.4;
only L is replaced byAs. The version set itself is described as

C = (A1 — bsd) M (A2 — posix M (bsd posix— Ag)
M (Az — bsd) M (Az — posiy .

12.6 Changes and Configurations

Just as ordinary variant features can be used instead of delta features in subsump-
tion lattices, delta features can be used instead of ordinary variant features to
express the features of configurations—notably, ambiguity in configurations.

As an example, re-consider the discussion on configurations and ambiguity in
section 10.6, where thiéc library came in two variants: the static variant im-
plied that thestrerror object be contained in the configuration, while the dynamic
variant implied thastrerror not be contained.

Instead of having twdibc variants distinguished by different values of the
linkage feature, we might as well have twidbc revisions distinguished by a
change applicatio®d;. Then, thestrerror component would only be contained
in the configuration i®; had not been applied:

C = [object progran] /, (O; — object strerror)

We may also use both tHimkageand delta features to describe the configu-
ration. For instance, i, had changed the linkage lihic from static to dynamic,
we may write

C = [object progran] /, (linkage static— object strerror)
M (A1 — linkage dynamig

which leaves thdinkagefeature in the configuration term and makes the nature
of the chang®; explicit.
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To conclude, we see that it makes no difference whether we identify versions
and configurations by the applied changes or by other features. We can thus
generalize revision constraints¢onfiguration constraintajlowing us to express
implications between arbitrary versioning dimensions.

12.7 Maintaining Configuration Constraints

We close this chapter by discussing some useful techniques involving revisions
and changes.

12.7.1 Revision Tagging

Rather than having changes imply features, one may also have features implying
certain changes. In section 2.3.2, for instance, we discussedLEtRCASE
identification scheme: Users can assign names to edges in the version graph and
select revisions through a disjunction of name patterns. Such naming of changes
is easily expressed through an implication between the name and the respective
delta feature, as discussed in section 9.5.5.

As an example, tagging can be used for classifying versions by dteiss.
For instance, we may wish to classify versions in three categexigsrimental
proposed andpublished An implication like ([statusproposedl — (As M Ue))
as configuration constraint can then ensure that whenepsypsedversion is
requiredRs is returned.

12.7.2 Maintaining Currency

Tagging is also useful for maintainingurrency. In our model, we cannot sim-

ply devise some revision as “current”, because currency may differ across vari-
ants; currency constitutes a part of th€M protocol, expressed through means

of the SCM primitives layer—that is, using features. A simple scheme to denote
the current versions is to use a gairrent T] that contains the current variants

by implying certain revisions. An implicatio([currentT,os unix — [AZ,D5])
ensures that whenever the curremix variant is requested, the revisiét is
returned. In section 13.1.3, we give an example of using currency in workspaces.

12.7.3 Extrinsic and Intrinsic Changes

Regarding our discussion of extrinsic and intrinsic features in section 10.1, the
guestion may arise whether delta features are intrinsic or extrinsic features. The
answer is: if the change affects other components, it is extrinsic, and so is the
delta feature; if the change does not, it is intrinsic, and so is the delta feature as
well.
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12.8 Conclusion

The maintenance of revision constraints in a repository is no more difficult than
maintaining a “classical” revision graph: for any new revision, a simple constraint
is added just as a new edge is added to the revision graph. Orthogonal changes
impose no special problems.

Revision constraints can be generalized to configuration constraints, express-
ing implications between arbitrary versioning dimensions. The role of configura-
tion constraints in structuring the configuration space cannot be over-emphasized.
Through configuration constraints, we can identify, select, and revise arbitrary
configurations, regardless of their specific versioning dimensions, and ensure their
consistency with respect to the configuration constraints. In chapter 13, we show
how configuration constraints are used to model cooperation techniques.

If a program is useful, it will have to be changed.
— LAWS OF COMPUTER PROGRAMMING, llI






Chapter 13

Cooperation Techniques

Having discussed the concepts of logical and historical versioning, as modeled
through feature logic, we now examine the third and last versioning dimension,
which is cooperative versioningWe introduce the notion of workspace con-

fining all user operations to a specific configuration and isolating users from each
other’s changes. Through dedicated workspaces, users can publish and propa-
gate their changes. Using two cooperation scenarios, optimistic and conservative,
we demonstrate how changes propagate across workspaces and show how work-
spaces integrate with the versioning concepts discussed so far.

13.1 Working in Workspaces
13.1.1 Context and Confinement

In the context oSCM, the work of an individual developer can be described as a
series ofoperations—operations likereading that is, examining components, or
writing, that is, changing components. Each operation affects a specific configu-
ration of component versions. Often, many subsequent operations affect the same
configuration. Hence, it is desirable to specify this common configuration only
once and taonfineall subsequent operations to that configuration:

Definition 13.1 (Context, Confinement) An operation isconfinedto a configu-
rationC (called operation contexbr simply contex) if it only affects a subset
of C. O

Formally, such a confinement can be enforced as follows: Given a ca@itext
an operation on a componektis confined to the s MC. That is, ifK C

141
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[usertom] [user john| [userlisa]

Figure 13.1: Disjoint write contexts

C holds, the operation will succeed; K C ~C holds, the operation will fail;
otherwise, only the subsktr C will be affected by the operation.

In practice, different operations can be confined by different contexts imposed
by the SCM system, realizingaccess control.For instance, a system-imposed
read conteximay define the component versions a user can examine, while the
write contextdefines the component versions a user can change. By assigning
each developer an individual write context disjoint from other write contexts, the
SCMsystem can ensure that changes made by one developer do not interfere with
changes made by another developer.

The easiest way to realize disjoint write contexts is to use some common fea-
ture with a different value for each user, and to make the write context a subset
of this feature term. For instance, we may usesaerfeature having the user
identification as value: formally, each write cont&tof a userU is a context
W L [userU], whereU is some feature term uniquely identifying the user. Since
theuserfeature may have only one value, all write contexts are disjoint, as illus-
trated in figure 13.1.

Making write contexts disjoint is a necessity for keeping individual changes
apart. In practice, users may also choose to keep their read contexts disjoint
such that they do not see the changes made by others. Likewise, users may wish
to work on a specific configuration only, confining their changes to that config-
uration. We thus introduce the notion of a user-definable working context or
workspaceonfiningall user operations in addition to the read and write contexts
imposed by the&sCM system.

Definition 13.2 (Workspace) A workspacés a user-definable context confining
all user operations. o
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[userlisa] : 5
[object tty]

[user.tom]

=

18]

Figure 13.2: Changes and workspaces

For instance, let us assume Lisa has chosen her write cdosedlisa) as
workspace. If Lisa applies a chan@gto thetty object, this change is confined to
her workspace. That idys is subsumed bjuser lisa]; thetty component is iden-
tified by the additional configuration constraiifts — [user lisa]), as illustrated
in figure 13.2.

Let us assume that Tom also has chosen his write cojusat tor as work-
space. In this case, Tom cannot access Lisa's change as his view is subsumed
by [usertom]; formally, usertomC ~[userlisa] C Os holds. Hence, both Tom
and Lisa can operate without interfering with each other—until their changes are
integrated into some production version.

The confinements imposed by the read and write contexts still apply, regard-
less of the workspace choice. Hence, if each W$dnas a write context of
[userU] and a read context of, Tom can set his workspace 1o and thus ex-
amine Lisa’s current work; but his write context keeps him from changing them.

13.1.2 Operations in Workspaces

By adding additional constraints to their workspaces, users can choose to confine
their work to specific configurations only. In figure 13.3 on the following page,
Tom has chosen his workspace€aser.tom os mag. Let us choose this example

to illustrate the effects of operations in his workspace:

Reading versions. Reading a component versithin a workspac&\V returns
KW only.

Tom does not see the nanacversions (like[os windowg or [0s plan-9)

nor does he see the changes of other users [flier. lisa]). Components
whoseuseror osfeature is unspecified are included nonetheless in Tom’s
view because the components are the same acrassealbr osvalues.

What we have criticized in section 9.2 now comes out as a virtue: overspe-
cialization or orthogonal features in the workspace do not hinder version
selection.
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[user.tom [usertomosmad [osmad

Figure 13.3: Workspaces and configurations

Writing versions. Writing a component versiol in a workspac&V changes
KW only.

All changes Tom makes in his workspace are automatically confined to the
[usertom os mad variants of the components. The features of the com-
ponents stay the same, but fluser tom os mad variant will incorporate
Tom’s changes, while the-[usertom 0os mag variant seen by the other
users will not incorporate Tom’s changes.

Creating versions. Creating a component versiéin a workspac&\ creates
KW only.

SinceK must not be visible outside &Y, the component versiok 1 ~W

does not exist; this is expressed by constraining the features of the compo-
nent to~ (KM ~W) = ~KLUW = (K — W), which expresses th#t is a
subset ofV.

If Tom creates a new component in his workspace, this component must
remain unaccessible to other users. Hence, any such componentinherits the
features of Tom’s workspace. If Tom createsrmaacspecific component
active-helpit will be identified as

[object active-helpusertom osmad .

The additional constraint

([object active-help— [user tom os mad)
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ensures that thactive-helpwill not be visible to other users (formally,
~[usertom C ~[objectactive-help holds) or be included in other oper-
ating systems~[os mad C ~[object active-helf).

Removing versions. Removing a component versidh in a workspacé\N re-
movesK MW only.

If Tom deletes a component in his workspace, this component must remain
accessible to others. Consequently, a deleted components is assigned with
an additional feature, namely tlemplement-W of Tom’s workspac&V.

Let us assume that all users see the same version ¢bhiext keyboard
component. If Tom deletes theyboardcomponent from thenacversion,
thekeyboardcomponent will be identified as

[objectkeyboard~[usertomosmad] ,

such that it will be no more visible in Tom’s workspace. Outside of Tom’s
workspace, th&eyboardcomponent will still be visible.

13.1.3 Maintaining Currency

Even when their individual workspace is confined to a specific configuration or
revision, users may find it convenient to distinguish versions in “current” and
“non-current” (i.e.outdated versions, as discussed in section 12.7. Outdated
versions may be identified Hgurrentt], for instance, and hidden by making the
selectioncurrent T| part of the workspace. Rather than re-setting the workspace
to the latest version after every change, users could then simply tag outdated
components witficurrentt] and access only the most recent version.

Definition 13.3 (Outdating) To make the changg; current within the work-
spacduserU], and to outdate all versions that where the chakdes not been
applied, make the sé@tserU,current T] a subset ofy;. O

Using the constraint representation to express subsumption relations, this means
replacing any constraint

([userU,current T] — S)
by
([userU,current T] — 4;) .

Here is an example, illustrated in figure 13.4 on the next page. In Lisa’s
workspace, revisiofs is the current revision, which is expressed by a constraint
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[userlisa] Ag [current T] [userlisa] As Ag [currentT]
Figure 13.4: Changing currency in a workspace

(([current T] — As) 11 (As — [userlisa])) in all components changed by Lisa.
After applying a changég, Lisa decides to make th& components current;
this is done by adding another constraﬁfﬁurrent T]— Ag) to the components
where theds change was applied.

Lisa’s workspace always remains the same, nanfeber lisa,current T);
rather than changing her workspace, she changes the features of the components
such that she always sees the current versions. None of these constraints is visible
outside of Lisa’s workspace, as they are all subsumedsr lisa.

13.1.4 Working in Teams

Just as auserfeature is useful to keep user workspaces disjoint, other features can
be appropriate to confine changes within larger entities.

Multiple teams. Besides theuser feature, ateamfeature may be appropriate
to organize several people working on one task. For instance, all users
in the [teammicrokidg workspace could work on the soul of a new ma-
chine, allowing each other to access their changes; but users working in the
[team hardyboy$ workspace would not see their changes and vice versa.
Sub- or superteams can be modeled likewise.

Multiple projects. Besides teams, users may work in different projects, which
could be kept disjoint as well by introducingpeojectfeature. For instance,
in the setting illustrated in figure 13.5 on the facing page, user Kidder is
assigned to two projectclipseand novg which is expressed by setting
Kidder's workspace t(iuset kidder, project {eclipse nova}] . Kidder may
refine his workspace to one of these projects and switch workspaces as
needed.
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[user kidder

[project eclipsé [project novg
[project {eclipsenova}]

Figure 13.5: Users and projects

Multiple sites. Insection 5.7, we discussed techniques for realizing development
in multiple sites. If a distributed repository liklUCM is not available, dis-
tribution can be made explicit by assigning each development site a specific
value of asitefeature. Just as with teams, users, and projects, users at a par-
ticular site can only change the local components. However, read access to
the changes made at other sites can be realized by regular updates as real-
ized in theMULTISITE tool.

13.2 Conservative Cooperation Techniques

In section 5.5, we have discussed cooperation strategies that prevent against ac-
cidental loss of changes. In this section, we discuss the first group of these
strategies, namelgonservative cooperation strategtbat prevent against par-

allel changes throughlacking mechanism.

13.2.1 Locking Versions

In a conservative cooperation strategy, a user can change a component if and only
if it has not been locked by another user; before changing the component, the user
must explicitly lock it.

Using feature logic, we can distinguish locked from unlocked versions using
an additionalockedfeature and théaggingtechnique introduced in section 12.7.
For a componerK, each versioV C K locked by a useld is expressed through
alocking constraint

KC ((VI‘I [locked T]) — [use[U]) (13.1)
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The SCM system must ensure that only locked versions may be changed—for
instance, by setting the write context to a subsélomked T].

As a simple example, assume that Tom has locked revisjgrof a screen
component. Thecreencomponent then has the features

screenC ((Ags[locked T]) — [usertom)
If Lisa wishes to access a locked revisifygy of screenfor writing, this will fail:
screemmAysM[locked T]M[userlisa] = L

sinceAysT1[locked T] implies[user. tom.
Lisa may access an unlocked version for reading, however:

screemnmAys[user lisa] = screermAys[user lisa) 1 [locked 1]

since (13.1) can also be formulated as
KC (N[useru] - (~VU [Iockedr])) ;

consequentlyjuser lisa] 1 Ays implies[locked 1].
We deduce two operations for locking and unlocking component versions:

Definition 13.4 (Locking) To lock a version se¥ for a uselJ, makeV a subset
of ((V[locked T]) — [userU]). To unlockV, makeV a subset oflockedt].

]

The SCM system must ensure that a version\é&an only be locked when it
was previously unlocked and vice versa.

13.2.2 Propagating Changes

While the locking mechanism prevents users from making parallel changes to
a version set, we need an additioqabpagationmechanism that propagates
changes across workspaces.

As an example of propagation, reconsider figure 13.2 on page 143, where
Lisa has applied a chang@e to thetty object in her workspace. Tom wishes to
propagate this change to his workspace as well. He invokeahesystem such
that Lisa’s versiorobjecttty,user lisa,As] is copied into a new version dfy
namedobject tty, user tom As]. As illustrated in figure 13.6 on the facing page,
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[user lisa]
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5 objecttty, user lisa, As)
[objecttty)——= Asg
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objecttty, usertom As]

[user.tom

Figure 13.6: Propagating changes across workspaces

this maked\s a subset of both Tom’s and Lisa’s workspaces; the features of the
tty component become

tty C [object tty] 1 (A5 — [user {tomlisa}]) .

Tom may now make thés version current and thus determine how Lisa’s
change affects his current work. Any changes Tom makes in his workspace are
still invisible to Lisa—unless she propagates them into her workspace.

We conclude with a general definition ofpmopagateoperation that propa-
gates changes across workspaces:

Definition 13.5 (Propagate)Let & be a change. To propagaiefrom a work-
spacduser U] to a workspacéuserU’], maked; a subset ofuserU’] as well as
of [userU]. =

Using the constraint representation to express subsumption relations, this means
replacing the constrain{\; — [userU]) by (A — [user {U,U’}]).

13.2.3 Controlling Change Propagation

Propagating changes across workspaces helps individual ussysd¢tronize
their work, that is, to make their workspaces identical (or at least, less divergent).
To keep divergence small is an important issue@W, because the more work-
spaces diverge, the more likely changes are to conflict with each other, making
the construction of the final product a difficult task.

For several users, change propagation must be organized in a special way to
ensure that all workspaces are synchronized with each other. A simple way to
ensure synchronization is to establish a notion of a commaim development
line, representing the published or end user’s view of a product; workspaces are
temporary variants of this main development line, as discussed in section 5.5.2.
Before publishing changes, users must synchronize their own workspace with the
main development line. Hence, this scheme prohibits excessive divergence of
user workspaces and encourages frequent synchronization.
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[user.tom| ~ [user.productior] [userlisa]
commit update

[current T

Figure 13.7: Propagating changes through a production workspace

In our model, such a main development line can be realized as follows. To
keep the main development line isolated from other’'s changes, it must be dis-
joint from all user workspaces. Hence, we can establish the main development
line as a dedicated workspace, caldduction workspaceayhich represents the
published view of the product and which is disjoint from all user workspaces.

In this setting, users are discouraged from propagating changes between user
workspaces. Instead, changes are propagated from the production workspace to
user workspaces, and vice versa, using two operatipdateandcommit As
illustrated in figure 13.7, thepdateoperation propagates the current changes
from the production workspace to the user’s workspace, anddhemitopera-
tion propagates the current changes from the user’s workspace to the production
workspace. Both operations also make the propagated changes currentin the des-
tination workspace.

Before defining theupdateand commitoperations, we define a more gen-
eral propagate-currenbperation which propagates the current changes between
workspaces and makes them current in the destination workspace.

Definition 13.6 (Propagate-current) To propagate the current changes from the
workspacéduser U] to the workspacguserU'], propagate all changes subsuming
[current T] in [user U] to [userU’], and make them current [oserU’]. =

In the constraint representation, propagating the current changes means the fol-
lowing: For each chang® such thaty; O [user U, current T] holds, replace the
constraint(A; — [userU]) by (A — [user{U,U’}]) and add a new constraint
([userU’,current T]) — A;.

Both updateandcommitcan now be defined usimgyopagate-current

Definition 13.7 (Update) To update a user workspagaserU], propagate the
current changes froffuser. productior] to [user U]. O
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Definition 13.8 (Commit) To committhe current changes from a user workspace
[user U], propagate the current changes friumer. U] to [user productior].

13.2.4 A Conservative Scenario

As an example of change propagation through a production workspace, we have
illustrated a simple scenario in this section. In figure 13.8, we see a produc-
tion workspacguser. productiorj containing the end user’s view of some prod-
uct. The product comes in two variants, a demonstration vajid@mo 7] and a
full-fledged variant-[demo T] = [demd]. The sefcurrent T] encompasses the
current versions of both variants.

[user. productior]

[demoT] [current T]

Figure 13.8: A production workspace

Both users Tom and Lisa have established their workspases tom and
[userlisa] as temporary variants of the current production workspace; as illus-
trated in figure 13.9, each of them can access both the demonstration and the
full-fledged variant.

[user.tom| . [user. productior] . [userlisa]
Create Create
N 7N
[demoT] [current T] [demoT] [current T]

Figure 13.9: Creating user workspaces

Tom wishes to apply a change to the current version. He locks the current
version, makingcurrent T] a subset ofiocked T]. Lisa cannot access the locked
versions, sincfocked T] C [user.tom] and thuguser lisa,locked T] = L holds,
as shown in figure 13.10 on the following page.



152 Cooperation Techniques

QOO

[lockéd T] [current T]
Figure 13.10: Locking the current version

Tom applies his changg to the current version. Both product variants are af-
fected by the changé; is thus orthogonal tfdemo T]. After testing his change,
Tom makes)\; current—that is[current T] is now a subset oy, illustrated in
figure 13.11. StillA; is locked, as it is a subset fibcked T].

@O

[current T

Figure 13.11: Changing a locked version

Tom’s work is done; he releases his lock and commits his change the
production workspace, making it current there as well. The workspace state is
shown in figure 13.12.

commlt
[current T] A1 [current T]

Flgure 13.12: Committing changes to the production workspace

Now is the time for Lisa to make her changes. First, Lisa updates her work-
space with Tom’s changes, as shown in figure 13.13 on the next page. Tom’s
changed; is now current in Lisa’s workspace as well.

Lisa works on the demonstration variant only; she locks the current version,
making[locked T] a subset ofdemo T, user lisa]. Selecting the current demon-
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update

OO

[current T]

Figure 13.13: Updating a workspace from the product|on workspace

stration variant now implies that the locked version be selected, as shown in fig-
ure 13.14.

OO©@

[lockéd T] [current T
Figure 13.14: Locking a variant

Since the demonstration variant is locked by Lisa, other users can no more
lock and change it. Its complement, the non-demonstration variant, is still un-
locked and may be locked and changed by other users. Just like Tom, Lisa per-
forms a chang®; on the demonstration variant. The set is now current, i.e. a
subset ofcurrent T], as shown in figure 13.15.

O©O@

Figure 13.15: Changing a variant

As final step, Lisa commits her change to the production workspace, releasing
her lock. This final state is illustrated in figure 13.16 on the following page: In
the production workspace, both Tom’s chakgend Lisa’s changé, have been
applied and are both included in the current version.
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commit

N

JAY) [current T] AY) [current T]
Figure 13.16: Committing variant changes

13.3 Optimistic Cooperation Techniques
13.3.1 Synchronizing Workspaces

Conservative cooperation strategies, as illustrated in section 13.2, have both the
advantage and disadvantage that only one developer at a time can work on a par-
ticular version of a component. Using an optimistic cooperation strategy, as dis-
cussed in section 5.5.2, users are allowed to work in parallel, each on a tempo-
rary variant. Here, it is essential that developgyschronizetheir workspaces
frequently—that is, catch up with other changes such that the individual work-
space is more similar to other workspaces. For this purpose, the changes of other
users must first be made visible in the workspace, and thendrgedwith the
individual changes.

As an example of merging, consider figure 13.17, where Tom has applied
a changed; in his workspacdusertom. Before committing that change back
to the production workspace, he updates his workspace by making the parallel
changed; available. The chang® is then merged into his current version, creat-
ing a merged versioA; MA;. This combined change may now be committed to
the production workspace.

The versions to be merged can easily be determined automatically. As dis-
cussed in section 5.6, automated merging of two versions relies on knowing their
commonbase versionUsing version sets, the common base versigof two
versionsv; andV; is the lowest common ancestor in the subsumption lattice, ex-

2. [userproductio] 2~ A,
= [usertom] =~ A; = A MDA

Figure 13.17: Merging changes from the production workspace
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cluding any changes leading up\Mgor V,. In our exampley; = A1 andV, = Ay
hold; the common base versi®fy is determined a¥y = ) 1 [b; that is, the
version excluding both changes.

Definition 13.9 (Synchronize) To synchronize a user workspaeser U] with
the production workspadeser. productior}, perform the following two steps:

1. UpdatefuserU] from [user productiory, making the versiondy, ..., Ay
accessible ifuser U] (but not yet current).

2. In [userU], merge the versionAy,...,A, with [current T], where the
base version is the lowest common ancestor in the subsumption lattice, ex-
cluding any later changes. The resulting merged version is identified as
[userU,current T]M AL M- MA,. o

In a third step, the merged version may now be committed to the production
workspace, making the individual changes available to other users. As in the
conservative scenario, no changes get lost—provided that the merged version is
carefully checked.

13.3.2 Identifying Merged Versions

When the versions to be merged are identified by features other than delta fea-
tures, special care must be taken when identifying the merged version: As merg-
ing has no semantics in terms of feature logic, the features of the merged version
cannot be determined automatically.

To illustrate this problem, consider the merge of two versions identified by
[osdod and [oswindow§. The features of the merged version are dependent
on the nature of the merge: if the merged version is system-independe¥, its
feature will be unspecified; if the merged version runsbis as well as on
WINDOWS, its features argos {doswindowg], if it does not run oruNiIXx, its
features ar¢os ~unix, and so on.

Here are some guidelines in identifying merged versions:

Delta features accumulate.As shown in chapter 11, each revisi®& inherits
the delta features of its ancestor revisids...,R«. Hence, the merge
of R C Ay andR;j C Aj will result in a revisionRy T Ag T A MM A;j. In
figure 13.17 on the facing page, the merged version inherits botAithe
andA; delta features.
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Workspace features are ignored.Workspace features are volatile; they should
not be considered while merging. Rather, the merged version should in-
herit the features of the workspace it is created in, like any other new ver-
sion created. In figure 13.17 on page 154, the merged version is created in
[usertom] and thus a subset thereof.

Other features must be determined again.Features identifying neither work-
spaces nor changes cannot be inferred from the originating features.

We see that there are few differences between assigning features to a merged
version and between specifying the features of a newly created version. Parts that
can be automated are the accumulation of delta features and the assignment of
workspace features.

13.3.3 An Optimistic Scenario

To conclude, we give another example of using production workspaces, but this
time mimicking the optimistic cooperation strategy of tt\S system.

The initial setting of our scenario is shown in figure 13.18. Itis the same initial
setting as in the conservative scenario from section 13.2.4. Users Lisa and Tom
have established their workspaces as temporary variants of the current production
workspace; they can access both the demonstration and the full-fledged product
variant.

[user.tom| [user. productior] [userlisa]
create create

[demoT] [current T]

Figure 13.18: A production workspace and two user workspaces

The optimistic scenario does not prevent parallel changes. Hence, both Tom
and Lisa can apply changes to the product. Tom’s chapgéects both variants
at once, while Lisa’s chang® affects the demonstration variant only. Neither
change is visible outside the respective user workspace, as shown in figuré 13.19.
In figure 13.20 on the next page, Lisa commits her change to the production
workspace. The merge of her workspace and the production workspace is trivial,

LFor clarity, we show the current versiofesirrent T in the production workspace only.
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Figure 13.19: Changes in user workspaces

because the base version is identical to the production workspace; hence, Lisa’s
changed version is simply copied to the production workspace. This makes the
current version of the demonstration variant imply hechange, or formally,
([current T] — [demd] LIA,).

commit

OO

[current T]

Figure 13.20: Simple synchronlzatlon of the production workspace

Tom now wishes to commit his chan@g Before doing so, he synchronizes
his workspace. The first step is to update his workspace with the current adhange
from the production workspace. As shown in figure 13.21, the chalgmisdd;
are still disjoint.

update

Q@OC>

Figure 13.21: Updating a user’s workspace

JAGS

In the second synchronizing step, shown in figure 13.22 on the next page, Tom
integrates the two chang&sandd,, resulting in the merged version €&t Ay.
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2

Figure 13.22: Merging in a user’s workspace

After removing any conflicts between the chandesndd,, Tom commits
his versions back to the production workspace. As shown in figure 13.23, this
makes bott\; andA; current versions in the respective variant.

commit

@O

current T|

Figure 13.23: Synchronization of the production workspace after merge

In both scenarios, the optimistic scenario presented here and the conservative
scenario presented in section 13.2.4, the final current production version includes
both Lisa’sd; and Tom’sd; change; none of their changes is lost. The difference
in optimistic cooperation is that changes can be made in parallel and stay orthog-
onal to each other. In our example, the chadges orthogonal to the changs;
in the conservative scenarid; implied 81, since parallel changes are inhibited.

13.4 Discussion

In this chapter, we have presented some techniques that help organizing the work
of several users working on a product by controlling the propagation of changes.
We keep changes disjoint by confining them into disjoint user, team, project, and
site workspaces. By refining their workspaces, users can decide which versions
to work upon without conflicting with other’s work. Through a dedicated work-
space, users can publish and propagate their changes, using either conservative or
optimistic cooperation techniques.

Both the conservative and optimistic scenario presented in this chapter show
how the concepts introduced so far integrate—notably, how version sets uni-
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formly represent revisions, variants, and workspaces. But the scenarios also show
up a deficiency of feature logic. We can easily capture some versictatepy

means of feature terms and set diagrams. But we cannot exprefsaribiions
between these states using feature logic—there is no way to express the semantics
of anupdateoperation in feature logic, for example. This is different from con-
sistency checking and version selection, where we could express all operations
in terms of feature logic. The properties of a formalism that allows us to express
these transitions, that is, to treat feature terms as first-class objects, remain yet to
be discovered.

Der Mensch ist ein zeitliches Wesen,
das nur lebt, indem es seine Welt um sich wandelt.

— KARL JASPERS, Einfuhrung in die Philosophie

Plus ¢a change, plus c’est la méme chose.
— ALPHONSE KARR






Chapter 14

Taming Complexity

For practical systems, a logic foundation alone does not suffice. We also must
know whether the central problems are decidable, and if so, at which cost. If these
costs are too high, we must identify the circumstances under which the costs can
be cut down.

The central problems in feature logic are deciding inconsistency, subsump-
tion, and equivalence. As shown in proposition 8.32 on page 86, all these prob-
lems can be reduced to deciding inconsistency. We present Smolka’s feature uni-
fication algorithm, which decides inconsistency for general quantifier-free feature
terms. As deciding inconsistency in general isxeo-complete, Smolka’s algo-
rithm is of exponential time complexity. This makes practical applications unable
to scale up beyond a certain problem size. As a solution, we present some special-
ized procedures that break down comp#ex\V problems into manageable pieces
and discuss the conditions for efficient realizatiors6ivi operations.

14.1 Deciding Inconsistency for Simple Feature Terms

We begin with a discussion of the basic mechanisms to deduce consistency of fea-
ture terms—that isfeature unificationin [Smo92], Smolka presentscanstraint
systemthat can be used to decide about the inconsistency of feature terms. The
basic idea is to convert a simple feature term into a sé&afluire constraint3,he
inconsistency of the constraint set can be decided in quadratic time.

Proposition 14.1 Deciding inconsistency of simple feature terms is of quadratic
time complexity.

161
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Proor. Smolka’s algorithm for solving feature clauses decides inconsistency of
simple feature terms in quadratic time [Sm092]. o

Under certain circumstances, subsumption can also be decided in quadratic
time.

Corollary 14.2 Deciding the subsumptio®C T is of quadratic time complexity,
if the basic forms oSand~T are simple.

Proor.Deciding whethe6C T holds is equivalent to deciding whethgm ~T is
inconsistent (proposition 8.32 on page 86). BStand~T can be converted in
linear time into basic form (proposition 8.22 on page 84). If the basic forn$ of
and~T are simple, proposition 14.1 on the preceding page applies. o

As term equivalenc8=T is reducible to mutual subsumption (8.6), a similar
shortcut exists only if the basic forms 8f ~S, T, and~T are simple, which is
only true for trivial feature terms.

14.2 Deciding Inconsistency for General Feature Terms

For general feature terms including quantifiers and unions, inconsistency, sub-
sumption, or equivalence are undecidable problems.

Proposition 14.3 Inconsistency, subsumption, and equivalence of general feature
terms are undecidable problems.

Proor. In [Sm092]; the proof follows from the word problem of Thue systems
being undecidable. o

The problems are decidable, however, for quantifier-free terms.

Proposition 14.4 Deciding inconsistency, subsumption, and the equivalence of
guantifier-free feature terms are 8@-complete problems.

Proor. In [Sm092]; the proof follows from the satisfiability problem of proposi-
tional logic beinghP-complete. o

Inconsistency, subsumption, and equivalence beingre@omplete problems
implies that time complexity of decision is exponential.

For arbitrary quantifier-free feature terms, Smolka has presented an algorithm
called feature unificatiorto decide inconsistency [Smo092]. The basic idea is to
convert the feature term into basic form and then bkF. Since each conjunct
of the DNF is simple, inconsistency of each conjunct can be decided in quadratic
time, as discussed in proposition 14.1 on the page before. Transformation into
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DNF, however, is of exponential time complexity, resulting in exponential time
complexity of feature unification.

14.3 A Unification Example

We do not give a complete description of Smolka’s algorithm here—the inter-
ested reader may refer to [Smo92] for details. Instead, we illustrate feature
unification through an example. L&andT denote the features of two com-
ponents, wher& = [host-arch{pentiumpower-pg, host-arch| target-arch and

T = [target-arch~power-p¢ holds. We use feature unification to determine
whetherSandT are consistent with each other, or whet8erT = L holds.

1. We determine

host-arch{pentiumpower-pg,
U =SMT = | host-arch| target-arch
target-arch ~pentium

2. U is already in basic form. The transformation to disjunctive normal form
yieldsU = U'LIU" with

[ host-archpentium

U’ = | host-arch| target-arch
| target-arch~pentium |
[ host-archpower-pg
U” = | host-arch| target-arch
| target-arch~pentium |

3. Smolka’s algorithm processes each conjunct separately. It first transforms
U’ into a basic set of constraints, introducing temporary variabkesdy
to express agreement.

host-arch= pentium
host-arch= x
target-arch=y
X=Yy
target-arch= —pentium
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4. The basic set of constraints is solved by instantiating the varialaledy:

host-arch= pentium

target-arch= pentium

X = pentium

y = pentium
target-arch= —pentium

As target-archis bothpentiumand—-pentium unification fails:U’ = L.

5. Now comes the time for the second conjuntt.is also transformed into a
set of constraints. After instantiation, we have:

host-arch= power-pc
target-arch= power-pc
X = power-pc

y = power-pc

resulting in the tern)” = [host-archpower-pgtarget-arch power-pg.

6. The result of the unification problem®&1T =U'LUU”" = 1 LuU"=U" =
[host-archpower-pctarget-arch power-p¢ .

14.4 Reduction of Feature Terms

As a consequence of feature unification being of exponential complexity, we de-
termine possible optimizations that reduce complexity in practical applications.
The field of automated theorem provingre) has determined severadduction
mechanismshat can be applied before the general decision algorithm. Generally,
a reduction satisfies the following properties [Bib92]:

¢ A reduction truly reduces the size of amP problem.

¢ Validity of the reduced problem implies validity of the original problem
(and possibly vice versa).

e Whether the reduction mechanism is applicable can be decided in polyno-
mial time.

¢ The reduction mechanism itself requires polynomial time.
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Since reduction is much more efficient than feature unification, it is worth
exploring whether the reduction techniques establishéd incan be applied to
feature terms as well. In [Bib92], Bibel gives an overview of existing reduction
mechanisms in the context of propositional logic. At least three of these mecha-
nisms, whose validity is shown in [Bib87], can also be applied to general feature
terms.

Reduction of Multiple Occurrences (MULT ) If afeature ternSoccurs multiple
times in a union or intersection, the term can be reduced to one occurrence

only:
SnsS=S (14.1)
SUS=S (14.2)

MULT reduction is easily implemented by sorting the subterms in each
union or intersection and removing duplicates. Sorting has a time com-
plexity of O(n-logn); MULT reduction is thus of linear-logarithmic time
complexity.

Reduction of Tautologies TAUT) If both a feature tern® and its complement
~S occur in a union or intersection, they can be replacedrbsnd L,
respectively:

SN~S=1 (14.3)
SU~S=T (14.4)

Just asMULT reduction,TAUT reduction is implemented by sorting the sub-
terms in each union or intersection, but ignoring outer-level complement
signs in the sort comparisoMAUT reduction is also of linear-logarithmic
time complexity and can be combined wiHtULT reduction.

Reduction of Subsumed Terms $UBS) Let S be a feature term anfl C S be
a subset ofS. If both SandS occur in a intersection or union, only one
occurrence remains:

SnsS =8 (14.5)

SuUS =S (14.6)
Simple subsumption can often be determined on the syntactic level—for
instance, ifS = SO T holds for some feature terfin. Again, such a condi-

tion can be decided in linear-logarithmic time, by comparing the subterms
of SandS.
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14.5 A Divide-and-Conquer Approach

By imposing certain conditions upon feature terms, time complexity of feature
unification can be dramatically reduced. The most important conditiortfi®g-
onality: If deciding inconsistency of a feature telin= SN T can be divided into
deciding inconsistency @andT separately, the terndandT are orthogonal.

Definition 14.5 (Orthogonality) Two feature term&andT are calledorthogo-
nal if

SM T inconsistents- Sinconsistent/ T inconsistent (14.7)
holds. o

An efficient procedure that determines orthogonality would be most useful,
because definition 14.5 implies the following corollary:

Corollary 14.6 LetU = SM1T be the intersection of two consistent and orthogo-
nal feature term§andT. Then,U is consistent.

Proor Follows fromSconsistenf\ T consistents- ST consistent holds, which

is the negated form of definition 14.5. o

Fortunately, there is a simple sufficient condition for orthogonalitahdT
have no common features or variables, they are orthogonal.

Proposition 14.7 Two consistent, non-atom feature ter8endT are orthogonal
if they have no common features or variables.

Proor.We show thaSconsisteni\ T consistent=- S T consistent holds, which
is the negated form of definition 14.5.

Sis consistent. According to definition 8.29 on page 86, there is a feature
algebrals = (D's,-'s) and anls-assignmentis such thatéfS # 0 holds. Like-
wise, sinceT is consistent, there is a feature algebra= (D'T,-'T) and anlt-
assignmendtt such thafl'o'@ # 0 holds.

Let D' = D's x D'T be a domain. Lett be a mapping from the set of all
variables taD', defined as

a(x) = as(x) if x occurs inS
" loar(x) if xoccurs inT
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and let! C D' x D' be an interpretation function defined for all featufess

[ fls x TqT  if f occursinS
T\ S x £ if f occursinT

and for all atoms as
a =asxar .

Both mappings are unambiguous sirg@ndT have disjoint sets of variables and
features.

Letl = (D',-') be a pair o' and-'. | is a feature algebra—all features are
functional, all names are unique, and atoms are still primitive.

Letus now consider the terBN T. Its interpretation results i(SNT), = S, N
T4. | interprets all features and variablesStike |s; consequently, we hav@, =
(Q,SS X TO';). Likewise, | interprets all features and variablesTitiike I, resulting
in T! = (S5, x ToT). From the equivalenc®, = T} = (S5, x Ta".), we deducé, N
Ty = (Q,SS X TO'(.TF). SinceSandT are consistent, bolﬂ,ss andTO'; are nonempty;
(S5, x TaT) # O follows. Consistency oM T results from definition 8.29. o

Comparing the sets of features and variables occurri®gimdT can be done
in linear time, such that the conditions for proposition 14.7 on the facing page are
easily verified. Consequently, a tefim= T, T,M---MT, can be divided into
m orthogonal subterms in quadratic time, simply by checking orthogonality for
each paifT; andT; out of T. Each subterm can then be checked individually for
consistency—for example, by using Smolka’s feature unification.

14.6 Fast Consistency Checking for Simple Terms

Even if SandT are not orthogonal, their consistency can be checked in quasi-
linear time if both are simple, consistent, and variable-free.

Proposition 14.8 Let Sand T be simple, consistent, and variable-free feature
terms; let neitheG nor T contain agreements or disagreements. Consistency of
SMT can then be decided in quasi-linear time.
Proor. SinceT is simple,T can be decomposed intosubtermsT = T 1 --- 1
Th, each of the formf*: T', wheref* is afeature pathof zero or more features
f1:for... fm:T’, and wher€l’ is eitherT or an atoma or a negated atoma or a
divergencef 1.

For each paiff;, T; of subterms]l; M T; is consistent becaudeis consistent.
Moreover,T; andT; are orthogonal in any case:
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1. Ty andT; are equal. Hencel; andT; are orthogonal according to defini-
tion 14.5 on page 166.

2. Ty andT; have different feature paths or are different divergences. Then,
andT; are orthogonal according to proposition 14.7 on page 166.

3. BothT;,T;, have the same feature path—that is,Ti = f*: T/ andT; =
f*: T/ holds. Then, we have three cases:

(@) T =aandT{ =T,
(b) T/ =aandT{ = ~b,
(¢) T =~bandT{ =T,

wherea andb are some atoms. In all casek, C T/ holds and defini-
tion 14.5 on page 166 applies. The symmetric cases ledd I;DTJ-’ and
thus to orthogonality as well.

Since every pair of subternTs, T; is orthogonal, deciding wheth&mT is con-
sistent can be broken downirsubproblems:

SMT consistent< SrT; consistentA - - - A S T, consistent (14.8)

SinceSis simple as well, the same decomposition applies to the sub&rms
of S= 5, M---MSy. Like the subterm3; of T, above, each pal§, Sj of subterms
of Sis orthogonal. Hence, we can determine consistencgrofl simply by
determining consistency of each subtegnof Sand each subteri of T:

SMT consistent< S M T consistent --- A S, T consistent (14.9)
The combination of (14.8) and (14.9) leads to
SMT consistents /\ (SMT;consisteny (14.10)

1<i<n
i<j<m
The subterm§ andT; are simple enough such that consistency of @nyT;
can be decided in constant time. To determine the consistency of a §ngle
with all Tj, it suffices to consider the terif) with identical feature path. For a
given feature path, it is possible to determifjen quasi-constant time using an
appropriate data structure—for instance, using a hash table with an entry for each
feature path. This is reasonable, since the number of features is small in practice,
and so is the data structure. The remaining travers&@ ifquires linear time
again. Overall complexity is thus of quasi-linear time, which was to be shown.
O
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14.7 Integrating Reduction and Fast Consistency Checking

The proof of proposition 14.8 on page 167 leads to the construction of an al-
gorithm that integrates consistency checking for simple feature terms with term
reduction for arbitrary feature terms.

The basic idea is the principle pfartial evaluation.In the domain of arith-
metic expressions, partial evaluation means to replace known variables by their
values and to evaluate resulting constant sub-expressions. This procedure is also
applicable to feature terms: In a tel®n T, every occurrence of in Scan be
replaced byT, sinceT must be satisfied anyway. Likewise, any subterr8that
is inconsistent witlT can be replaced by, since it cannot be satisfied.

Here is a simple example of partial evaluation. Consider the term

Uu=snT
= [0s ~unix, user. {tom lisa}] 1 [0os dos user. ~tom .
We haveT C [os dog. Consequently, we can replajges ~uniX in Sby T, since

[os~uni T =TNT =T holds. Likewise, we can repla¢asertom by L,
since[usertom M T = L NT = L holds. We obtain

Uu=snT
= [T,userlisa] M [os dos user. ~tom

which feature unification simplifies to

= [osdosuserlisa] .

As stated in proposition 14.8 on page 167, partial evaluation replacement al-
ways leads to a full consistency check in quasi-linear time if &nd T are
simple; for all other cases, the tef®tan be reduced in size, simplifying a later
consistency check through feature unification (as in our example).

We now present the formal definition mfduce a function integrating partial
evaluation and fast consistency checking. First, we defisanglify function
required byreduceto propagate new and_L values.

Definition 14.9 (Simplify) Let simplify(S) be a function mapping a feature term
to a feature term such that the following holds:

simplifTNS =S simpliffTuUS) =T simplify(~T)
simplif(SNT)=S simplifySuT) =T
simplif( LNS) = L1 simplif( LLUS) =S
simplif(SN L) =1 simplif(SU L) =S

=1
simplify(~L1) =T (14.11)
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and, for all other cases,
simplify(S) =S . (14.12)
m]

Thereducefunction performs the actual replacement, following the proof of
proposition 14.8 on page 167.

Definition 14.10 (Reduce)Let reducéS, T) be a function mapping two feature
termsSandT to another feature term such that the following holds:

reducéS, Ty M T,) = reducgreducesS, Tz), Tz) (14.13)

reducéS; NS, T) = simplify(reducéS;, T) MreducéS,, T)) (14.14)

reducéS; LIS, T) = simplify(reducéS;, T) LireducéS,, T)) (14.15)
)=
)=

reducé~S,T) = simplify(~reducéS,T)) (14.16)

reducé f:S, f:T) = f:simplify(reducéS, T)) (14.17)
as well as
reducéS S) =T reducéff,a)=T reducéf:Sa) =
reducéa, f:T) =1 reducéft, f:T)= 1 reducéf:S f1) =
reducéa,b) = L reducéa,~a) = L
(14.18)
and, for all other cases,
reducéST)=S. (14.19)

m}

In definition 14.10, (14.13) and (14.14) reflect the recursive descent of (14.8) and
(14.9), respectively. Equations (14.15), (14.16) and (14.17) descend along unions,
complements and (common) feature paths. The remaining equations in (14.18)
either determine inconsistencies for non-composed cases, resultingirsim-
plify subterms ofSby replacing them withr.

Obviously, the term computed breducégS, T) is not larger thars. reduce
may thus be used as general reduction step before using feature unification. In an
intersectionSM T, we can replac&by reducéS, T) while preserving validity:
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Proposition 14.11 For any two feature tern8andT, the equation
ST =reducéST)MT (14.20)

holds.

Proor. We show that (14.20) holds via structural induction. We begin with the
non-composed cases in (14.18) and (14.19); assuming that these hold, we con-
tinue with the composed cases. Without loss of generality, we use a simpler
definition ofsimplify, namelysimplify(S) = S.

1. We show that (14.20) holds for the non-composed cases by showing that
bothSAT C reducéS, T)MT andSMT 3 reducéS, T)MT hold.

(a) We begin withSM1T C reducg€S, T) M T. Due to (8.4), this is equiv-
alent to(SMT) M ~(reducdST)MT) = L. Now letU be defined
asU = (SN T)M~(reducéS,T)MNT) = SAT 1 (~reducéS T) L
~T) = SNT N~reducéS T). For the cases in (14.18) and (14.19),
showing that) = | holds is trivial.

(b) The next step is to show th&1 T O reducéS, T) M T holds. Due
to (8.4), this is equivalent te-(SM1T) MreducéS T)MT = L. This
time, letU be defined afl = ~(SNT)MreducéST)NT = (~SU
~T)MNreducéS T)NT = ~SMreducgS T)NT. Again,U = L holds
for all cases in (14.18) and (14.19).

2. We continue with the composed cases. Assume that (14.20) holds for some
feature termsS, Ty, andT,. Let T = Ty M T,. Then, using (14.13), we
obtainSMT =SSN (T1MNT2) =(SANT)NTy = (reducQS, TN T]_) NTy =
(reducéS, Ty) MTz) M Ty = reducereduceéS, T1), Tz) M T2 M Ty = reducedS,
TiNT)NTiNT, =reducéS T)MT. It follows that (14.20) holds fol =
T 1T, as well.

3. Assume that (14.20) holds for some feature teBnsS, andT. Let
S=5M%S. Then, using (14.14), we ha@& 1T =S NSNOT = (SNT)MN
(S1T) = (reducdS;, T) M T) 11 (reduc€S, T)MT) = (reducdS, T) 1
reducéS, T)) MT = reducéS; NS, T)NT = reducéS T) 1 T. Conse-
quently, (14.20) holds foB= S 1S as well.

4. Assume that (14.20) holds for some feature teBnsS, andT. Let
S=5US. Then, using (14.15), we ha®1T = (SUS)NT =(SUT)N
(SUT) = (reducéS;, T) M T) U (reducé€S, T)MT) = (reducdS, T) U
reducéS,, T)) N T = reducéS; LIS, T)NT = reducéS T) 11 T. Conse-
quently, (14.20) holds foB= S LIS, as well.
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5. Assume that (14.20) holds for some feature te8nand T. Let S=
~S. Then, using (14.16), we ha®1T =~SNT = (~SU~T)NT =
~(8NT)NT =~(reducéS, T)NT)NT = (~reducéS, T)LU~T)NT =
~reducdS,T)MT = reducé~S,T)MT = reducédS T)NT. It follows
that (14.20) holds fo8= ~S as well.

6. Assume that (14.20) holds for some feature teBhadT’. Let f be some
feature and leS= f:S andT = f:T'. Then, using (14.17), we ha@&1T =
f:9nf:T =f:(SNT') = f: (reducéS, T")NT’') = (f:reducéS,T')) N
(f:T') = reducéf:S,f: TN (f:T’) = reducéS T) N T. Consequently,
(14.20) holds folS= f:S andT = f: T’ as well.

Since (14.20) holds for all non-composed feature terms as well as for all com-
posed feature terms, it holds for all feature terms, which was to be shownz

As a result of proposition 14.11, we can appiduceas a reduction step
before any feature unification. Moreover, if the conditions of proposition 14.8 on
page 167 are meteducedetermines consistency 8f1T in quasi-linear time:

Corollary 14.12 Let Sand T be simple, consistent, and variable-free feature
terms; let neitheBnor T contain agreements or disagreements. Then,

1. ST is consistent ifreducéS, T) is consistent; and
2. reducéS T) requires quasi-linear time.

Proor. The termsSand T meet the conditions of proposition 14.8 on page 167.
Hence, consistency & and T can be decided in quasi-linear time. Applying
reducecompares each pair of subter@sandT;, as specified in (14.10); through
the propagation of_ values insimplify, the result ofeduceis consistent iffSm T

is consistent. No further time complexity is addedrbgtuce o

14.8 Two Reduction Examples

All of the strategies presented in this chapter can be combined into one single
procedure, choosing the least cost method wherever appropriate. As an example,
reconsider the editor example from figure 10.1 on page 104. The features of the
entire configuration are described as

editor = osrscreen-typel screen-device
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whereos screen-typgandscreen-devicare defined as

0s= [os dos screen-typg{egatty}, concurrentfalse]
U [os unix, screen-type{x11 newstty}]

screen-type- [screen—typaaga screen-databitma[:]
Ll [screen-typety, screen-dataascii]
LI [screen-typex11 screen-datebitmap
U [screen-typmewsscreen-data{postscriptbitmap}]

screen-device: [screen-devicelumbdata D, screen-dateD]
L [screen-deviccg;hostscrip;data postscript
screen-databitmapconcurrenttrue] .

Let us identify the configurations i = [0s unix, screen-typex11]. For this
purpose, we create a subsetadfitor, namelyeditorm1 T. Applying Smolka'’s
feature unification alone, as discussed in section 14.1, recpdites to be trans-
formed intoDNF form. Sinceoscomes in five variantscreen-typeén four vari-
ants, andscreen-devicén two variants, this means a term withx4 x 2 = 40
conjuncts, which would again be multiplied with each alternativd in Due
to the procedures discussed in the previous sections, much fewer steps are re-
quired. First, we decompose the probleditorm1 T into three subproblems
editorn1 T = (osM T) M (screen-typel T) M (screen-devica T).

1. The selectiowsn T can be done by reduction:

osNT =reducdos T)MNT
= reducgreduceos, [os unix), [screen-typex11]) 1T

Evaluatingreducgos [os unix) yields

reduceos,[os unix) = reduce[os dos screen-type{ega tty},
concurrentfalsg, [os unix)
U reducg[os unix,
screen-type{x11 newstty}],
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[os unix)
= L LI [screen-type{x11 newstty}]
= [screen-type{x11 newstty}]
Reducing each of the remaining alternatives yields

osNT=(TUuLuL)AT
= [os unix, screen-typex11] .

. The selectiorscreen-typel T is also done by reduction. Since tbefea-

ture does not occur iscreen-typgit suffices to perform the reduction
reduce(screen-typﬁ[screen-typml:l]). Reducing each of the four alter-
natives leaves only
screen-typel T = (L U L U[screen-datebitmagu L) AT
= [0s unix screen-typex11 screen-datebitmay .

. The selectiorscreen-devica T is trivial, sincescreen-deviceandT have

no common features and are thus orthogonal:

screen-device T = screen-device T

. We now computesr T, screen-typel T, andscreen-devica T. The inter-

section ofosM T andscreen-typel T can be trivially computed by reduc-
tion: reducgosn T,screen-typel T) = T holds and thus

(0osMT) M (screen-typel T) = T I (screen-typel T)
= (screen-typelT) .

. The final step is the intersection @creen-typ€l T) and(screen-device

T). Since one of the alternatives efreen-typeontains variables, we can-
not use reduction for this alternative: full-fledged feature unification is re-
quired, instantiating the variabl2 to bitmap

(screen-typel T) M (screen-device T)
= [0S unix, screen-typex11, screen-devicelumb
data bitmap screen-datebitmag
LI [os unix, screen-typex11 screen-devicghostscript
data postscriptscreen-datebitmap concurrenttrue]
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This final term also identifies the entire configuratieditorr1 T. Rather than
invoking feature unification for 40 conjuncts, it sufficed to invoke it for one single
conjunct. The entire selection, including the consistency check of the resulting
configuration, required only one reduction call for each component version, as
well as two reduction calls for determining consistency.

As another example, consider the revision graph in figure 11.1 on page 114.
As stated in (11.3), the revision graph is expressed by

R= (DQI_IA;L)I_I(DgI_IAj_)I_I([I4I_IA3)|_I([15|_IA2)I_I([15|_IA4)
|_|(|:|6|_|A4)|_|(|:|2|_|[b|_|A5)|_|(D2|_|D6) ,

where we usel! instead of— to express implications.

Let us assume we wish to retrieve the revisiRy) identified by a selection
termS= Az M. We determine the selectid® = RN S. InvokingreducéR,S)
yields

reducéR S) = (b UA)NAINTNDN N (HuAs) (e U D) -

which is already a lot smaller thd Resolving the intersections ieducéR, S)
by callingreducewith A1, Os, and(g, respectively, yields

reducéR S) = A NOsM0OsM O
which completes the teriRs to

R3 = RMS=reducéR,S) NS
=AM bNA3N LM O5M g

Again, had we used feature unification alone, convefiliigto DNF would have
given us a term with 2x 3 = 384 conjuncts. Instead, four applicationseduce
each with quasi-linear time complexity, sufficed to deterniRge

14.9 Conclusion

Deciding inconsistency of feature termsng-complete. This implies that the
following problems areiP-complete, too:

¢ |s a version part of a specific selection set?

¢ s a configuration consistent with respect to the features of its components?
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In this chapter, we have presented specialideductive shortcutsxist that show
much better complexity for special cases. The problem of deciding consistency
can be broken down in smaller subproblems if the feature term breaks down into
orthogonal partghat is, parts without common features or variables. The tech-
nigue of partial evaluatiorieads to efficient decision of consistency for simple
feature terms.

While orthogonality is an important property for the separation of concerns,
partial evaluation is an important shortcut for version selection. In fact, the com-
mon SCM version selection schemes discussed in section 7.3 can all be imple-
mented in quasi-linear time complexity:

Simple selection terms.If the version selection term is simple, consistent, and
variable-free, consistency checking and thus version selection has quasi-
linear time complexity. This is the “strong identification, weak selection”
scheme, as realized @PP.

Simple version identification terms. If the version identification terms are sim-
ple, consistent, and variable-free, consistency checking and thus version
selection also has quasi-linear time complexity. This is the “strong selec-
tion, weak identification” scheme, as realizedAsONand other attribute-
orientedSCM systems.

We see that despite the generality of version sets and feature unification, common
SCMversioning schemes can still be realized efficiently. But to be absolutely con-
vincing, this claim requires more than a proof—it requires a working prototype.
This is what we have built, and this is what we present in part four.

We remark that certain worst-case complexity results
are not considered to be a problem,

because the examples are pathological

and do not arise in practice.

— ALEX BORGIDA, Description Logics are not just
for the Flightless-Birds
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Chapter 15

A SCM Environment

In software engineering, proposing a new design alone does not suffice. As
Lukowiczet al. state in[LHPT95],

Such designs must be judged by whether they increase our knowl-
edge about what are useful and cost-effective problem solutions. In
most cases, objective judgement can only be achieved on the basis of
reproducible experiments.

For this purpose, we have implemented the version set model in an experimental
SCMsystem, calledCE for Incremental Configuration EnvironmerTthis chapter
gives a general overview about the architecture and componel@s.of

15.1 The Properties of ICE

The basic properties o€E are those of the version set model; notabdg sup-

ports the integration of versioning dimensions, consistency checking in abstract
configurations, and tolerates ambiguities atsaiM levels. Other features o€E
include:

Version sets as first-class objectsin ICE, every component and every configu-
ration is treated as set of possible versions, where an unambiguous item
is just the special case of a singleton set. Version sets are represented as
individual entities and can be examined and manipulated as a whole, using
the well-knownCPPrepresentation as discussed in section 2.6.1; likewise,
all version specifications are given @BPexpressions—that is, boolean C
expressions.

179
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Transparent version set accesskFor integration into common software develop-
ment environment$CE makes version sets accessible through a virtual file
system called-FSfor featured file system\Version sets are accessed ex-
plicitly by appending a version specification to file and directory names.
Implicit version set access is realized by changing the current directory
version.

Incremental version selection.Many software development tools require that
items be unambiguoudCE provides incremental and interactive disam-
biguating facilities, allowing users to explore the version space. For each
configurationCE lists possible features and values that constrain the ver-
sion space while keeping consistency. Users can select these feature values
and refine their selection incrementally until the selection is unambiguous.

Intensional system construction.ICE realizes aMAKE tool that acts like an or-
dinary MAKE, but with built-in version set supportiCE MAKE deduces
the features of derived components and tolerates ambiguity in dependency
descriptions, such that entire systems can be built and configured just by
stating a few target features. As described in section@®BMAKE deter-
mines whether required components have been built identically in another
configuration and reuses them across versions wherever possible. A full
description ofCE MAKE can be found in [Bra96].

Revision and workspace managementAt the protocol layer)CE provides fa-
cilities to create revisions and to propagate changes, realizing the optimistic
cooperation strategy as discussed in section 13.3.3. A textual merging al-
gorithm enhanced for version sets realizes change integration for arbitrary
version sets. The resultimgVICE tool is specified in [Men96].

ICE is part of the inference-based software development envirori@RAL.
NORA aims at utilizing inference technology in software tools; concepts and pre-
liminary results can be found in [FKS95, KS94, Lin95, Sne96].

15.2 Using Industry Standards

In section 15.1, we have seen tih@E relies on existing industry standards wher-
ever possible: component versions are accessed as files, multiple versions are
represented iPPformat, the system model comes as an ordir@AKE file.

The choice to use existing representations instead of designing own, maybe bet-
ter, representations, were made for three reasons.

INORA s a figure in Henrik Ibsen’s play “A Dollhouse”. HendepRA is NO Real Acronym.
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Economy in use. Using industry standards allows for smooth integratiorogaf
into real-world software development environments. Existing documents,
such asMAKE files or CPRmaintained source files, can be reused. End
users familiar wittMAKE andCPPneed not learn new paradigms or repre-
sentations, just some bits of additional functionality. Users can switch back
to their original tools ifiCE does not satisfy them.

Economy in development.Using industry standards facilitates the development
of ICE. Syntax and semantics ®MAKE, CPR, or file systems are well-
documented and well-understood among developers. Rather than to coordi-
nate, document, implement, and debug b&si functionality as realized
in these tools, developers can focus upon the new functionality. More even,
mature implementations are available that can be reused and extended.

Economy in concepts.As anSCM foundation, the version set model should in-
tegrate and unify existin§CM concepts, rather than introducing new ones.
Hence,ICE need not rely on new representations for new concepts, but
rather demonstrate how existing representations are interpreted and reused
under the version set model.

15.3 A Layered Architecture

As discussed in section 6.6, futeM systems should be decomposed into three
layers—primitives, protocol, and policy—, each providing a specific s&ta
services. The architecture WfE can be divided into these three layers; an addi-
tional foundation layerealizes primitives for handling version sets, as discussed
in part three.

Foundation layer. The foundation layer is not accessible to end users. It pro-
vides the basic functionality useful for realizing user-le8eM services.
This includes support for maintaining feature terms, access to the inference
engine, and facilities for reading, writing, and manipulating simple version
sets.

Primitives layer. The primitives layer embed<€E into software development
environments. Th&FSis part of the primitives layer, allowing users and
user tools to access and refine version sets. Versions are identified by ar-
bitrary feature terms; feature names have no specific meaning.FA%e
realizes access control by maintaining access rights for individual file ver-
sions.
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ICE Policy

Quality assurance, CM Process, etc.

ICE Protocol

Transactions, Workspaces, Revisions, etc.

ICE Primitives

Version set access, Environment integration, etc.

ICE Foundations

Version set representation, Inference engine, etc.

Figure 15.1: TheCE service layers

Protocol layer. The protocol layer gives meaning to specific features and pro-
vides support for specifisCM tasks and procedures. Revisions and work-
spaces are handled at this layer, accessing version sets throughShe
Locking is also handled here, in contrast to [BDFW91], where locking is a
service of the primitives layer. Oth8CMtools working on version sets can
be located at this layer, such as software construction or interactive version
selection.

Policy layer. The policy layer uses the services provided at $i@ protocol
layer to encode procedures specific to an organizatiog. does not yet
provide facilities at this layer.

In the following chapters, we discuss the individual componenitS®fstart-
ing with thelCE foundations.

By three methods we may learn wisdom:
First, by reflection, which is noblest;

Second, by imitation, which is easiest;

and third by experience, which is the bitterest.

— CONFUCIUS
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Representing Version Sets

Upon designingCE, the first problem that arose was the representation and ef-
ficient storage of version sets at tBEM primitives layer. As it was our aim to
make ambiguity transparent to developers, we wanted to represent version sets in
a format suitable for human readers. Our choice fell on the well-establEbped
format, discussed in section 2.6.1. We show how to represent feature terms as
CPPexpressions, providing users with a familiar syntax to denote version sets.

16.1 A Multi-Version Representation

Upon designingCE, it was our aim to make version sets transparently accessi-
ble to developers, such that they could manipulate several versions at once. We
consider a document as a set of related items, where each item is versioned sep-
arately. For ordinary text documents, organized as a list of lines, this results in
each line being tagged with a feature te®imdicating the document version(s) it
belongs to.

In figure 16.1 on the following page, we have illustrated such a versioned
text. The lines tagged witf occur in every version of the text. The lines tagged
with [author.tichy] belong to theichy version only, while the lines tagged with
[author. dart] are part of thelart version. Upon selecting a versi@of the doc-
ument, only those lines are included whose feature fElimconsistent witts—
that is, wherél' M Sis consistent.

SincelCE was designed to work with ordinary files, we had to design some
representation for tagging lines with feature terms. The most frequently used
multi-version representation for ordinary files is thePformat, as discussed in
section 2.6.1. UsingPPRlike directives, but with feature terms, we could have
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Line Features
Configuration T
management is the [author:tichy]
management is a [author. dart]
discipline T

of organizing and [author.tichy]
controlling evolving [author.tichy]
for controlling [author. dart]
the evolution of [author. dart]
systems. T

Figure 16.1: Tagging lines with feature terms

usedfeature directivedike #if ... #endif to specify the feature term applying
to the enclosed lines. An example is shown in figure 16.2 on the next page on the
left side.

But, since we're already using @PPRlike representation, why not usePP
expressions as well? Feature terms amiPexpressions are quite similar: Both
support boolean equations and equality, and features in feature term can easily
be expressed bgPPvariables, which also can have only one value. Also, allow-
ing ICE to read and writecPPfiles offers the possibility to re-use existi@PpP
representations and to interact with tools requilm®Prepresentation.

Consequently, we chose tlPPrepresentation as standard representation for
version sets inCE. The resulting file is shown on the right side of figure 16.2 on
the facing page.

16.2 Representing Feature Terms

ICE allows users that know feature logic to enter feature terms directly, using a
straight-forwardASCII representation. But usually, users are expected to use the
more familiar, well-understoo@PPrepresentation. In the following, we discuss
the mapping ofCPPexpressions to feature terms and vice versa, as summarized
in table 16.1 on page 186.

Set Operations. ICE usesCPPboolean operators for the set operations of fea-
ture logic—that isg& for the intersectionr(), | for union (), and! for
complement{).
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Lines with feature directives Lines withCPPdirectives
Configuration Configuration

#if [author: tichy] #if author == tichy
management is the management is the
#endif #endif

#if [author: dart] #if author == dart
management is a management is a
#endif #endif

discipline discipline

#if [author: tichy] #if author == tichy
of organizing and of organizing and
controlling evolving controlling evolving
#endif #endif

#if [author: dart] #if author == dart
for controlling for controlling

the evolution of the evolution of
#endif #endif

systems. systems.

Figure 16.2: Multiple versions in one file with feature at@Pdirectives

Selection. A selection is represented by t@®Poperator==; that is, the feature
term f:S becomes, agPPexpressionf == S. The CPPoperator!= is
used for negated feature valuesthor = lisa stands for the feature
termauthor. ~lisa.

Atoms. Besides identifiers likésa , ICE allows arbitrary C literals as atoms—
that is, strings'fisa” ), characters!|( ), integers 42) and floating point
numbers4.711e+3 ), following the C standard [ISO90].

Agreement. Disagreement.The== and!= operators can also be used for agree-
ments and disagreements. This introduces an ambiguitymexpressions,
because identifiers may be interpreted as features or atoms. To distinguish
between selection and agreement or disagreement, and arithmetic expres-
sions involving equality, the following rules are used. In an expression
S==T(S!= T),

1. the expression is an agreement (disagreement) if
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Abstract syntax ASCII representatior) CPPrepresentation
T (also[]) 1 10

1 (also{}) {} 0

a a a

X X (see section 16.2)
f:S f S f ==

f:~S f: 7S fl=S

f:~0 f: "0 f

f:7 f: defined f

f1 f - Idefined f
flg f=9 f==u9

f1g f" 9 fl=g

~S ~S 'S

SAT (also[ST]) | [S TI S&&T

SUT (also{S,T}) | {S T} S| T

S—»T (see section 16.2) | (see section 16.2)
ST (see section 16.2) | (see section 16.2)
(9 (see section 16.2) | (see section 16.2)

Table 16.1: Representing feature terma&8cCIl and asCPPexpressions

() SandT are identifiers,
(b) T begins with an upper-case letter.

2. Otherwise, the expression is a selection Witli~T) as value ifSis
an identifier.

3. Otherwise, the expression is an arithmetic expression.
Multiple Selections. Variables. To avoid further ambiguities, feature terms with
multiple selections likd : g: Sand variables lik&X cannot be mapped @PP
expressions. Such feature terms can be embedded@Prepresentation

by enclosing theiASCII representation in square brackets. For example,
the term[f:a,g: h: X,i: X] becomes, ilCPPrepresentation,

f==a&&l[g h X] & i == [X]

Embedding of£PPexpressions in thaSCll representation is not supported.
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Top and Bottom. CPPexpressions, like C expressions, are arithmetic by nature:
the boolean values of true and false are expressed by zero and non-zero
values, respectively. Consequently, we 0ge express the feature term
and!0 to expressv.l orT.

To avoid ambiguities between representingind the negated atom 0, we
use theCPPexpressionmlefined  f for the feature ternf: T. WhenT does

not occur as feature value, it can usually be eliminated from set expressions.
Divergencef1 becomesdefined  f.

In CPPexpressions, a single identifieroccurring in a boolean formula is
interpreted likgx !'= 0) ; ICE reflects this interpretation by mapping the
feature termf: ~0 to theCPPexpressiorf.

Implications. ImplicationsS— T do not have an equivalent in t#Cll or the
CPPrepresentation of feature terms. They can be represented using the
alternate forms-SU T—that is,{°S, T} in the ASCII representation and
I'S || T intheCPPrepresentation.

Equivalences. Like implications, equivalences«> T must be represented using
an alternate form. Sinc8<« T = (SN T) U (~SM ~T) holds, the form
{{S T, [ S ~ T]}isapossiblAASCIl representation; thePPrepre-
sentation becomdss && T) || (! S && !'T).

Quantifiers. QuantifiersIx(S) are not supported b\CE. They have neither an
ASCII representation nor@PPrepresentation.

ISO keywords. In compliance with the forthcoming+3 standard [Str94]ICE
recognizes the keywordsd, or , not , andnot _eq instead of&&, || ,!,
and!= . ICE may also be instructed to generate these keywords.

Other CPP expressions.All CPPexpressions that cannot be converted into a fea-
ture term using the rules above, are treatettd®yas a single atom. We call
these expressioraithmetic expressions.

16.3 Syntax and Semantics of CPP Directives
16.3.1 Specifying Line Features

Besides the simplgif ... #endif construct)CE handles allCPPdirectives re-
lated to conditional inclusion, improving the readability of multi-version files.
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Each block of the text is read within a certaiantext,a feature term that deter-
mines the features of the line; one also says that the cogtaernshe line.CPP
directives like#if may be used to narrow this context for the enclosed lines.

#if ... #elif ... #else ... #endif . The#if directive occurs in the general
form

#elif S
th
#else

the1
#endif

where the#elif and#else directives and the following text blocksare
optional. LetC be the context of the entiggf ... #endif form. Each text
blockt; is then interpreted with the contektdefined as

Ti=CN~SN~SM---N~§ 11§
=Ccn [] ~§ns, (16.1)

o<j<i

whereS,; 1 is defined as,11=T.
Figure 16.3 on the facing page gives an example of usiing. . . #endif

#ifdef . A control line of the form
#ifdef  f
is equivalent to
#if defined f
#ifndef . A control line of the form

#ifndef f
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Line Features
/I Init random seed T

#if HAVE _SRAND
/I srand() available

srand(time);

#else

/I No srand()

#endif

#elif HAVE _SRANDOM
srandom(time);

#else

/I No random seed
#endif

#if defined USE _SRAND

[have-srand~0]
[have-srand~0,use-srandT]

[have-srand~0,use-srand]

[~have-srand~0, have-srandom-Q]

[~have-srand~0, ~have-srandom0]

Figure 16.3: Interpretation eff directives

is equivalent to

#if ldefined f

16.3.2 Specifying File Features

CPPdirectives may also be used to specify non-existent versions, and thus to
define the features of the entire file. For instance, by stating that the version subset

[tested T] does not exist, the features of the entire file becownfiestedT] =

[tested].

#error . A control line of the form

#error  token-string

in a contexC expresses that the file does not exist in the cor@@eit other
words, the features of the file are a subset-Gf

#error  directives are useful for specifying the features of a file explicitly.

As an example, thePPdirectives

#if |(SCREEN_TYPE

== ega) \

|| (SCREEN_DATA == bitmap)
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#error
#endif

specify the features of the file &reen-typeega screen-datebitmag. No
subset of[screen-typeegd LI ~[screen-datebitmag exists.

#define . Using C encoding#define may be used to specify the features of a
file. ICE can be instructed to interpret a control line of the form

#define f
as
#if !defined f

#error
#endif

and to interpret a control line of the form
#define f T
as
#f I f == T)
#error
#endif

By default,ICE ignores#define  directives.

#undef . Using C encodinggundef may be used to specify the features of a file.
ICE can be instructed to interpret a control line of the form

#undef f
as
#if defined f

#error
#endif

By default,ICE ignores#undef directives.
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16.3.3 Miscellaneous Directives

ICE also recognizes thePP#line directive, which is useful for diagnostics.
The #pragma directive, followed by the keyworite , is used byiICE-specific
extensions to thePPrepresentation.

#line . A #line directive in the form
#line  constant

or
#line  constant " filenamé

sets the current line number tonstant for the purpose of error diagnos-
tics. If present, the name of the current file is sdilemame

#pragma . A #pragma directive followed by the tokeite is recognized akCE-
specific directive. Any#pragma directives not followed byce are ig-
nored.

ICE recognizes the followingpragma ice directives:

#pragma ice config . A control line of the form
#pragma ice config S
is equivalent to

#f ! S
#error
#endif

#pragma ice config is obsoletegerror should be used instead.
#pragma ice encoding . A control line of the form
#pragma ice encoding e

sets the subsequent encoding of the file to the encoding specifeed by
(see section 16.4 for details on file encodings). Possible values of
and the resulting encodings are shown in table 16.2 on the next page.
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Token | Encoding| Token Encoding
asis As-is text Text
corC | C binary Binary

Table 16.2: Encoding tokens

16.4 File Encodings

The CPPformat, as defined in [ISO90], was designed for C ard-@rograms.
Using theCPPformat for arbitrary files requires some slight changes toche

encoding, depending on the file to be processed.knows four file encodings:
C encoding, Text encoding, Binary encoding, and “As-is” encoding.

C Encoding. In C encodingCPPdirectives are read and interpreted according to
thelSO C standard [ISO90]. There may be arbitrary white space before and
after the# character; and th# character may also be replaced by the
C trigraph sequence?= or by thedigraph sequence: from the proposed
C++ standard [Str94]CPPdirectives enclosed by C commertts ... */
are ignoredCPPdirectives may extend across multiple lines: the character
\ followed by a newline is ignored, allowing f@ontinuation linesC and
C++ comments/{ to the end of a line) are recognized.

C encoding is useful for processimgPmanaged source files. Figure 16.4
gives an example of a file in C encoding.

#if HAVE_ATHENA_WIDGETS
#if HAVE_X11_XAW_FORM_H
#include <X11/Xaw/Form.h>
#endif
#endif

Figure 16.4: A program file in C encoding

The second line in figure 16.4 is interpretedc@Pdirective although pre-
ceded by white space.

Text Encoding. Text encoding is a restricted form of C encoding. Bheharac-
ter must be the first in the line; no white space before or afte# tttearacter
is allowed. Thet character may not be replaced by a trigraph or digraph;
C comments around directives are ignored. Continuation lines are still al-
lowed; C and @+ comments may be used withirc®Pdirective.
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Text encoding is useful for general text files. In figure 16.5, we see an
example of a multi-version Makefile in text encoding.

# Sample Makefile

# if we're using GCC, use the -0O2 flag
#if CC == gcc

CFLAGS = -02

#else

CFLAGS = -O

#endif

Figure 16.5: A Makefile in text encoding

Using text encoding, the second line is treated as ordinary text as intended.
With C encoding, the second line would flag an error, since it would be
interpreted as a#tif directive followed by an invali€PPexpression.

Binary Encoding. In binary encodingCPP directives are enclosed in square
brackets. They may occur anywhere in a file, making this encoding suitable
for arbitrary files. Continuation lines andH€ comments are not allowed;

C comments may be used.

Figure 16.6 gives an example of a multi-versiof+Qprogram in binary
encoding.

/I Initialize [#if d1] PTY[#else] TTY[#endif]
#if USE_ [#if d1] PTY[#else] TTY[#endif]

int open_ [#if d1] pty [#else] tty [#endif] ();
#endif // USE_ [#if d1] PTY[#else] TTY[#endif]

Figure 16.6: A G+ program file in binary encoding

Obviously, the changd; in figure 16.6 consisted in changing all occur-
rences ofity to pty . Note that theCPPdirective on the second line is
treated as ordinary text, since it is not preceded pyharacter.

As illustrated in figure 16.6, binary encoding can be used for fine-grained
differences in files. The placement of directives influences both size and
readability of the text. Instead of placing directives on word boundaries, as
in the example, we could also have placed directives on letter boundaries,
resulting in the representation shown in figure 16.7 on the next page; the
file is smaller, but even less legible.
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/I Initialize [#if d1] Pl#else] T[#endif] TY
#if USE_ [#if d1] Pl#else] T[#endif] TY

int open_ [#if d1] p[#else] t[#endif] ty();
#endif // USE_ [#if d1] P[#else] T[#endif] TY

Figure 16.7: Binary encoding with character boundaries

Placing directives on line boundaries, makes the file larger, but improves
readability, as illustrated in figure 16.8.

[#f d1] // Initialize PTY
#if USE_PTY

int open_pty();

#endif // USE_PTY

[#else] /I Initialize TTY

#if USE_TTY

int open_tty();

#endif // USE_TTY [#endif]

Figure 16.8: Binary encoding with line boundaries

Since the character sequetfi¢estarts a directive, the special sequepige
is used to encode the sequefedtself.

As-is Encoding. This is a simple one: The entire file is read “as is” as one single
version, without any encoding.

ICE can also be instructed to determine the encoding of a file dynamically,
using a simple heuristic:

1. If the file begins with the character sequeficebinary encoding is used.

2. If the file ends in a newline character and does not contain control charac-
ters besides newline and tab characters, text encoding is used.

3. Otherwise, as-is encoding is used.

Using the first alternative, the encoding can be specified explicitly at the beginning
of the file, using a#pragma encoding directive. For instance, the sequence
[#pragma encoding text] at the beginning of the file enforces text encoding
in the remainder of the file.

If any syntax errors occur during the interpretatiocePdirectives)CE gives
a diagnostic and reads the file again, using as-is encoding.
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16.5 Implementation Notes

Feature terms are implemented as abstract syntax trees usiogripesitepat-

tern [GHJV94]; each operator in the abstract syntax is represented by a separate
class. To minimize the effort for copying feature terms, subtrees are shared wher-
ever possible. Feature terms are accessed threght referencean instance of

the proxy pattern [GHJV94] implementing a simple reference-count mechanism
deleting unreferenced feature trees.

The scanner focPPfiles, distinguishingCPPdirectives from ordinary text,
was written directly in @+. CPPexpressions are processed by a scanner/parser
automatically generated fromla&EX token specification and ¥ACC grammar
specification. The 145 rules of thdCC grammar handle both feature terms and
CPPexpressions.

A processedPPfile is represented internally as a list of text blocks, where
each block contains a sequence of characters and the associated feature term.
Each block is also associated with lexical details about the indentation, any com-
ments found orCPPdirectives, whethelSO keywords are used, etc., such that
subsequent writing does not change these details. The intePrdile represen-
tation was realized by Larsuming [Din94].

16.6 Conclusion

ICE usesCPPexpressions to represent feature terms and files enriched>®Rh
directives to represent version sets. The intent is to give users a familiar, well-
understood representation of multiple items in one representation. By supporting
various encoding$CE can interpret existingPPmanaged files (especially C and
C++ program files) and represent binary files usingPelike encoding.

The primary advantage of tt@PPformat is that only the differences between
versions are specified. An increasing number of differences between versions
also implies a larger number of directives. While this is no problemdét it
makes the resulting files hard to read for humans. In the following chapter, we
discuss techniques to select and change arbitrary version subsets oapPef a
representation, such that users can work upon singleton version sets without any
CPPdirectives.

I didn’t like cPpP at all, and | still don’t like it.
— BJARNE STROUSTRUP, The Design and Evolution of C++






Chapter 17

Handling Version Sets

Having discussed thePP representation of version sets, we demonstrate how
version subsets are selected framPfiles, realizing reading of arbitrary version

sets. These subsets can also be changed and merged back into the original file,
using aDIFF algorithm to determine a compact representation. Through selection
and changing, we can define the effects of usual file operations (read, write, create,
remove) on version sets PPrepresentation.

17.1 Selecting Version Sets

We show how arbitrary version subsets can be accessed from a versiogBet in
file representation. Ldt be aCPPfile representing all source code versions. To
select a subset &F using a selection terr8, that is, the seF 'S, we proceed
as follows. For each code piece, its governing feature @imintersected with
the selection tern®. If Cr1Sis inconsistent, the code piece is removed from
the selection. ICMS= S, the#if directive is removed, becau§L C holds.
Otherwise(C is simplified respective t§, using partial evaluation as discussed in
section 14.7. The new (smallegZPPrepresentation can be characterize®laynd

is writtenF[§ = F 1 S(obviously,F = F[T] holds).

17.1.1 A Variant Example

Figure 17.1 on the next page shows three subset selections from the source code
of xload , atool to display the current system loathad is available for several
architectures, each with a different method to determine the system load. Conse-
guently, each architecture is identified by an individoaPvariable.

From top to bottom, figure 17.1 shows

197
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xload[os unix]
InitLoadPoint()

extern void nlist();
#if defined(AIXV3) && !defined(hcx)
knlist(namelist, 1, sizeof(struct nlist));
felse
nlist(KERNEL_FILE, namelist);
#endif
#ifdef hcx
if (namelistiLOADAV].n_type == 0 &&
telse
if (namelistiLOADAV].n_type == 0 ||
#endif
namelistLOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

xload[os unix, hext]
InitLoadPoint()

extern void nlist();
#ifdef AIXV3
knlist(namelist, 1, sizeof(struct nlist));
felse
nlist(KERNEL_FILE, namelist);
#endif
if (namelist{LOADAV].n_type == 0 ||
namelist{LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

xload[os unix, hcx T
InitLoadPoint()

extern void nlist();

nlist(KERNEL_FILE, namelist);

if (namelistLOADAV].n_type == 0 &&
namelistLOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

Figure 17.1: Three version selections frorarPfile
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e the original selectioxloados unix;
e ahcxversionxloados unix[hcx T] = xloados unix, hex T7;
¢ anonhcxversionxloados unix [hcxt] = xloados unix, hext].

Each selection reduces the number of goveridrgexpressions and simplifies
the remaining ones. In the casextdados unix, hcx T], no CPPexpressions are
left—the version set is unambiguous.

17.1.2 A Revision Example

Another example is shown in figure 17.2. We use delta features to identify revi-
sions, as discussed in chapter 11. TIrPexpressiordi stands for the feature
terms/; likewise,!d i stands for = ~A.

The fileTextcomes in three revisions identified By = () M, Ry = A1 My,
andR; = A1 MA;. Accordingto (11.6), the features déxtareAy — Ay = [ LIA;.
These features are encoded in GRPrepresentation ofext using an#error
directive with the feature complementh LIA; = A> ML as context.

The overall structure of th&extfile is as follows: The wora@xplain  occurs
in Ry only. In Ry, it was changed tdemonstrate , and again changed R, to
show. Note how the feature implications and theif ~ directive keep the actual

Text
#if d2 && !d1
#error Text[As] Text[[p]
#endif We
We #if 1d1 s d1
#if d2 #error
. demonstrate
show #endif #else
#elif d1 We explain
demonstrate show P .
. #endif
#else the encoding .
. g the encoding
explain of revisions. g
. of revisions.
#endif
the encoding
of revisions.

Figure 17.2: Selecting revisions fronCePfile
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expressions small—instead ¢ && di, only d2 is required, sincel2 implies
d1, and instead ofd2 && d1, only d1 is required, due to usage of ti#elif
directive.

On the right-hand side of figure 17.2, we see two subset selectionsxof
The selectionTex{A;] has thed, change applied; theerror directive states
that the(]; subset does not exist. In the selectifex{[], no#error  directive
is required, because all its subsets exist; the vdardonstrate  is part of the
subsefTex{> MA;], and the wordexplain  belongs to the subs@&ex{> M ].

We see how the complexity afPPdirectives decreases as we narrow the version
set by specifying more features.

If the selection ternS is simple, like in our examples, subset selection is
very efficient, since nearly all consistency checking can be done via reduction
and orthogonality checking. Unless non-simple terms are used, subset selection
in ICE takes no more time than ®CCScheckout or aCPP run without macro
expansion.

17.2 Changing Version Sets

Having shown how version subsets are selected, we show how the oggipiike
can be reconstructed after a change in a subset. Let us assume we want to change a
version subseft [S] in a fileF to F'[S. What we need now is a mechanism to con-
struct the fileF’ from F andF'[§—or, more specifically, fronf[~SandF[S],
sinceF[9 is to be overwritten byF'[S]. This is the general problem afnit-
ing two version sets represented@gPfiles; in our case, we want to construct
F' =F'[gJUF[~S.

A trivial mechanism to generafe’ from F'[§ andF[~9] is to concatenate
F'[g andF[~95], each in its specific context. The fil€ would then have the
structure:

#if S

. contents oF'[§ ...
#else

. contentsofF[~ § ...
#endif

The advantage of this mechanism is its simplicity. Its disadvantage is that each
version is stored separately, wasting space. What we would prefer is a representa-
tion where only thelifferencesdetweerF'[|§ andF[~9 are enclosed byif S

... #endif . For this purpose, we need a mechanism that generates a compact
representation by determining the differences between versions, respeetng
directives.
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In this section, we present an algorithm that generates the union of two version
setsF[g andF[T], whereSandT are disjoint—that isSNT = 1, SC ~T,
andT C ~Shold. The basic idea is to compare the two files textually, using
a DIFF algorithm ignoring allCPPdirectives. In the resulting unioR[SLI T],
text parts occurring only ifr[§ or F[T] are governed by or T, respectively;
common parts are governed Byl T. The more similaF [ andF[T] are, the
more commonalities will be detected byFF, and the smaller the representation
of F[SLIT] will be.

As an example of how this works, consider ffextexample from figure 17.2
on page 199. Let us assume we change the waedding in Tex{A;] to usage ,
giving Text[A2] as shown in figure 17.3.

Text[B7] Text[[p]
. We
|
#if 1d1 e
#error
. demonstrate
#endif selse
we explain
show #endif
the usage .
L the encoding
of revisions. .
of revisions.

Figure 17.3: Changing a version subset

For theDIFF run, we use the internal representation witheaPdirectives,
where each line is tagged with its features, shown in figure 17.4.

Text
Text'[A] - Ed
- Line Features
Line Features
We b
We AV YRVAYY
demonstrate hMA;
show AV YRVAYY .
explain by
the usage NN )
- the encoding )
of revisions. NN .
of revisions. b

Figure 17.4: Version subsets in internal representation

The DIFF algorithm runs on the lines d¥[S andF[T] alone, ignoring the
respective features. For each liBFF determines whether it occurs K[S, in
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F[T], orin both. The line features are obtained according to definition 17.1:

Definition 17.1 OIFF line features) In a representation of [SLT] generated
from F[§ andF[T], whereSandT are disjoint, the features of each line are
determined as follows.

1. LetS C Shbe the features of the line iR[S]. If the line does not occur
inF[g,letS = L.

2. Likewise, lefT' C T be the features of the line IR[T]. If the line does not
occurinF[T], letT' = L.

3. The new features of the line are determine&asT’.
m]

All lines originally contained inF[§ only are thus governed witB C S;
likewise, lines originally contained iR [§ only are governed by’ C T. The
following proposition ensures that the representation given by definition 17.1 is
correct.

Proposition 17.2 Let F' = F[SUT] be a representation for the union of two ver-
sion set$=[§ andF[T], as described above, and wh&andT are disjoint. Then,

FIS=FIY FRS=FT FT]=FT FRT=FS

hold.

Proor.Without loss of generality, we show that[§ = F'[~T] = F[S] holds. Let
U = SUuT’ be the features of a line containedf. BothS C SC ~T and
T'C T C ~Sare formed according to definition 17.1. The te8mepresents the
original features of the line i [g; if the line did not occur inF[g, we have
S=1.

1. The selectiorF’[S] determines the new features of this linelas1 S =
(SNYu((T'ng=Sul=S8.

2. The selectior’[~T] returns the new featurésmn ~T = (STI~T)U (T'M
~T)=SuUl=S.

We see that the original line featur8semain unchanged; the line is contained in
either all ofF[S], F'[§, andF'[~T] (if S # L holds) or in none of them (8 = L
holds). HenceF [ = F'[S] = F'[~T] holds, which was to be shown. o
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Text'[Az] U Text[ (]
Line Features

Original Reduced
We hU(ApMA) | T
show A IRYAY] Y
the usage AV IRVAY] Ay
demonstrate b A hMA;
explain by Oy
the encoding ) b
of revisions. hu(ApMAg) | T

Figure 17.5: Determining new line features

In our example, runnin®IFF and applying definition 17.1 on the facing page
yields the output shown in figure 17.5. The central column shows the features
determined according to the rules above.

The feature terms of the individual lines can be simplified with respect to the
features of the entire file. In our case, the features of the file/graA;) U b =
(DU L) N (A1 UL) = TN(ALU D) = Ay — Az The simplifications for the line
features follow the general scheme

(SNT)M(S—T)=SMN(S—>T) (17.1)
(SUT)M(S=T)=TnN(S=T) , (17.2)

leading to the simplified feature terms shown in the right column of figure 17.5.

The resultingCPPrepresentation ofext = Text[Az] L Tex{[] is shown in
figure 17.6 on the following page, together with its two sourtest[A;] and
Tex{].

17.3 Creating a CPP Representation

TheCPPrepresentation of the re-united version set, as shown in figure 17.6 on the
next page, is not the only possible one. By interchanging text blocks and using
otherCPPdirectives, a multitude of representations is possible. This is illustrated
in figure 17.7 on page 205: we see three alteric®erepresentations for the
version set in figure 17.6.

Since the text blocks can be rearranged in an arbitrary manner, there is no
canonicalCPPrepresentation. Moreover, determining the smallest possibie
representation is probablyr-complete, as it is closely related to finding the
smallest possible representation of a formula in first-order logic.
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Text/
#if d2 && !d1
#error
#endif
Text [Az] TeXt[ Dz] We
. We #if d2
I
Mt 1d1 #if d1 show
#error
. demonstrate the usage
#endif .
#else #elif d1
We .
explain demonstrate
show .
#endif #else
the usage . .
L the encoding explain
of revisions. e .
of revisions. #endif
#if 1d2
the encoding
#endif
of revisions.

Figure 17.6:CPPrepresentation after a subset change

For generating thePPrepresentation ifCE, we have chosen not to determine
the smallest possible representation. Instezielattempts to generate appropriate
CPPdirectives by comparing the feature terms of subsequent text blocks.

17.3.1 An Algorithm to Create Nested CPP Directives

The easiest algorithm to create&Prepresentation is to enclose each text block
governed by a feature terinin #if T ... #endif . The first refinement of this
representation is to generatimgstedCPPdirectives by maintaining a stack of
feature terms where we save the curm@mtexts—that is, the currently governing
feature terms. Here is a simple algorithm realizing this approach.

Algorithm 17.3 (Creating nestedCPP directives) To write a version set iCPP
format, usingCPP#if directives, use the following algorithm.

The algorithm consists of three pieces. The used variables are declared in
(Declarationsand initialized in(Initialization). TheCPPrepresentation is written
in (Write body).

(Algorithm 17.3 =
(Declarations
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Text/ Text/ Text/

#if d2 && !d1 #if d2 && !d1 #if d2 && !d1
#error #error #error
#endif #endif #endif

We We We

#if d2 #if d2 #if 1d2

show show #if 1d1

the usage the usage explain

#elif d1 #else #else
demonstrate #if d1 demonstrate
#else demonstrate #endif
explain #else the encoding
#endif explain #else

#if 1d2 #endif show

the encoding the encoding the usage
#endif #endif #endif

of revisions. of revisions. of revisions.

Figure 17.7: Alternat€PPrepresentations

(Initialization)
(Write body)

The algorithm requires two variables.

(Declarations =
Let the feature term@ be the current context.
Let CC be a stack of contexts.

These variables are initialized as follows.

(Initialization) =
InitializeC:=T.
Initialize CC with the empty stack.

The file body is written via a loop across all text blocks.

(Write body) =
for all text blocksdo
(Write block)
od
(Close body
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For each text block to be written, 18t be its governing feature term. We must
now generat€PPdirectives that change the context fr@hto T.

e If T =C holds, the text is simply written.

e Otherwise, ifT C C holds, save the current context on the stack, and write
an#if  Sdirective such that = CriSholds.

e Otherwise T [Z C), write an#endif directive, restore the conte&tfrom
CC, and retry writing the text block with the new context.

In a more structured way, this is expressed as follows:

(Write blocky =
Let T be the governing feature term of the current text block.
while T Z Cdo
(Write #endif
od
if T#CAT CCthen
(Write #if)
fi
(Write text

If T = C holds, write noCPPdirective at all.

(Write text =
Write the text block without any directive.

Otherwise, ifT C C holds, we write amif directive. The old context is saved on
the stackCC.

(Write #if) =
Let SO T be a feature term such that= Cr1Sholds.
Write #if S,
SaveC onCC.
Set the contextt€:=CMnS.

Otherwise, we must use aendif directive to exit the current context. This is
done until we reach a suitable context. Since the outermost contéxtssch a
context is always reached.

(Write #endif =
Write #endif
RestoreC from CC, discarding it.

Eventually, antendif is written for each stacked context.



17.3 Creating aCPP Representation 207

(Close body =
while CCis hon-emptydo
(Write #endi}

17.3.2 Generatingtelse and #elif Directives

The actual algorithm used iICE is somewhat more complex: it also generates
#else and#elif directives. For this purpose, the algorithm maintains a current
else-expressiok as well as a stackE of else-expressions. Another refinement
found in this algorithm is the handling of overall file featuFes

Algorithm 17.4 (Creating full CPP directives) To create aCPP representation
of a version set, using the full set 6PPdirectives, use the following algorithm.
The algorithm consists of four pieces. The used variables are declared in
(Declarationsand initialized in(Initialization). TheCPPrepresentation is written
in (Write headerand(Write body).

(Algorithm 17.4 =
(Declarationy
(Initialization)
(Write header
(Write body)

The algorithm requires five variables.

(Declarations =
Let the feature ternr be the features of the file.
Let the feature terr@ be the current context.
Let the feature ternk be the current else-expression.
Let CC be a stack of contexts.
Let EE be a stack of else-expressions.

These variables are initialized as follows.

(Initialization) =
Initialize F with the features of the file.
Initialize C: = F.
Initialize E: = 1.
Initialize CC andEE with the empty stack.

The file version is identified using aterror  directive.
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(Write header=
if F# T then
Write #if ~F.
Write #error
Write #endif .
fi

The file body is written via a loop across all text blocks.

(Write body) =
for all text blocksdo
(Write block)
od
(Close body

The variableT holds the feature term of the current block; the varigbleolds
the current context. Before writing the block, we insert appropgd&tedirectives
such that the new context beconies

(Write blocky =
Let T’ be the governing feature term of the current text block.
LetT =T'MF.
LetC’ be the top element &2C, or L if CCis empty.
while TIZCAT ZC ME do
(Write #endi}
od
if T #Cthen
if T C Cthen
(Write #if)
elsif T =C'ME then
(Write #else
elsif T C C' ME then
(Write #elif)
fi
fi
(Write text

If T =C holds, we do not need argPPdirective.

(Write tex} =
Write the text block without any directive.
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Otherwise, ifT C C holds, we write ar#if directive. The old context and else-
expressions are saved on the stack; the else-expression is the complement of the
#if -expression.

(Write #if) =
Let SO T be a feature term such that= Cr1Sholds.
Write #if S
SaveC onCC.
SaveE onEE.
Set the contextt€:=CnS.
Set the else-expressionfo= ~S.

Otherwise, ifT = C' M E holds, we can write a#else directive. we prohibit
multiple #else directives by setting to L,

(Write #else =
Write #else .
Set the context t€:= C' ME.
Set the else-expressionfo= 1.

Otherwise, ifT C C' M E holds, we write artelif  directive.

(Write #elif) =
Let SO T be a feature term such that= C' ME M Sholds.
Write #elif S

Set the contextt€:=C'MEMS.
Set the else-expressionfo= EM~S.

Otherwise, we must use aendif directive to exit the current context. This is
done until we reach a suitable context.

(Write #endif =
Write #endif .
RestoreE from EE, discarding it.
RestoreC from CC, discarding it.

When the last text block is processed, we must writéanlif for each remain-
ing #if .
(Close body =
while CCis non-emptydo
(Write #endif
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17.3.3 An Example Run

We illustrate the use of algorithm 17.4 by applying it to the version set shown in
figure 17.5 on page 203.

. (Initialization) The features of the file

areF =Ay — A1,

e The context is initialized to
C=F=»40— .

e The else-expression is initialized
toE:= 1.

e CCandEE are initialized with the
empty stack.

. (Write header} # T holds. The

complement of is
~F = ~(|:|2 I_IAl) =N,

11.

12.
13.
14.

. (Try #endif)T Z C does not hold.
10.

(Try equality)T = C holds.

e the usage is written.

(Write block) The text igemonstrate ;
T =0LMNALMF =L MA; holds. The
outer context i€/ = Ay — A;.

(Try #endif)T Z C' M E does not hold.
(Try #if) T C C does not hold.
(Try #else)l =C'ME does not hold.

] ) 15. (Try #elif) T £ C'ME = [}, holds;
o #if d2 && !d1 is written. S=A,.
e #error is written. . . .
) ) e #elif d1 is written.
e #endif is written.

. (Write block) The text isve

T =TnMNF =A2 — Az holds.

. (Try equality)T = C holds.

e Weis written.

. (Write block) The text ishow;

T =A>1F =AM A, holds.

6. (Try equality)T = C does not hold.
7. (Try #if) T C C holds;S= Ap.

o #f d2 is written.

e show is written.

16.

17.
18.
19.

e demonstrate is written.

e The context becomes
C:=C'MENS=[LMNA;.

e The else-expression becomes
E:=EnN~S=Thnh.

(Write block) The text igxplain
T =01 NMF =0 N holds. The outer
context isC' = Ap — A;.

(Try #endif)T Z C' M E does not hold.
(Try equality)T = C does not hold.
(Try #if) T C C does not hold.

e The contexC=A, — Ajissaved  20. (Try#elseJl =C'ME = [, M0 holds.

onCC. . .
. ) e f#else is written.

e The else-expressioh = L is o
saved orEE. e explain is written.

e The context becomes e The context becomes
C:=CnS=0,MA;. C=0nh.

e The else-expression becomes ¢ The else-expression becomes
E:=~S=1[h. E:=1.

8. (Write block) The text ishe usage ;

T =021 F = AyA; holds.

21.

(Write block) The text is
the encoding ; T =[L1MF = [} holds.
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22. (Try #endif)T Z C holds andl Z C'ME 24. (Write block) The text is

holds. of revisions. i T=TMAOF =A2 — A1

o #ondif is written holds. The outer context is
: ’ C' =0y = A
e Eisrestored td:= L. 25 (Trv #endifiT Z C holds andr  C' ME
o Cisrestored t&€C: = Ay — A;. ' éolréls endif)T iZ C holds andr i C'M
e CCandEE become the empty
stack again. e #endif is written.
23. (Try #if) T C C holds;S= (. e Eisrestored t&E: = L.

o #if 1d2 s written. e Cisrestored t€:= Ay — A;.

* the encoding Is written. ¢ CCandEEbecome the empty

e The contexC =A; — A is saved stack again.
onCC.
e The else-expressioh = L is 26. (Try equality)T = C holds.
saved orEE. ) .
e of revisions. IS written.
e The context becomes
C:=Cns="0p. 27. (Close body) The stad&C is empty; no
e The else-expression becomes more#endif directives need to be
E:=~S=A5. written.

The complete output is shown on the right side of figure 17.6 on page 204.

17.3.4 Efficiency

Algorithm 17.4 requires some deduction steps, notably the decision of subsump-
tion. This can be done efficiently usimgduce Using (8.4), (14.20) and (14.16),
we have:

TCU & ~UNT=1
& reducé~U, T)MT =1
& ~reducgU, T)NMT =1 (17.3)

If U andT are simple, this problem is equivalent to
TCU < reducéU, T)=T | (17.4)

which requires quasi-linear time, according to corollary 14.12 on page 172.
The feature tern8 3 T required in{Write #if) and (Write #elify can also be
obtained viaeduce In (Write #if), we haveT C C, andSmust satisfyT =CMS,
(Note thatS=T is a trivial choice forS). SinceT C C holds, we haved =CnT =
CnrireducéT,C), following (14.20). HenceS= reducdT,C) is a valid choice
for S, The same applies tWrite #elif), where we obtais = reducéT,C' ME).
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Even better performance is achieved by saving the valu&sacfoss selec-
tions and unions. INCE, each text block is associated with a setosfPdirec-
tives and possible values f& Upon parsing, this set is initialized to contain
the CPPdirective separating this text block from its predecessor. Uniting version
sets unites the two sets 6PPdirectives for each text block; upon selection, the
termsSare reduced according to the selection term.

When writing a version set i@PPrepresentationCE first determines whether
using one of the savedrPPdirectives leads to the desired governing expression;
if yes, theCPPdirective is written and the remaining set members are discarded.
Besides a maximum of performance, notably with orthogonal selection terms, this
helps maintaining the structure of the origic#Pfile as much as possible.

TheCPPdirectives generated bgE are to be read and understood by humans.
Beyond a certain term complexity, the effort for deducing an easily readable rep-
resentation is wasted. Hend€E can be instructed to disable the generation of
specialCPPdirectives as soon as the terms exceed a specific length. Insl&ad,
uses#if ... #endif directives only, withouttelse , #elif , and further nested
directives. Writing this format does not require any deduction steps, and is easily
processed again bgE.

17.4 File Operations on Version Sets

Based on the selection and changing of version sets, we can nhow summarize the
effects of file operations on version sets.

Read. Read access (9 is accomplished by selectirgfrom F, as discussed
in section 17.1.

Write. Write access t&-[S—that is, changing [ to F'[S—is implemented by
generatind=’ = F[~S LUF'[S, as shown in section 17.2.

Create. CreatingF[S], whereF was non-existent before, createsontaining an
#error  directive governed byS, such thaf [~S] is non-accessible.

Remove. RemovingF S augment$= with an#error  directive governed b,
such that onlyF[~§) is accessible.

We see that thePPfile representation of version sets allows users to create,
read, change, and remove version sets just like ordinary files (that is, singleton
version sets), while still only the differences between versions are stored.



17.5 Implementation Notes 213

17.5 Implementation Notes

The creation of compadPPrepresentations, as discussed in section 17.2, was
realized by Lars Diling [Dlin94], using the freely availableNu DIFF imple-
mentation. For maximum performance, thé&=F program is not invoked as a
separate process, but directly linked withe.

Writing of version sets is based on algorithm 17.4 on page 207, extended with
some additional optimizations not discussed hé®& provides an interface for
developers wishing to control tt@&Poutput format.

The inference engine used iGE implements Smolka’s feature unification
algorithm. It realizes all of the optimization methods discussed in chapter 14, as
well as the implication reductions (17.1) and (17.2).

The inference engine provides two entry pointeducgS T) realizes the
reducefunction from definition 14.10 on page 170; this assumes $watd T
are already consistentsolvéT) determines consistency af, using Smolka’s
feature unification. Both rely on each othsalveusesreduceto reduce the size
of subproblemsreducecalls solveto determine the consistency of non-simple
subexpressions. For best performance, the inference engine caches deduction
results such that frequent problems are solved only once.

Smolka’s feature unification, as described in [Sm092], was implemented by
Marc Ziehmann [Zie93].

17.6 Conclusion

ICE provides mechanisms to select and change arbitrary version subsets, using the
CPPrepresentation. Version sets can be accessed and manipulated like ordinary
files, making version sets first-class objects irsam-aware environment, while

still only the differences between versions are computed and stored.

Whoever shouted the loudest about their particular feature would usually get it in.
If the feature was some new 3-D chart or some very ‘cool’ thing, that would get in.
And if it wasn’t cool but certainly was important, nobody would rally behind it ...

So it was working out not to be a process we felt very comfortable about

for designing our new versions.

So we decided, “Well, let's kind of invert the process a little bit.

Let’s not even think about features.”

— MIKE CONTE
in: MICHAEL A. CUSUMANO and RICHARD W. SELBY, Microsoft Secrets






Chapter 18

A Shell for Version Set Access

Based on the file operations, as discussed in section 17.4, we have implemented
a library calledLIBICE that realizes file operations on version set€fPrepre-
sentation; arbitrary version sets can be created, read, written, and removed. To
experiment with these mechanisms, we have realized a sgopienand shelbn

top of LIBICE that simulates transparent version set access for arbitrary files. The
name of the shell isCICLE (for ICE integrated command line engine).

18.1 Reading Version Sets

Basically,ICICLE is a command shell roughly complying to th@SiXshell stan-
dard. Users can invoke programs by entering the program name, possibly fol-
lowed by program arguments:

(icicle) more sample.txt
#if SAMPLE

This is a sample text.
#else

This is a simple text.
#endif

Here,(icicle) is thelCICLE prompt,more sample.txt is the user input, and
#ifdef ... #endif is the output of thenore command. Thenore command
was invoked withsample.txt ~ as argument; it simply prints the file given as
argument on standard output.

The special feature d€ICLE is that it allows transparent version set access.
To access a fil€ in the versiorS, users write=[S], using theCPPrepresentation
for feature terms. Hence, users can accesSM¢PLEversion ofsample.txt

215
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(icicle) more sample.txt{SAMPLE]
This is a sample text.

as well as its complement:

(icicle) more sample.txt[!SAMPLE]
This is a simple text.

This transparent access is realized as follows:

1. For each wordrF[S), whereF is a file name an&is a validCPPexpression,
create a file namell[S containing the selectio of the fileF.

2. Run the specified command.
3. Remove all file§[5.

Hence, in our example, two temporary files nansathple.txt{SAMPLE]
and sample.txt[!SAMPLE] are created beformore is invoked. Aftermore
has finished, they are removed.

18.2 Writing Version Sets

Besides reading of version set€ICLE also allows to change version sets, as
discussed in section 17.2. Here is an example:

(icicle) cat > sample.txt{fSAMPLE]
This is a text sample.

"D

(icicle) more sample.txt{SAMPLE]
This is a text sample.

(icicle) more sample.txt

#if SAMPLE

This is a text sample.

#else

This is a simple text.

#endif

Thecat command copies the standard input to standard outputs theracter
redirects this output to the given file. The standard input is typed in by the user
and finished using an end-of-input charact&r,(Control-D). The contents of
sample.txt{SAMPLE] becomerThis is a text sample.

Writing version sets is realized by extending transparent access as follows:
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3.
4.

. For each wordr [S], whereF is a file name an&is a validCPPexpression,

create a file name# [ containing the selectio8 of the fileF.

. Run the specified command.

If one of the files=[§ has changed t6'[S], changd- to F' = F[~SJUF'[S].

Remove all files[g.

18.3 Removing Version Sets

ICICLE also allows to remove version sets. Here is another example:

(icicle) more sample.txt

#if SAMPLE

This is a text sample.

#else

This is a simple text.

#endif

(icicle) rm sample.txt{SAMPLE]

(icicle) more sample.txt{SAMPLE]
sample.txtfSAMPLE]: No such file or directory

(icicle) more sample.txt
#if ISAMPLE

#error

#else

This is a text sample.
#endif

Therm command removes the file given as its argument. Consequenttyiptiee

command cannot find the file and issues an error message. We see that issu-

ing therm command inICICLE causes atterror directive to be inserted into
sample.txt , identifying the non-existent versions.

Removing version sets is realized by extending transparent access as follows:

1. For each wordF[S], whereF is a file name an&is a validCPPexpression,

2.

create a file nameB[S] containing the selectio8 of the fileF.

If the selectiorB does not exist, do not create the file.

3. Run the specified command.

4.

If one of the file$~[S] has changed t6'[S], changd- toF' = F[~SJUF'[S.
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5. If one of the filed=[S has been removed, chanigeo F' = F[~S].

6. Remove all file$-[g.

18.4 Multi-Version Merging

The CPPrepresentation used IGE also inspired a simple textual merging algo-
rithm that merges an arbitrary number of versions. Tdie a version set with
TLCT,TL,CT,...,T, C T beingn version subsets to be merged. Let us assume
that allT; were created independently frafrsuch that alll; are pairwise disjoint,
ie.Vi,je{L...,n}(TinT; = 1) holds!

To generate a merged version from thePrepresentation of , we proceed
as follows. The merged versiol, denoted a§’' = Ty X To X --- X Ty, must
include code pieces that were added in @angnd exclude code pieces that were
deleted in anyl;. Each code piece governed bgaPexpressiorC is included if
CLC TiUT,U---UT, holds; inT’, the governing expression is simplified (partially
evaluated) respective to all. Otherwise, ifJi(C C ~T;) holds, the code piece
governed byC was deleted in at least offe(and unchanged in all; with j # i)
and thus is not included ifi’. Everything else stays unchanged.

A minimum distance between parallel changes must be preserved in order to
identify merging conflicts. Between any two code pieces governdd bypdC”
both being a subset of differefiit sets, a separating code piece governedby
must reside such that the following holds. Formally,Tiebe the unique element
from {T1,...,Ta} such thatC’' C T;; similarly, Ti» is the unique element from
{T1,...,Tn} such thaC"” C Ti». Then,D Z Ty AD & Ti» must hold. If such
does not exist, or if the length &f is below a certain minimal distanc&’, andC”
are in conflict with each other.

As an example, consider thiy.c file in figure 18.1, where the version sub-
setsTy = [userlisa] andT, = [usertom] are merged. Code piedé is included,
because its governing expressimser lisa] is equal toTy; code pieceéA is ex-
cluded because its governing expression is equalfto Code piec&€’ would be
included, as it is ifly; but as it is immediately followed b@”, whose governing
expression is equal to the differéBtsubset, the two changes are in conflict with
each other.

For conveniencelCE flags this section still being a subset ofTawith a
“Jl >< CONFLICT ” comment; only the code pied@ can safely be removed as
it is a subset of both-T; and~T,. At the end, the code pie¢eis included, since

10therwise, replace the non-disjoint p&rT; by Tc = TiMT,.
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tty.c]] tty.c[user lisa X user.tom
#if user == lisa
A A
#else
A
#endif
B B
#if user == lisa #if user == lisa // >< CONFLICT
c’ C
#elif user == tom #else
CH CH
#else #endif
C
#endif
D D
#if user == tom && 0s == unix #f os == unix
E E
#endif #endif

Figure 18.1: Merging of version sets

it is separated from the conflict by code pid2gthe expression governing code
pieceE is simplified respective tdy.

The ICICLE shell provides transparent access to merged version sets; the
operator is represented by the speCiaPoperator-<. As an example, the€ICLE
command

(icicle) more tty.cluser == lisa >< user == tom]

displays the merge afy.cluser == lisa] andtty.c[user == tom] on
standard output.

18.5 Handling Arithmetic Constraints

To provide some basic support for arithmetiePexpressiondCE realizepartial
evaluationof CPPexpressions.

Using arithmetic constraints for both selection and identification leads to un-
decidability, as discussed in section 7.3. Some special cases may be recognized,
though:

Partial evaluation of arithmetic expressions. ConstantCPParithmetic expres-
sions are evaluated according to their C semantics [ISO90] and replaced
by the resulting value. Arithmetic expressions involving identifiers are re-
placed by feature values, if applicable. For instanceRBexpression like
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T == 200 && (T >= 100) || C == T)
evaluates to

T == 200
sinceT >= 100 evaluates to non-zero—that i,

Solving inequalities. ThelCE inference engine contains an arithmetic constraint
checker using the Simplex Method. The simplex method allowske
inference engine to recognize inconsistencies in a conjunction of simple
inequalities. For instance, the arithmetic expression

T <200 && T - 1 > 199
can be recognized as inconsistent byt inference engine.

Partial evaluation of arithmetic expressions as well as arithmetic constraint
solving allowICE to handle an important subset of arithmetic constraints. Both
mechanisms are implemented within the solving of feature clauses in Smolka’s
feature unification; all three methods are applied in turn on the constraint set until
the constraint set is unchanged.

18.6 More ICICLE Features

Besides basic shell functions and transparent version ackH€sE supports
more than 250 commands to contfGE functionality. ICICLE also contains fa-
cilities to define new commands as scripts of other commands. All common shell
mechanisms like variables and control structures are available, including an inter-
active line editor with completion of file names a@&Pexpressions. However,

by far most of these facilities are used for testing and debugging, and are not
intended for end users.

18.7 Implementation Notes

Multi-version merging was implemented by Andreas Mende [Men96].  Arith-
metic constraint solving was realized by Christina Trenkner [Tre96].

18.8 Conclusion

On version sets representedGaPfiles, all elementary file operations like read-
ing, writing, creation, or removal are defined. These basic access methods are
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available inLIBICE, theICE library; thelCICLE command shell simulates trans-
parent version set access through temporary files. Version sets can be merged
using a simple textual algorithm, integrating changes in multi-version representa-
tions. These elementary file operations, as realiz&tBICE andICICLE, consti-

tute the base of an entire virtual file system, as discussed in chapter 19.

Feature: n. 1. A good property or behavior.

2. An intended property or behavior.

3. A surprising property or behavior.

4. A property or behavior that is gratuitous or unnecessary.

5. A property or behavior that was put in to help someone else
but that happens to be in your way.

6. A bug that has been documented.

— ERIC RAYMOND, The Jargon File






Chapter 19

The Featured File System

The featured file systenfFES realizes transparent version set access in arbitrary
environments. In addition to versioned file access, as demonstrated in chapter 17,
it supports versioned directories and thus versioning of entire file systems. Di-
rectory versions confine the versions of the contained files and subdirectories.
Directory versions can thus be used as workspaces; users can change workspaces
like they change directories. Additional facilities like virtual subdirectories fa-
cilitate the interactive and incremental exploration of the configuration space, as
implemented in th&KATE configuration browser.

19.1 A SCM Primitives Layer

The featured file systenfFFS) is a virtual file system that realizes th&s primi-

tives layer—that is, access to version sets and integration into software develop-
ment environments. ComparedI@CLE andLIBICE, theFFShas the following
advantages:

Version set accessBesides versioned file access, as realizd@i@LE andLIB-
ICE, the FFS provides versioned access diectories. Directory versions
confine the versions of all contained files, and may thus be used to real-
ize workspacesusers can change their workspace just like changing di-
rectories. All file system operations, including the creation of directories,
permission changes, and file mode changes, are versioned.

Exploration of the configuration space. The FFSrepresents non-singleton ver-
sion sets aglirectoriescontaining the individual versions. This provides
accidental access to non-singleton version sets. By adding or removing

223
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more version specifications, users can explore the configuration space in-
teractively.

Environment integration. The FFSis realized as a true file system, accessed
through the operating system interface. Existing programs need neither be
changed, nor must they be invoked in a special manner, nor must they be
linked with a special library.

19.2 \Versioned Directories

Versioned files and versioned directories, as supported byRRecover the state

and changes of the entire file system—that is, the whole configuration universe.
Basically, a versioned directory is stored and accessed like ordinary versioned
files are, using th€PPrepresentation. As an example, figure 19.1 shows a user-
readable representation of a versioned directory. (AF@itself uses a more
efficient binary format.) We see that thecle  andlibice  directories were
added in a chang®, which also removed thié directory.

-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
#if d1

drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
#endif

drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
#if d2

drwxrwsr-x 3 zeller 7168 Jun 10 15:15 libice
#elif d1

drwxr-sr-x 3 zeller 7168 Jun 10 15:15 libice
#else

drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib
#endif

Figure 19.1: A versioned directory

The later changd; is more subtle: the access mode of khiee  directory
was changed fronmwxr-sr-x  to rwxrwsr-x , making it writable by a group.

Users may now access individual versions of this directory, by appending a
version specificatioffy to the directory name, just as with ordinary files. A typ-
ical interaction is shown in figure 19.2 on the next page. Floharacter is the
UNIX shell prompt. TheJNIX commands -1 lists the contents of the direc-
tories given as its arguments. The single dgt stands for the current direc-
tory; the directory namgd2] is the current directory in versiofy,. To avoid
shell-specific interpretation of brackets, we enclose the directory name in quotes.
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We see thats ".[d2]" shows theA; version of the current directory, while
Is ".[ld1]" shows thdl; version.
$Is -l ".[d2]"
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxrwsr-x 3 zeller 7168 Jun 10 15:15 libice
$ Is -l "[ld1]"
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib
$ls -l .
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxr-sr-x 3 zeller 7168 Jun 10 15:15 libice
drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib

Figure 19.2: Three views of a versioned directory

The final view,Is . , shows all versions of the current directory. Since the
Is command is not aware of multi-version directories, every existing directory
is listed, regardless of its specific version; file modes, sizes, and times are set up
appropriately:

Instead of explicit version access, as illustrated in figure IFF8also sup-
ports implicit version access through the current directory. Side¢ is a di-
rectory version as well, users can make it their current directory, usingNhe
cd command. Hencegd ".[d2]" followed byls . has the same effect as
Is ".[d2]" , with the difference that all following commands referencedhe
version of the current directory as well—until the directory is changed again.

IHere are the details. The access mode of a version set is the lagipabf the modes of all
its individual versions—that is, the least permissive mode. The size of a version set is the maximum
size of its individual versions. The owner of a version set is the owner of the individual versions, or
nobody , if ambiguous. The access time of a version set is the most recent access time of the individual
versions.
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19.3 Version Confinements

Having a versioned directory in the current path not only affects this particular
directory version. A directory version also confines the versions of all files and
directories contained within that directory. Formally, if a versioned diredjry
is part of the current path, the directory versioaffects all contents of the direc-
tory, including subdirectories and all files contained therein; any file vefsjgh
in D[T] will be implicitly read asF[SM1T]. Hence, after changing to the directory
versionAy, all files and directories are visible in théig version only.

This property is useful for setting wporkspacesas discussed in section 13.1.
For instance, entering théNIX command

$ cd "Juser == lisa && current]"

confines the versions of all files and directories in the current directory and below
to [userlisa, current ~0]—that is, the current version of Lisa’s workspace. All
changes made in this workspace affect only Lisa’s current version.

As in ordinary file systems, the directory name " refers to the enclosing
directory—the second last component from the current path. For example, the

pathtestdir/.[user != tom]/.. is equivalent totestdir . Hence, Lisa
may issue th&NIX command
$cd ..

to exit her workspace again and to see all versions at once.

As illustrated in figure 19.3 on the facing page, such directory changes may be
also be performed incrementally, subsequently narrowing the configuration space
as more and more features are specified.

For user convenience, theFSinterprets a version specificatiofi g ” like
“.[ §". Hence, entering

$ Is -l "[user == lisa]/[tested]"
has the same effect as

$ Is -l "[user == lisa]/.[tested]"
which in turn is equivalent to

$ Is - "[user == lisa && tested]"

Whenever a change is made within a versioned directory, all rules for opera-
tions in workspaces, as defined in section 13.1.2, apply. Hence, no change made
within a directory version is visible in the complement of this version.
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./|os ~dog ./[os unix]

ku
Ju

2] o] ]

./[usertom] ./|user.tom] /[os ~dog ./[user.tom]/[os unix]

|
l

Figure 19.3: Narrowing the configuration space inEFs

19.4 \Version Shortcuts

Specifying the current version as part of the path name has the advantage of sup-
porting both implicit and explicit version access. Arbitrary version sets can be
accessed from any program; by changing the directory version, entire file systems
can be accessed in a specific version without any additional version specifications.
This is superior to approaches where the current version is specified as part of the
process environment (since the environment must be interpreted by special run-
time libraries) or as part of the user’s file system (since this implies a state which
must be changed explictly).

The drawback is that the file names used byRRgare quite uncommon—for
operating systems and programs. Users must be aware of possible problems.

Operating system caveatsln theUNIX operating system, the slaslis reserved
as path separator—one cannot use arithemtic expressions involving integer
division. In MacOS the Macintosh operating system, colanare used
instead—one cannot enter feature terms inABEII representation. In the
DOS operating system, all is lost, as it supports only eleven characters as
file names.

Program caveats. In the UNIX command shell, characters likg| ,*, ?, !, or[
have a special interpretation and must be quoted. Many shell scripts are not
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protected against file names containing space and quote characters. Users
are frequently unfamiliar with the shell quoting mechanisms.

There are three issues addressing these problems. First, characterariike
: can easily be avoided. Second, as graphical user interfaces become more and
more common, so are the possibilities to specify arbitrary file names. Macintosh
users, for instance, have no concept of a command shell and of characters with
a specific interpretation. Existing shells can be easily adaptegF®usage by
leaving characters within square brackets uninterpretedidik& E does. Third,
the FFS supportssymbolic linksthat allow users to specify ordinary directory
names for version sets—so-calleglrsion shortcutsAs an example, consider the
setting in figure 19.4:

$ Is -1 workspaces

drwxr-sr-x 1 lisa 1024 Jun 8 1996
lisa -> .[user == lisa && current]

drwxr-sr-x 4 tom 1024 Jun 10 15:15
tom -> .Juser == tom && current]

drwxr-sr-x 3 john 1024 May 6 15:19
john -> .[user == john && current]

Figure 19.4: Symbolic links to workspaces

A symbolic link F; —+ F» makesF; an aliasfor F,; wheneverr; is part of a
path nameF; is substituted. In our case, Lisa can simply enter

$ cd workspaces/lisa
which is a convenient replacement for
$ cd "workspaces[user == lisa && current]"

The directory namevorkspaces/lisa may even be defined as Lisa’s home di-
rectory, such that Lisa automatically enters her current workspace upon logging
in. No special file names are ever required, unless someone wants to access vari-
ants or determine the differences between versions by examining the entire ver-
sion set. Of course, symbolic links are versioned just like other parts of the file
system, such that each user may maintain a set of individual links for frequently
accessed versions.
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19.5 Exploring the Version Space
19.5.1 Virtual Directories

Since few tools can interpret version setSPPrepresentation, theFStakes pre-
cautions against multiple file versions being accessed as single items. The basic
idea is to represent non-singleton version setsr&gal directoriescontaining the
individual versions. These versions are listed as possible version specifications,
narrowing the version space. As an example, thetddgs.txt , occurring in
multiple versions, is listed as

$lIs -l .

drwxr-sr-x 12 zeller 1024 Jun 10 14:20 tasks.txt
$ Is tasks.txt

[user == john] [{(user == john)]

[user == lisa] [Y(user == lisa)]

[user == tom] [{(user == tom)]

where the files

tasks.txt/[user == john]
tasks.txt/[user == lisa]
tasks.txt/[user == tom]

are the individual versions @disks.txt

Each complement likeasks.txt/[!(user == john)] is again a direc-
tory, since two choices remain. For instance, listing the entries of the subdirectory
tasks.txt/[!(user == john)] yields:

$ Is "tasks.txt/[!(user == john)]"
[user == lisa] [Y(user == lisa)]
[user == tom] [{(user == tom)]
where all entries are files, since they are singleton. Note that the file
tasks.txt/[!(user == john))/[user == lisa]
is identical to
tasks.txt/[!(user == john)]/[!(user == tom)] ,
and could also be accessed as

tasks.txtfuser == lisa] .
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Figure 19.5: Using virtual subdirectories to select configurations

How do we obtain these subdirectories? Eebe a version set i€PPrep-
resentation to be processed by #rS server. TheCPPserver scang for CPP
directives; if none are found, is singleton and thus presented as file. Otherwise,
F is presented as a directory.

Each feature/value combinatidh= f:Sor T = f1 found in governingCPP
expressions results in two entri€saand~T in the directoryF. These entries are
again files, if singleton, and virtual directories, otherwise.

In figure 19.5, we see theDD debugger accessing the versions ofstlvad
file discussed in section 17.1.1. The central window is a file system browser
allowing the user to choose files and directories. In the upper field, the user has
entered dile filter specifying the files to be shown; the current pattdoad/*
shows all files in thexload directory. In our casexload is a multi-version
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file; the FFSrepresents it as a virtual directory with possiblePexpressions as
entries shown in the list below. Although neiti@EDD nor its file selection dialog

are aware of versions, the user can select an individual version from the virtual
file system just by including and excluding options.

The example also illustrates a problem when reusing existir@files like
xload : the knowledge about inconsistencies is not explicitly expressed. For in-
stance, there is no machine in the real world where laptilo andatt are
defined. But this mutual exclusion is not specifiedlizad , such that Lisa must
specify both explicitly. Having ananufacturer ~ feature with valueapollo and
att would make version selections much faster; limiting the choice to configura-
tions with syntactically correct programs would also help here.

19.5.2 Feature Completion

A special problem comes up when the workspace is narrowed such that a version
set becomes singleton before all its features have been specified. Whekr a file
has the featureS, it exists asF[g only. Let us assume we have narrowed our
workspace down t&[S], such thaF [S] becomes singleton. In principle, we may
list F[S] as an ordinary file, since there is no difference between redeg{
and reading-[S. With writing, this is different—writingF[S] assignsF the
featuresS; the featuresS are lost. For this reason, tieS displaysF[S] as a
symbolic link completingthe features oF by pointing toF[S].

As an example, consider theereen-device =~ component from the editor
example in figure 10.1 on page 104. Listing thenb version yields

$ Is screen-device

[Concurrent == true] [ScreenData == bitmap]
[Data == postscript] [ScreenDevice == dumb]
[Data == ScreenData] [ScreenDevice == ghostscript]

as well as the respective complements.
The screen-devicghostscriptversion is already singleton. The remaining
features are explicitly completed by the symbolic link:

$ Is "screen-device[ScreenDevice == ghostscript]"
screen-device[ScreenDevice == ghostscript] ->
screen-device[ScreenDevice == ghostscript

&& Data == postscript
&& ScreenData == bitmap
&& Concurrent == true]

The user can specify any unambiguous superset@en-device  and still
access the single existing version for reading and writing; file names need be no
longer than required for disambiguation.
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The drawback of this=FS feature is that once a version gefg has been
created, it is impossible to create a supeF§&] with S J Sexcept by remov-
ing F[9 first. But as the redirection frof[S] to F[S is shown explicitly, few
problems should arise in practice.

19.5.3 Accessing the CPP Representation

Listing possible refinements as version subdirectories not only allows the user
to explore the configuration space, but also prohibits accidental processing of
version sets irCPPrepresentation. In fact, users need never se€Hlrrepre-
sentation, unless maybe to examine differences between versions. In some cases,
however, it is desirable to access all versions at once.

The CPPrepresentation of a fil& as a whole may be accessed using the
special formF[], meaning “all versions”. Instead of exploring the configuration
space ofasks.txt , we may as well open

tasks.txtfuser == lisa || user == tom][]

and thus view and edit both Lisa’s and Tom'’s versions at once; likewise, opening
xload[] gives us theCPPrepresentation ofload . Besides being convenient
for developers, this feature is a must for programs that recursively descend the
directory tree; such programs would otherwise suffer from the combinatorical
explosion of possible configurations if they traversed all possible configurations
through virtual directories. The ability to access version sets iCHRrepresen-
tation is also required for higher-lev@CM tools discussed in the next chapters.
Finally, it should be noted that all this version selection is not necessary when
working in a sufficently narrow workspace, making every version singleton and
unambiguous.

19.6 A Configuration Browser

While theFFSprovides some basic facilities to explore the version space, existing
applications can be enhanced by making them aware of versions. One such ex-
ample is thesKATE browser, shown in figure 19.6 on the facing page. IKATE
browser enhances a usual file system browser with the ability to visualize and
explore the configuration space. For each possible feature, we generate a menu
listing the possible feature values. The subsumption lattice formed by the ver-
sion sets is shown as a graph, visualizing revision graphs and variant/workspace
hierarchies. Through these menus, the user can specify a (possibly incomplete)
configuration.
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Figure 19.6: Browsing through files and configurations V@KATE

SKATE ensures consistency by making menu items insensitive that would re-
sult in an inconsistent or non-existent configuration. In@isenenu, for instance,
all items are sensitive; there is no choice #8ER == zeller that makes the
selection inconsistent. Now let us assume that user Lisa works on all versions
except thewindows operating system. This means that the version

USER == lisa && OS == Windows

does not exist; the directory[USER == lisa && OS == Windows] " is in-
accessible in theFS If we set the value of the/SERfeature to, sayisa , the
Windows value of theOSfeature would be grayed out, indicating that this selec-
tion would lead to an inconsistent configuration. Likewise, seledtfitrglows

for OSwould make thdisa entry in theUSERmenu insensitive. As the global
effects of choice refining and revoking are immediately visualized in the config-
uration panels, the user can interactively explore the configuration universe while
ICE checks for consistency.

19.7 Implementation Notes

TheFFsis realized on top of the populaetwork file systen(NFS) [SGK'85].
As discussed in section 5.4.3, this allows arbitrary programs to access the file
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Figure 19.7: Processes accessing the featured file system

system transparently. TheFS server was designed and implemented by Olaf
Pfohl [Pfo96], by extending a freely availal&S server (originally designed for
theLINUX operating system). The overall architecture is shown in figure 19.7.

To maximize performance, tt=Sserver maintains a persistent cache, where
all version sets once read are stored. Whenever & figis requested, thEFS
server first looks ul[§ in the persistent cache, and scansGRr@representation
F only if F[S was not found in the cache. Hendejs scanned only at the first
access; second and later version set accesses are served in constant time.

WhenF[g is written, it is also stored in the persistent cache; the originating
version sef is only updated when a supersetis requested. In practice, this
means that once a workspace is entered-Hgserver has the same performance
as an ordinaryFS server. But still, all files common to several workspace are
cached only once, showing the space-saving effects of the viewpathing techniques
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used inn-DFS.

To minimize problems with existing multi-version representations,Rig
server uses “as-is” encoding for reading ordinary files; he@e@directives in
maintained files are left uninterpreted. However, if a multi-version representation
is read by theFFSserver, using th&[] form, theFFSserver uses the dynamic
encoding as discussed in section 16.4. Hence, ordinarysfileple.c are left
unprocessed; but renaming tbePfile sample.c to sample.c[] makesFFS
interpret theCPPdirectives and create the appropriate versions.

The SKATE configuration browser was realized by Dirk Babel [Bab96], using
the freely available Tcl/Tk graphical user interfac&ATE runs in two modes.

In remote modethe question whether a specific configuration exists is answered
by attempting to access this configuration from EfS server. Since this places

a heavy load on thEFSserver, an alternative is provided. local mode SKATE

gets the possible configurations from the file directly and uses alloEaleduc-

tion engine to deduce whether a configuration leads to inconsistency.

19.8 Discussion

A virtual file system, as realized in th&S is certainly the most convenient way
to integrate version access in today’s software development environments. There
can be no doubt that virtual file systems will constitute the standard for version
access in future integrat&tMm systems.

Basic read and write access to version sets can only constitute the primitives
layer of SCM access. Based on these primitives, special&esl tools must ex-
ist that organize th&€CM protocol and process layers—for instance, workspace
management and change propagation as discussed in chapter 13. Such tools are
currently in development fdCE, and the problems encountered during their de-
velopment show that there is still much to do for fut@@m researchers.

| would give the spec to marketing and say,

“Please give me your feedback. Is this the right set of features to do?”
And marketing would either read it or not read it,

because it was way too long.

Or, if they did read it, they would get lost in it,

because it's a super-technical thing.

And if they did comment on it, ... they would say,

“Well, we think this dialog box is laid out wrong.

You should really have the check boxes on the left,” or something.

It's not the feedback you want as a program manager.

— MIKE CONTE
in: MICHAEL A. CUSUMANO and RICHARD W. SELBY, Microsoft Secrets






Chapter 20

Performance Studies

We present the results of some experiments performed to determine the feasibility
of the version set model. We show ha@E can be used to select and change
version subsets, how “classical” revision graphs are represented and hersthe
performs in practice. It turns out that all these “classical” tasks can be handled
efficiently.

20.1 Working On Variants

As a first case study, we shall uSHCLE to extract and modify version subsets
out of an existingCPPrepresentation. The example file we have chosen is the
xload file discussed in section 17.1%1.

20.1.1 Retrieving Single Variants

We shall retrieve a singbdoad variant usingCICLE and compare it witlCPPin
terms of performance and flexibility.

Table 20.1 on the following page shows the @BP symbols governing the
xload source code. EacbPPsymbol represents a specific machine architecture
(like sun, macll , orCRAY or feature (likeX NOTPOSIX or _STDC.). Toretrieve
a single variant, each of thee®Psymbols must either be defined or undefined.
Using CPR, this is rather simple, since all symbols not explicitly defined are left
undefined; moreoveGPPpre-defines appropriate symbols for the machine it is
running on. On &UN machine, for instancegPPdefines thesun symbol and

1All data required for repeating thes®ICLE experiments is contained in thee test suite, which
is part of thelCE distribution. See appendix B for details on getting ibE distribution.

237
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AIXV3 CRAY KERNELFILE
KERNELLOADVARIABLE KMEMILE KVM_ROUTINES
LOADSTUB MOTOROLA SVR4

SYSV UTEK XNOTPOSIX
__STDC._ alliant apollo

att hcx hpux

i386 macll mips

sequent sqi sony

sun umips

Table 20.1:CPPsymbols inxload

nothing else; it thus suffices to invok&PP on thexload file to get theSUN
variant. To measure the efficiency ©PP, we have commented out &define
and#include directives inxload and usedPPto select a version fromifdef
directives only. The command

$ /lib/cpp xload > /dev/null

requires an average running time of 0.08 secands.
Using ICICLE, we must specify for each singePPsymbol whether it is de-
fined or undefined. This results in th@CLE command

(icicle) system cat xload[sun \

&& !defined(AIXV3) && !defined(CRAY) \

&& defined(KERNEL_FILE)  \

&& defined(KERNEL_LOAD_VARIABLE) \

&& defined(KMEM_FILE) && defined(KVM_ROUTINES) \
&& !defined(LOADSTUB) && !defined(MOTOROLA) \

&& !defined(SVR4) && !defined(SYSV) \

&& !defined(UTEK) && !defined(X_NOT_POSIX) \

&& !defined(__STDC__) && !defined(alliant) \

&& !defined(apollo) && !defined(att) \

&& !defined(hcx) && !defined(hpux) && !defined(i386) \
&& !defined(macll) && !defined(mips) \

&& !defined(sequent) && !defined(sgi) \

&& !defined(sony) && !defined(umips)] > /dev/null

which requires an average running time of 0.79 seconds—that is, one order of
magnitude slower thagPP. Of these 0.79 seconds, 0.37 seconds are spent in

2All times measured are times spent in the execution of the command (“user time”) on a 75 MHz
SUN SPARCstatioi20 runningSun0s4.1.4.
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readingxload into memory; the next 0.37 seconds are required for creating a
temporary working file, and running theat command on the working file re-
quires another 0.05 seconds.

Why is ICICLE ten times slower tha@PP? This is not the fault of the deduc-
tion engine. In the selectiotioad [ with

S=[sun T,aixv3t,crayf, kernelfile:T,..., umipg] , (20.1)

ICE representSas a hash table indexed through the feature name, as discussed in
section 14.6. Following the proof of 14.8 on page 167, this leads to quasi-linear
time for determining the consistency Bf1Sfor each governing expressidnin

xload —just like CPR, and this is just what is implementedIi@E. So, the lower
performance ofCE does not stem from overall complexity, but rather from the
general overhead required for generalized solutions.

20.1.2 Using Configuration Constraints

In practice, the londCICLE command as shown in section 20.1.1 is quite re-
dundant, since only few of the possilit@Psymbol combinations actually make
sense—there simply is no configuration with bstimandhpuxdefined. Such
knowledge can be expressed by configuration constraintg¢dike T — hpux),
meaning that ifsunis defined, tharhpuxis not. We extencload with some
constraints applying to theunarchitecture; these constraintsGRPnotation are
shown in figure 20.1 on the following page.

With these constraints embeddedioad , we can now simply say

(icicle) system cat xload[sun]

to get theSUN configuration; havingundefined implies all other features being
either explicitly defined or explicitly undefined. The average running time of this
command is 0.81 seconds—that is, slightly larger than the first command. This
overhead is due to the processingtefror directives.

Again, the deduction engine is as efficient as possible.xIdzel configura-
tion constraints are represented as one single implication

C = (sunT — [crayf, motorolaf, utekt, alliantt, ..., x_notposix])

in an efficient form using hash tables for the left-hand sides and right-hand sides
of an implication. HenceZ M [sun T] evaluates t&from (20.1) in quasi-constant
time, and the remaining selection is done as in section 20.1.1.

The configuration constraints we introduced farad are still incomplete.
A full solution would not only express implications for tlsenarchitecture, but
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#if defined(sun)
/I ‘sun’ excludes all other architectures.
/I This should be done for all architectures!

#if defined(CRAY) || defined(MOTOROLA) \

|| defined(UTEK) || defined(alliant) \

|| defined(apollo) || defined(att)

|| defined(hcx) || defined(hpux) || defined(i386) \
|| defined(macll) || defined(mips) \

|| defined(sequent) || defined(sgi) \

|| defined(sony) || defined(umips)

#error

#endif

/I ‘sun’ also implies SunOS (in our example)
#if defined(AIXV3) || defined(SVR4) || defined(SYSV)

#error

#endif

/I Other features implied by the ‘sun’ architecture.

#if !defined(KERNEL_FILE) || !defined(KVM_ROUTINES) \

|| !defined(KERNEL_LOAD_VARIABLE) \

[| !defined( KMEM_FILE) \

|| defined(LOADSTUB) || defined(X_NOT_POSIX)
#error

#endif

#endif // defined(sun)

Figure 20.1xload configuration constraints

for all other architectures as well. Forarchitectures, we have?/2 mutual
exclusions—and thus?/2 configuration constraints. This number can be dra-
matically reduced by expressing architectures through feature values rather than
features. A single featur@rchitecturesunwould automatically exclude all other
possible values faarchitecture reducing the need for explicit configuration con-
straints. Hencesload also demonstrates the benefits of functional features, and
consequently the advantages of feature logic.

20.1.3 Modifying Variants

Of course, the strength o€E is not to simulateCPPbehavior, but rather to go
beyond. As an example, we shall US#CLE to create a user-specific copy of the
SUNxload variant. TheCICLE command

(icicle) vi xload[sun && USER == lisa]
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requires 0.87 seconds to create a temporary working file containing the selected
variant and to invoke thei text editor on it. Lisa may now perform arbitrary
changes on the working file.

After having made some changes and leaving the ed@m€LE opens the
version setload[sun && USER == lisa] for writing. Writing the version
set is more expensive that readingICLE requires 1.42 seconds to perform the
write operation. This time is spent in determining the textual difference between
the original and the changed version set, in determining the new features, and in
writing an efficient representation.

Why is writing more expensive than reading? The vast majority of time is
spentin algorithm 17.4 on page 207, which re-createSHRrepresentation even
for trivial changes. Storing the origin@lPPdirectives and re-using them if ap-
plicable, as discussed in section 17.3.4, already shows significant improvements
here; but further speed improvements like disabling nested directives would result
in files that are barely readable by humans.

20.2 A Revision History

In a second experiment, we have determined heshandles configuration con-
straints in revision histories. As case study, we have choseBNheMAKE pro-
gram, which is publicly available in 17 revisions named 3.55 to 3.F4om the
GNU MAKE distribution, we have considered a single file namedmands.c ;
this file happened to be modified in each reviston.

We wanted to know howCE performs in creating a repository from the 17
revisions ofcommands.c , compared to well-known tools likeRCSandSCCS. In
theFFS a new revisiomew is created as a subset of an existing revisioroget
using the command sequence

$ cd old
$ cat revision > commands.c[ new]

such thattommands.c[ new] becomes a subset odbmmands.c[ old ]. Here,
revision is the specific revision ofommands.c . ThelCICLE shell does not
support versioned directories, but provides an equivalent short-hand notation:

(icicle) cat revision > commands.c[ old , new]

This ICICLE command was repeated once for each new revision, where the indi-
vidual changes were identified log55 (for the initial revision 3.55) ta374 (for

3The recentGNU MAKE distribution as well as differences to earlier revisions are available from
the GNU FTPserverftp:/prep.ai.mit.edu/pub/gnu/ .
4The revision history oommands.c is also part of theCE distribution.
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Revision ICE | RCS| SCCS|| Revision ICE RCS | SCCS
1(3.55) | 0.13s| 0.03s| 0.08s|| 10(3.68) | 1.05s| 0.06s| 0.15s
2(3.56) | 0.28s| 0.02s| 0.06s|| 11(3.69) | 1.15s| 0.06s| 0.16s
3(3.60) | 0.35s| 0.03s| 0.06s|| 12(3.70) | 1.60s| 0.07s| 0.16s
4(3.62) | 0.42s| 0.05s| 0.06s|| 13(3.71) | 2.44s| 0.07s| 0.16s
5(3.63) | 0.39s| 0.05s| 0.12s|| 14 (3.72) | 3.15s| 0.04s| 0.14s
6(3.64) | 0.46s| 0.03s| 0.11s|| 15(3.72.1)| 4.01s| 0.03s| 0.12s
7 (3.65) | 0.57s| 0.02s| 0.16s|| 16 (3.73) | 3.75s| 0.07s| 0.15s
8(3.66) | 0.79s| 0.05s| 0.09s|| 17 (3.74) | 4.40s| 0.08s| 0.18s
9(3.67) | 0.87s| 0.06s| 0.11s

Table 20.2: Revision checkin times f@ICLE, RCS andSCCS

the final revision 3.74). The resulting execution times for each checkin process in
ICICLE, as well as the checkin times fRECSandSCCS are shown in table 20.2.

We see that th&CE checkin time grows with the revision number, while the
RCSandSCcCScheckin times remain fairly constant. Could this a negative effect
of NP-complete feature unification? The answer is no, because the exponential
effect of feature unification looks different. In table 20.3, we have repeated the
same experiment with a specially prepai@# variant that relies onNP-complete
feature unification alone—that is, all speed-ups discussed in chapter 14 have been
disabled. Already with the 4th revision, execution time grows beyond all limits;
we had to abort the operation after five minutes. Table 20.3 thus illustrates the
necessity of specific deduction shortcuts for comr8aM operations.

Careful analysis of the deduction process shows that only trivial reductions are
required in this linear revision history—all that is needed is to add a new revision
constraint upon each checkin, as discussed in section 12.1, and to reduce the
new governing feature terms according to the revision constraints. Each of these
reduction processes takes at most quasi-linear time proportional to the length of
the governing feature terms; full-fledged feature unification is never required.

Revision | ICE with reduction| ICE without reduction
1(3.55) 0.13s 0.12s
2 (3.56) 0.28s 0.77s
3(3.60) 0.35s 3.87s
4(3.62) 0.42s >300.00s

Table 20.31CICLE checkin times with and without reduction
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Figure 20.2: Revision checkin times fi@ICLE, RCS andSCCS

So why does théCE checkin time grow? As discussed in section 1TCE
compares entire version sets when determining a new compact representation.
In our example, this implies that the new revision is compared with the entire
repository; code removed in some earlier revision and re-inserted in some later
revision is stored only once. This is in contrasRioSandSCCS which compare
the new revision with the previous revision only, and where the same code may
be stored in multiple places. IGE, as the repository grows with the number of
revisions, so does the time for comparing it with the new revision, as shown in
figure 20.2.

In our example, the checkin problem could easily be solved by comparing
the latest revisions only; the data above shows Ibatis quite efficient when
comparing small revision sets. But if we have multiple variants in multiple revi-
sions, all sharing some common code, which are the “latest” revigidhshould
compare? And to which extent should variants be compared? A possible practi-
cal solution might be to flag revisions as “old” and to exclude old revisions from
comparison. However, the shortened check-in time might be compensated by a
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for (d = enter_file (".SUFFIXES")->deps; d != 0; d = d->next)

{
#if d370
unsigned int slen = strlen (dep_name (d));
#else
unsigned int len = strlen (file->name);
#endif
#if d374
if (len > slen && !strncmp (dep_name (d),
name + (len - slen), slen))
#elif d370
if (len > slen && !strncmp (dep_name (d),
name + len - slen, slen))
#else
if (len > slen && streq (dep_name (d),
file->name + len - slen))
#endif
{
#if d370
file->stem = savestring (name, len - slen);
#else
file->stem = savestring (file->name, len - slen);
#endif
break;
}
}
if (d == 0)
file->stem = ",

Figure 20.3: A multi-revision file

larger version set representation.

Speaking of version sets, what does the versioncsgimands.c actually
look like? An excerpt in ordinarPPrepresentation is shown in figure 20.3.
We see that the chang@70 replacedile->name by dep _name(d) and that
changead374 introduced a parenthesized subexpression. In this excerpt, there is
a maximum number of two features that govern code pieces, making the excerpt
quite readable. Butommands.c also contains code pieces governed by four
features, which is a little harder to understand—nbut still an alternative to a set of
mutualDIFF runs.

Just like the example in section 20.1, individual revision sets can be retrieved
in linear time; the whole revision set can be subject to versioning, even if this
requires some time for creating an appropriaP representation. However, if
only a single revision is subjected to versioning (for instance, if a user works on
an individual revision in a workspace), this is equivalent to the creation of a new
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Operation FFS NFS CVs
uncached| cached

Read (check out) file 11.2s 1.6s| 1.5s 5.8s

Write (check in) file 122.0s| 57.0s| 12.5s| 58.8s

Read (check out) projeqt 173.0s| 32.4s| 28.7s| 108.0s

Write (check in) project not availablé

Table 20.4FFSperformance sample

revision—except that it would be identified differently, usjipER == lisa]
instead ofd375, for instance. Again, a “classicabCM task like branching in a
revision tree is handled efficiently.

20.3 Caching Effects

While the times shown in sections 20.1 and 20.2 could be acceptable for stand-
aloneSCM tools, they are totally unacceptable for a virtual file system like the
FFS—a read or write operation on a file should not take more than a few millisec-
onds to complete. In section 19.7, we have discussed the caching mechanisms
used by theFFS server; in this experiment, we shall see whether these caching
mechanisms bring satisfying performance.

Table 20.4 gives typical performance timesFéfSaccess. We have chosen
the following operations: reading and writing a 4.5 MB file (a 40-page article in
PostScript format) as well as reading and writing b€ distribution, release 0.5
(8.5 MB in 1115 files). FoCvs, “reading” means checking out each file from
its RCSrepository, and “writing” means checking in each file back again after a
change.

We see that in writing files, th€FS server is four times slower than the
vendorNFS server. We assume this is due to deficiencies inRR8 server
implementation—for instance, the vendetSserver is multi-threaded, while our
FFSserver is (yet) single-threaded. The difference between uncached and cached
writing of version sets, however, is the time spent in actual work, rather than file
transmission. We see that this time (12257s= 65s) is similar to the time
required by theRCScheck in. This does not surprise, as both do the same work:
both runDIFF to determine the differences between origin and new revision; af-
terwards, both create a new version set representation.

5Due to a bug in the current implementation of thESdirectory cache, significant times for
writing projects were not available at the time of writing.
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Reading version sets shows much better performance. The execution times
show that reading uncached version sets is comparableR@8repository ac-
cess, while reading cached version sets can compete with the ongfigakrver.
Stil, even better performance is possible. A real-world implementation of the
FFSserver would probably be multi-threaded, avoiding delays in the deduction
engine, and sharing a common version set and deduction caches. Even better, it
would be based on a operating system interface for virtual file systems, bypassing
theNFSbottleneck for local disk access.

20.4 Conclusion

Using thelCE implementation, we have shown three simple case studies that sup-
port the efficiency claims raised in chapter 14. We see that retrieving individual
versions from dCE version set need not be more expensive than a si@pke

run. SincelCE compares entire version sets rather than only the latest revisions,
adding revisions to a repository requires more time t@gsor SCCS but yields a
potentially more compact and user-readable representation. Remaining read/write
delays can be compensated through caching of version sets. As soon as a version
set is cached, theFSserver behaves as fast as an ordineg server.

Our case studies have avoided the use of full-fledged feature unification and
relied on trivial reduction schemes that have been optimized for handling stan-
dardSCMtasks. But as we know that arbitra®ZM tasks will result in arbitrary
complexity, some questions must remain open:

¢ Which newSCM protocols are feasible on top of version sets?
¢ Can we find deduction shortcuts that make th&s®i protocols efficient?

¢ If we cannot find such shortcuts, is this due to the problem or due to our-
selves?

In chapter 21, we close this work with some general observations on these topics,
discussing the conditions for efficieBCM tasks.

On the other hand,

a generalized solution may be more costly,
in terms of speed of execution,

memory requirements, or development time,
than the specialized solution

that is tailored to the original problem.

— CARLO GHEZZI, MEHDI JAZAYERI, DINO MANDRIOLI,
Fundamentals of Software Engineering



Chapter 21

Efficient SCM

The proofs in chapter 14, substantiated by the studies in chapter 20, show that
classicalSCM tasks such as version selection can be realized efficiently on top
of feature logic, by exploiting orthogonality and reduction of feature terms. In
this final chapter, we present some strong arguments that wherever there is an
efficient implementation of a specifR@CM task, there is also an efficient shortcut
bypassing the complexity of feature unification; but as soon as deduction facil-
ities are required, complexity becomes exponential. We discuss the conditions
under whichSCM tasks remain efficient; it turns out that a good software design
according to the principles of software engineering principles is a key factor for
efficientSCM.

21.1 \Version Selection

The version selection mechanisms, as discussed in section 3.3, all rely on a finite
set of versions, all identified by the equivalent of a simple feature terms; the
selection term can also be expressed as a simple feature term.

According to proposition 14.8 on page 167, the time required for selecting
versions using feature logic is proportional to the number of stored versions—
just as the time required by existing implementations. As soon as variables,
agreements, or disagreements are used in selection terms, checking consistency
requires quadratic time for each version—again, just as in existing implementa-
tions.

When versions are identified by general feature terms, and the selection is a
simple feature term, orthogonality checking and feature term reduction will often
reduce the problem size considerably. Every remaining possible version must be
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checked for consistency with the selection term. The same applies for identifica-
tion with simple feature terms and selection with general feature terms. If general
non-orthogonal feature terms are used for both identification and selection, every
possible alternative must be checked, resulting in exponential complexity.

21.2 Versioning Dimensions

When multiple versioning dimensions can be selected independent from each
other, as changes in the Change-Oriented Model, for example, this has no im-
pact on complexity—as should be expected from proposition 14.7 on page 166,
since every versioning dimension is represented through another feature.

Complexity becomes an issue as soon as versioning dimensions are no more
orthogonal. For instance, maintaining configuration constraints, as discussed in
chapter 11, has a serious impact on determining consistency of configurations,
since every constraint must be satisfied. In practice, this means that users must
first select a small subset of configurations in order to keep the problem size small.
On the other hand, a large number of constraints, such as the constraints used for
modeling revision graphs, implies a small number of possible versions, reducing
the problem size as well.

21.3 Configuration Consistency

ExistingSCM systems can only determine consistency of bound configurations—
thatis, a configuration described by a simple feature term. Even with agreements,
disagreements, and variables, consistency checking can be done in quadratic time,
as stated in proposition 14.1 on page 161.

When introducing ambiguities in consistency checking, such as allowing mul-
tiple versions for each component, the number of possible configurations grows
exponentially and so grows the effort for consistency checking—unless orthogo-
nality again reduces the problem size.

21.4 The Benefits of Low Coupling

Having considered these complexity problems, how can we keapefficient

and our software maintainable? From the previous sections, we see that orthogo-
nality of feature terms is a major issue in keeping the siz&a problems small.

If the feature terms describing two componeftandB are orthogonal, we can
select arbitrary versions & andB without affecting the consistency of their re-
spective configuration. In software engineering, this property is also known as
low couplingof modules. Coupling is a measure of strength of interconnections
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between components; low coupling is a desirable property because it keeps evolv-
ing programs manageable—notably, we can make a change (create a new ver-
sion) of A or B without affecting the other component. Low coupling is obtained
through basic software engineering principles such as abstraction, parameteriza-
tion, generalization, localization, and, most of all, anticipation of change. Since
low coupling implies orthogonality and vice versa, low coupling between com-
ponents has immediate benefits in simplifyil®@gM problems and thus keeping
evolving software manageable.

21.5 The Benefits of High Cohesion

Another desirable property in software engineeringhigh cohesionwithin a
component. Cohesion is a measure of how well a component fits together; high
cohesion expresses that all parts of a component should contribute to its imple-
mentation, which also means that a change in a component part implies changes
in other parts of the component. In our model, high cohesion between compo-
nents leads to many configuration constraints between these components, such
that the actual number of possible configurations is kept small and thus becomes
manageable as well.

21.6 Maintaining Unstructured Software

The problematic cases for automated deduction are exactly those cases that make
software difficult to maintain: a number of unstructured constraints involving
components all over the system, expressing chaotic interconnections between
components. In such cases, the only remedy may bedtsucturethe system
such that variance is kept as local as possible, eliminating version dependencies
between components and thus reducing complexity. This can be done by ex-
amining the configuration space [KS94] and to reengineer it [Sne96] such that
dependencies between configuration threads are significantly reduced—as is the
complexity ofSCMtasks.

Where such a restructuring is not possible, automated deduction like feature
unification can help to keepCMtasks manageable. It may especially be helpful
to manage a temporary situation, such as lots of developers creating lots of tem-
porary variants, whose consistency must be checked and expressed. But due to its
complexity, automated deduction does not scale up beyond a certain problem size.
In the long term, applying the principles of software engineering to avoid perma-
nent, non-orthogonal variance, is the only way to keepitasks manageable and
the product maintainable.
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21.7 Conclusion

Feature unification is the standard technique for deciding consistency of general
feature terms. Feature unificationN®-complete and thus applicable to small
problems only. The problem of deciding consistency can be broken down in
smaller subproblems if the feature term breaks down into orthogonal parts, that is,
parts without common features or variables. The technique of partial evaluation
leads to efficient decision of consistency for simple feature terms. Both determin-
ing orthogonality and partial evaluation already suffice to realize stargfam
tasks efficiently on top of feature logic.

The most difficultSCM problem is to determine the consistency of abstract
configurations, where the feature terms describing the individual components are
non-orthogonal. A well-structured configuration space, as obtained through the
principles of software engineering, ensures orthogonality of feature terms and
thus keeps$SCM problems manageable. A small amount of non-orthogonal am-
biguity can be tolerated using feature unification—for instance, temporary, non-
orthogonal variance as it occurs during parallel development.

Today, the field oATP has produced several deduction techniques for propo-
sitional logic that might turn out useful for feature logic as well. The application
of these deduction techniques may raise the amount of ambiguity tolerance in
practicalSCM systems, maybe even beyond any ambiguity as found in today’s
software systems. This should all®&€M systems to manage several parallel de-
velopment paths at once and ensure consistency across all ambiguities. But still,
a good software design is the key factor to keep evolving software maintainable.

In skating over thin ice our safety is in our speed.
— RALPH WALDO EMERSON



Part Five

Odds and Ends
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Chapter 22

Conclusion

The future of automate®iCMlies in a clear separation of primitives, protocol, and
policy layers, based on a well-defined semantic foundation. As such a foundation,
we propose version sets, expressed through feature logic. Version sets integrate
and unify currenSCM versioning models and provide a well-defined semantics
for defining higheiSCM layers. Feature logic is powerful enough not to endanger
flexibility at higherSCM layers, and yet sufficiently specialized to describe how
features propagate in tf8€M process.

In part three, we have shown how version sets capture and integr&8€the
concepts introduced in part one. The coveseil concepts range from versions
to components, from configurations to revisions, from changes to constraints, and
from relationships to system modeling. The principal results fulfill the require-
ments raised in chapter 6:

Unified versioning. Version sets provide one single formalism to express all ver-
sioning dimensions as well as constraints on them, integr&ig con-
cepts like revisions, variants, workspaces, and configurations in one single
model. TheSCM policy is not constrained by decisions made in loBeEM
layers.

Integration of changes and revisions.Configuration constraints, expressed in
feature logic, allow us to capture the entire range of temporal versioning—
from the rigidness of versions-oriented models to the flexibility of change-
oriented models.

Consistency checking under ambiguity. Through feature logic, we deduce the
features and the consistency of configurations as well as derived compo-
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nents and thus describe how features propagate ils@e process. In-
consistencies are detected even when the configuration description is in-
complete or ambiguous. Ambiguity is not only tolerated in consistency
checking; at allSCM layers, sets rather than single items are the primary
objects ofSCMtasks and procedures.

Our implementation of the version set model®& has shown that this foun-
dation has several user-visible benefits. ThroughAe® users can access ver-
sion sets consisting of arbitrary combinations of revisions, changes, variants, and
workspaces. Individual versions are accessed as files; version sets as a whole can
be accessed via version directories or throughlBrepresentation. On top of
theFFS specificSCM protocols are realized efficiently through simple file opera-
tions on version sets. These features malkea universal platform for individual
SCM policies and demonstrate the flexible and unifying nature of the version set
model.

Besides refining, extending, and evaluating IB& implementation, espe-
cially at the protocol and policy levels, our future work will focus on four subjects.

Beyond feature logic. Feature logic, as defined by Smolka, is not appropriate
for all SCM aspects. As discussed in section 10.8, an extension to specify
set values would be most helpful to overcome the difficulties in specifying
aggregations (section 10.4). Also, feature logic does not distinguish be-
tween provided and required features. There is no notion of cardinality and
ambiguity; hence, preference and default operators (section 9.3) cannot be
defined in feature logic. On the other hand, one must be carefulthat
hocextensions foBCM purposes do not endanger the generality of feature
logic.

Versioned Relationships.In chapter 3, we have introduced relationships as a
means to represent the structure of a system; typical relationships included
is-instance-oto represent the dependency between source components and
derived components, @s-a-part-of to model the aggregation of compo-
nents into systems. Such relationships are subject to versioning just as the
individual components are—that is, a system model may occur in several
variants or may be revised frequently. We want to model such relationships
as features and roles, providing a natural link between object versioning
and relation versioning.

Efficient integration of SCM concepts. We have seen that aliCM concepts in-
troduced in part one can be realized on top of the version set model, and



255

theICE system already shows how these concepts can be integrated into a
singleSCM system. We also have identified possible complexity problems
with non-orthogona8CM concepts, especially variance. Based on further
experience with th&FSand the underlying deduction engine, we want to
investigate how far integration &CM concepts can go without endanger-

ing efficiency. Furthermore, we want to see which oth@M protocols are
feasible, how they can be realized on top of H&S and how far thesCM
process is determined by these protocols.

Support of the SCM process. Our long-term goal is to establish a layergdm
model where each layer is defined in concepts of the next lower layer. In
this task, we pursue a bottom-up approach. Having supplied feature logic
as anSCM foundation and proposed version setssa&M primitives, our
next step would be to specify tt/8CM protocol in terms of transitions be-
tween version sets, and to specify @M process in terms of transitions
betweensCM protocols. We imagine organizing t$€M process entirely
by manipulating component features—changing their state framposed
via testedto released Eventually, we hope to map the ent8€M process
to operations on version sets denoted by feature logic, providing a uniform
semantic foundation for aBCM layers.

Although we would have liked to present
the ultimate version management model,
such a model is not likely to exist for some time.

— RANDY H. KATZ, Version Modeling in Engineering Databases






Appendix A

Frequently Asked Questions

In this appendix, we have summarized the most frequently answered questions
about the version set model arzt.

Note: Questions A.3.1 to A.3.9 are taken fr¢Est95, p. 80] reproduced in
section 6.4 on page 57.

A.1 General Questions
A.1.1 What are the main achievements of your work?

There are three of them, as discussed in chapter 22:
e The unification ofSCM versioning concepts in one single formalism.

e The integration of change-oriented and version-oriented versioning through
configuration constraints.

e The ability to check and propagate consistency even for incomplete or am-
biguous configurations.

A.1.2 Why do you neglectSCM process issues?

We believe in the importance of separat®@M issues, such as policy, protocol,
and primitives. We also believe that you cannot define a layer without first defin-
ing its foundation. In this work, we have provided such a foundation covering the
SCM primitives layer, extending a little into tH&CM protocol layer. As soon as
the SCM protocol layer will be fully understood, we can turn to the policy layer,
covering thesCM process.
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A.1.3 Why don't you compare the version set model to other integrated
SCM models?

To the best of our knowledge, there aren’t any.

A.2 Topic: Feature Logic
A.2.1 Why do you use feature logic?

Because it allows us to combine attribute descriptions with boolean operations.
Both play a central role i8CM, notably for identification and retrieval.

A.2.2 Butyou could also use first-order logic, could you?

In principle, yes—there are few domains, if any, where first-order logic would
not suffice. Unfortunately, first-order logic is not attribute-oriented. Modeling
the functional nature of attributes or features in first-order logic leads to a large
number of explicit constraints, which are difficult to read and to maintain. Feature
logic is much more appropriate here.

A.2.3 Why didn't you use some more general description logic?

A description logic more general than feature logic would probably also do the
job. However, several intrinsic properties of feature logic would have to be mod-
eled explicitly, such as feature propagation and the functional nature of features.
On the other hand, such an explicit modeling allows for alternate feature propa-
gation schemes that may be appropriate in several domains. Try it out.

A.2.4 Why didn’t you use an existing theorem prover?

First, existing theorem provers are batch-oriented. This is not appropriate for our
model, where thousands of comparatively small problems must be solved in a
minimum amount of time. Second, building a theorem prover ourselves allowed
us to adapt it to the specific needsSEM and to develop appropriate deduction
techniques.

A.2.5 Isthe formalization of SCM concepts necessary at all?

Yes. TheSCMcommunity has been inventing and implementing for years, realiz-
ing greatSCMtools and systems. Now is the time to look back and evaluate what
has actually happened, to provide a foundation for yet sma@stsupport.
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A.2.6 Do | really have to learn feature logic to solvesCM problems?

No, not at all. A system likeéCE shows that all this logic can be hidden behind a
set of familiar and well-understood representations.

A.3 Topic: The Version Set Model

A.3.1 Is the versioning model linked to the data model, the product model
(schema), the transaction model (uni-version subdatabases), or is it
independent?

The version set model is orthogonal to any other software models and independent
from a specific representation.

A.3.2 Atwhat granularity are deltas expressed, computed and merged—on
the base of whole files, text lines, or syntactical entities?

The model is independent from a specific representation of version sets. Our
implementation expresses, computes, and merges deltas on the base of arbitrary
sequences of characters, notably text lines.

A.3.3 And how is versioning combined with e.g. inheritance and parame-
terization?

Inheritance is realized through the subsumption relation; that is, a version set is a
subset of another version set, inheriting its features. Parameterization is realized
through incremental version selection, constraining version sets through further
feature values (or parameters).

A.3.4 Does basic versioning only apply to atomic and textual objects, and
not to composites or to the entire database?

Versioning applies to primitives (chapter 9) as well as to arbitrary composites
(chapter 10).

A.3.5 How to version relationships, and thus configurations?

Relationships may be modeled as features of the originating version sets. Con-
figurations are independent from relationships, and independently versioned, al-
though anSCM system may enforce the specification of configurations through
relationships.
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A.3.6 How to express intentional version selection, and how to express con-
straints, defaults and preferences for such selections?

Defaults and preferences are realized through preference operators (section 3.3.3)
The version set model handles ambiguities at all levels; defaults and preferences
are thus needed only if an application requires unambiguous configurations in
order to proceed.

A.3.7 Isthe selection based on symbolic attribute values, that together con-
stitute a version space?

Yes. That's what feature logic is for.

A.3.8 Can the constraints and attribute domains evolve over time?

Yes. Constraints and attributions are subject to versioning as well.

A.3.9 Given a system model with objects and relationships: is the product
selection AND-closure) done before the version selection within each
group (OR-choices), or vice versa, or intertwined?

Selection is unconstrained, i.e. intertwined.

A.4 Topic: Complexity

A.4.1 | saw feature unification isNP-complete! How dare you suggest an
NP-complete method for practical usage?

Feature unification isiP-complete, yes, leading to exponential complexity in the
worst case. The emphasis here is on “worst case”—nearly all examples in this
book run very efficiently in practice. The rule of thumb is: if a8M concept

has been implemented efficiently somewhere else, then there is an appropriate
deductive shortcut.

A.4.2 And what about the integration of SCM concepts? Can | really com-
bine revisions, variants, and workspaces just as | like?

In principle, yes. But you will probably run into complexity problems—arbitrary
combinations means arbitrary feature terms, which leads to arbitrary complexity.
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A.4.3 Can | something do to avoid complexity problems?

The general rule is to keep versioning dimensions either very orthogonal or very
non-orthogonal, as discussed in sections 21.4 and 21.5. In short: follow a well-
establishedsCM model, like the ones realized in curregtMtools and systems.
None of these models imposes any severe complexity problems (otherwise, they
would not work efficiently). Follow the principles of software engineering, no-
tably abstraction, generalization and localization.

A.5 Topic: Applications
A.5.1 What are the new features of your application?

Again, there are three of them:
¢ Handling of multiple versions throughGPRlike representation.
¢ Incremental configuration refinement through a virtual file system.

e Workspace management through versioned directories.

A.5.2 | saw you usetifdef to represent versions. Isn't#ifdef bad SCM
practice?

One should be careful not to confound message and messager. |GBRIgol

that causes the problem, since it forces you to maintain all versions at once. Also,
#ifdef is commonly used for permanent variance, which should also be avoided.
In theICE context#ifdef is just a representation for multiple versions, as is an
SCCSrepository or an ordinary data base.

A.5.3 Do you really want us to read and write#ifdef 'ed code?

You don’t have to. If you don't segifdef today, you don't need to see it with

ICE either. You see (and possibly writgifdef as soon as you want to work

on several versions at once, or if you want to determine the differences between
some versions. You never have to read or write all versions at onC@risrces

you to.

A.5.4 Wouldn't defining CPP variables like d1 break my code?

No. ICE does not perform macro expansions or alter the code in any way.



262 Frequently Asked Questions

A.5.5 My SCM vendor says we should use databases instead of file systems.
So, why do you use a file system instead of a database?

Your vendor is right. Databases are much more secure than file systems. On the
other hand, other vendors will tell you that a file system is much better suited for
integration into a software development environment. The probably best thing to
do is to use a database for version storage and a file system for version access.
ForICE, this means future work.

A.5.6 What is the performance ofiCE on large-scale projects?

Unfortunately, the currenCE implementation leaves too much to be desired for
large-scale projects. Open issues include transaction safety and general robust-
ness, as well as efficient usage of ressources, notably memory requirements. The
biggest problem of all is the lack of a higher-level interface. However, there is
no reason why the results of chapter 20 should not be applicable to large-scale
projects.

A.5.7 Will ICE improve my productivity?

This is a question which should be verified empirically, and thus requires a fully
usablelCE system; see question A.5.6. Generally, we think that the best way to
improve productivity is a well-understood and well-supported software process.
An adaptive environment likeCE can help you implement a process according

to your needs, rather than a process enforced by sibvevendor. OthelCE
features such as transparent version set access or the ability to view and change
version sets may also improve the individual productivity.

A.5.8 Iwantto uselCE. Is there anything | can do?

Support this work. Help us designing and building a foundation for b&toat
environments.

Alles Wissen und alle Vermehrung unseres Wissens
endet nicht mit einem Schlu3punkt,
sondern mit einem Fragezeichen.

— HERMANN HESSE, Lektire fur Minuten

Some say the world will end in fire,
Some say in ice.

— ROBERT FROST, Poems



Appendix B

Obtaining ICE

A free ICE distribution is available foUNIX systems under the conditions of the
GNU general public license. ThEE distribution contains the source code and
the documentation of thikCICLE shell as well as theFSserver and th&KATE
configuration browser as described in this work.

The ICE distribution and related technical reports are available through the
ICE WWW page,

http://www.cs.tu-bs.de/softech/ice/
and through théCE FTPsite,
ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ice/

Building ICE requires a @+ compiler such a&NU C++. RunningSKATE re-
quires a Tcl/Tk interpreter. BotBNU C++ and Tcl/Tk are freely available from
several sources.

ThelCE maintainers can also be reached by electronic mail. Send mail to:

ice-bugs@ips.cs.tu-bs.de — for bug reports and suggestions
ice@ips.cs.tu-bs.de — everything else.

Be aware that théCE maintainers cannot provide full-time technical support,
although they will try to help as much as they can.

A drawback of attempting to impose a standard
is that it will quickly become outmoded.

— DAVID LEBLANG, The CM Challenge
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assistant.

CPP C preprocessor.

CR Change request.

CVS Concurrent versions system.

CoV Change-oriented versioning.

DCS Dynamically composed system.

Deutsche
Forschungsgemeinschatft.

DFG

DNF Distributive normal form.
DOS Disk operating system.

DRCS Distributed revision control
system.

DVI Device-independent file.

EPOS Expert system for program and
(“og”) system development.

EFS Extensible file system.

EGA Enhanced graphics adapter.
FFS Featured file system.

FTP File transfer protocol.

GCC GNU C compiler.

GNU GNU's not unix.

GUI Graphical user interface.

DBMS Database management systerhliCoV High-level extensions to

DCVS Distributed concurrent
versions system.

change-oriented versioning.

IBM International business machines.
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284 Abbreviations

ICE Incremental configuration TTY Teletype terminal.

environment. o
TWICE Tasks withinICE.

ICICLE ICE integrated command line

engine. VOODOO Versions of outdated

documents organized
IPSEN Integrated project support orthogonally.

environment. ) ) o
VoV Version-oriented versioning.

LEX Lexical scanner.

Wwww  World wide web.
MacOS Macintosh operating system.

YACC Yet another compiler compiler.
n-DFS n-dimensional file system.

NUCM Network for unified
configuration management.

NFS Network file system.
NORA No real acronym.
NSE Network software environment.

PCL PROTEUSconfiguration
language.

PDG Program dependency graph.
PROLOG Programming in logic.

PSG Programming system generator.
RCE Revision control engine.

RCS Revision control system.
REGEX Regular expression.

SCCS Source code control system.

SCM Software configuration
management.

Tcl/Tk Tool command language
toolkit.
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M (Aggregation),105

| (Agreement),76

&& (AND), 184

\ (Backslash), 192

1 (Bottom),74

{---} (Braces),79

[---] (Brackets),78

|...| (Cardinality),87

~ (Complement)77

D' (Domain),74

A (Delta), 115

o (delta),115

1 (Disagreement)76

1 (Divergence),76

== (Equal t0),184, 185

= (Equivalence)85

+ (Equivalence)80

1 (Existential quantification)@1
# (Hash),192

| (Interpretation),74

— (Implication), 80

2 (Inclusion),85

! (Interpretation function)74
1 (Intersection),77

X (Merge),218

>< (Merge),219

0 (Nabla),115

! (NOT), 184, 187

1= (Not equal t0),184, 185
|| (OR), 184

%: (Percent)]192 see alsat
??=(Question)192 see alsat
" (Quote),185

’ (Quote),185

: (Selection),75

C (Subsumption)85
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T (Top), 74
LI (Union), 78
Y-term, 71

A

Abbreviations, 283-284
Abrahamsen, Per, 16
Absorption
of MandL, 79
of —, 80
Abstract syntax tree, 14, 17
merging changes ins, 50
of feature terms, 195
Abstraction, 56, 249
Access control, 53, 59, 142
accesdeature, 107
Accounting
CM functionality areag, 53
Acronyms, 283—-284
no real, 180
Activity, 19
ADA, 39
addresdeature, 96
ADELE, 59, 60
configuration rule, 26, 56
distributedcm, 52
variant identification, 13
agefeature, 78
agentfeature, 72
Aggregate 22
Aggregation, 105
Agreement76, see alsa,
AIDE-DE-CAMP, 17
Ait-Kaci, Hassan, 69, 71
Algebra
boolean-, 85
Alsaadi, Ahmad, 265
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Ambiguity, 56, 65
Ambition, 18, 25, 65
Ancestor, 117
and, 187, see als®&&
and-then operator, 95
AND/OR graph,22, 109
Anticipation of change, 249
Applications
of the version set model, 179-250
Arbiter, Petronius, 70
Architecture, 6
federated-, 59, 60
of SCM systems, 59—60
architecturefeature, 240
Arithmetic
constraints, 96
in CPR, 185,187
in version identification, 67, 68
solving ~ constraints, 219-220
implementation, 220
ASGARD, 19
Assignment, 74
Associativity
of 1, 78
of U, 79
AtFS, 13
realization, 47
Atom, 75
ATP, seeautomated theorem proving
Attribute, 13, 28, 58, 260
~-value logic, 71
~$ in a unifiedsCM model, 66
and relationship, 41
in ADELE, 26
in CAPITL, 40
in CMA, 34
in CPR 15
in JASON 29, 33
methodology
general rules, 97-99
in CAPITL, 40
propagation, 40-41, 66, 73
queries, 26
Attributed file systemseeAtFs
Attribution schemel3
Audit and review
CM procedureb
Audit trail, 53
Auditing

CM functionality areag, 53
authorfeature, 77, 107, 108, 110, 183-185
AUTOCONF, 15, 265
Automated theorem proving, 164

B

Babel, Dirk, 235, 265
BACK, 68
Base version, 49
determining~, 154
Baseline 113
component., 17
configuration-~, 25
BCT, seeconfiguration thread, bound
Behavior differences in merging, 51
Bibel, Wolfgang, 165, 265
Bibliography, 269-283
Bill of material, 39
Binary pool,41, see alscCache for derived
components
Binding, 29, 51
Binkley, David, 52
Borgida, Alex, 176
Bottom, 74, see alsal
Branch,10, 48, 49
in CLEARCASETrule, 29
Brandes, Michael, 265
Bresnan, J., 71
bsd-regexXeature, 136, 137
Build
software~, seeconstruction
Build command file 37

C

C, 15,39
preprocessoiseeCPP
C++, 15, 39
GNU ~, 265
Cache
for derived componentg,1
CAD, seecomputer-aided design
CAPITL, 66, 97
versioned software build, 40-41
virtual file access, 46
Cardinality, 87
Casallas, Rubby, 11, 54
Case studies, 237-246
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CCB, seeconfiguration control board
Change
~SVs. revisions, 113-139
and configuration, 137-138
and other features, 136-137
anticipation of~, 249
committing~s, 151
control, 10, 53, 60
extrinsic, 138
history, 53
intrinsic, 138
log, seechange history
orthogonal~, 134-136
propagation, 5, 18, 19, 25, 53, 56
across sites, 52
across workspaces, 4B49
bypassing th&CM system, 45
in abstract syntax trees, 50
request, 18, 53, 60
set, 5,17, 60
change-4feature, 97
change-4Z4eature, 97
Change-Oriented Modeb, 9, 17-20, 36,
136, 248
configuration rules, 26
in distributedscwm, 52
version identification, 12
vs. version-oriented models, 56-57
Checkin, 59, 44, 60
Checkin/Checkout Mode§, 9, 20, 44
Checkout, 59, 44, 60
CLASSIC, 68
Classification
faceted-~, 97
CLEARCASE, 55, 138
change impact analysis, 39
configuration rule, 28
cooperation strategy, 48
revision numbering, 12
variant identification, 12
versioned software build, 39
virtual file access, 46
realization, 47
CLEARMAKE, 39
CM, seeconfiguration management
CMA, 33
Code
as component attribute, 40
Coherenceseeconsistency

Cohesion, 249
color feature, 86
colorsfeature, 94, 95, 99
Colton, Charles Caleb, 20
Command shellseeshell
Comment
aroundcpPpdirectives, 192
in CPPdirectives, 192, 193
commitoperation,151
Committing changesl51
Commutativity
ofn, 78
of LI, 79
Comparison
of text files, 13
Compilation
conditional~, 15
Complement, 7277, see also~
Completeness, 3,5
Complexity, 161-176
and consistency, 248
and versioning dimensions, 248
of version selection, 247-248
Component, 49, 21,91
abstract., 92
as union of its versions, 93
bound-~, 92
dependency37
derived-~, 23
derived~, 34, 37,37, 45, 66
caching, 41
features, 110-111
features of derived, 110-111
generic~, 22, 92, see alsa@omponent,
abstract
optional~, 109
relationship, 21-24
status,seestatus
unambiguous., 92, see also
component, bound
version,92
Components
CM functionality areaf, 9-20
Composite pattern, 195
Composition Model5, 21, 35-36, 44
Computer-aided design, 15
Concept description, 68, 71, 111
Concurrency controlseecooperation
strategy
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concurrentfeature, 110, 173, 174
Concurrent Versions SysterseeCVs
Conditional compilation15
Configuration, 524-32 101-112
abstract., 25, 29, 55-56, 73108
ambiguity in~, 108-109
and revision, 137-138
as first-class object, 109
baseline25
bound-~, 25, 108
consistent., 108
constraint,138
complexity, 248
in EPOS 31
in JASON 33
context,seecontext
control board, 18, 53
current~, seecurrency
dynamic~, 25, see alsabstract-
family, 25, see als@bstract-
features, 103
file, 15
formal ~, 108
generic~, 25, 56,108
item, 4, see alsaomponent
language?29
managementee below
object,4, see alsacomponent
partially bound-, 25, see also
generic~
rule, 21, 25, 33, 95
set, 65-66
source~, 110
tagging~, 25-26, 138, 147-148
template 25, see als@bstract.
thread
bound-~, 39
types, 25
visualizing~, 31-32, 58
Configuration managemerg;-61
architecture of. systems, 59-60
distributed~, 52-53, 147
functionality areas, 9-54
accounting, 6, 53
auditing, 6, 53
components, 6, 9-20
construction, 6, 37-42
controlling, 6, 53-54
process, 6, 54

process-centered, 6, 53
structure, 6, 21-36
team, 6, 43-53
team-centered, 6
future requirements, 55-61
model, 9, 58
unified~, 58, 60-61
models, 5-6
change-oriented, see also
Change-Oriented Model
checkin/checkout5, see also
Checkin/Checkout Model
composition 5, see also
Composition Model

long transaction, see alsd.ong

Transaction Model
network for unified~, seeNUCM
object-oriented., 29
policy layer, seepolicy layer

primitives layer,seeprimitives layer

procedure4

procedures, 4-5
audit and review, 5
control, 4
identification, 4
manufacture, 5
process management, 5
status accounting, 4
team work, 5

protocol layerseeprotocol layer

software~, 4

Configuration Management Assistant, 24,

SeeCMA

Confinement141
Conflict, 19, 49

in abstract syntax trees, 50

Conflict resolution, 43, 49-52

in ICE, 218-219

Confucius, 182

CONGRES$69

Conradi, Reidar, 57

Consistency, 3, 5, 282-35 65, 72

and complexity, 248
constraint, 33
external~, 33

in configurations108
in feature logic 86

in structure editors, 17
internal~, 34, 51
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of abstract configurations, 56
Constant,72
Constraint, 161
consistency-, 33
locking ~, 147
revision~, seerevision constraint
Construction, 5, 182
CM functionality areap, 37-42
management, 3
Conte, Mike, 213, 235
Contents
as component attribute, 40
Context,141
Context model26
Context relation, 51
Continuation line, 192
Control
CM procedure4
Controlling
CM functionality areaf, 53-54
Cooperation strategy, 438, 48—49
conservative., 48, 147-153
optimistic ~, 48-49, 154-158, 180
Cooperative versionind,0, see also
workspace
Copying
to-and-fro, 44
Correctness
static~, 32,34
syntactic~, 32,35
Coupling, 248
CPR 10, 15-16, 20, 55, 56, 65, 67, 176, 179
as standard foCE, 180-181
directives, 187-191
creating~, 203-212
#define , 190
#elif 188
#else , 188
#endif , 188
#error , 189
#if ,188
#ifdef , 188
#ifndef , 188
#line , 191
#pragma, 191
#undef , 190
expressions, 184-187
parse-edit-mode, 16
variant identification, 13

vs. ICE, 200
CR, seechange request
Create
operation on version sets, 212
Currency, 46, 145-146
maintenance, 138,45
currentfeature, 96, 138, 145, 146, 150-158,
226
Cusumano, Michael A., 213, 235
CVS, 156, 245
configuration, 26
cooperation strategy, 48
distributed~, 52
workspace, 44
Cyclic terms, 40

D

Dart, Susan, 6, 53
datafeature, 110, 173, 174

Database
graph~, 15
query, 27-28

relationship, 22—-24
repository, 15
DCS, seedynamically composed system
DCVS, 52
De Morgan'’s laws, 79
Default,27, 96
operator95
#define directive,190
Delta, 14, see alsdifference, 57, 259
reverse-, 14
Delta feature115
Delta set115
demofeature, 151, 152, 156
Dependency
component., 37
depthfeature, 97, 98
Derivation, 23,110, see alsaomponent,
derived,110, see also
construction
history, 39, 40
Descendant] 17
Description logic, 40, 68
Deutsche Forschungsgemeinschaft, 265
Device driver, 47
devicefeature, 112
DFG, 265
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DIFF, 13, 17, 20, 245

GNU ~, 213, 265

in ICE, 200-203
DIFF3, 49
Difference, 14, 41

behavior~, 51

between non-text files, 13-14

between text files]3

in ICE, 200-203

tree~, 51

version~, 13-14
Dijkstra, Edsger W., 20
Dimension,seeversioning dimension
Directory

versioned-, 223-225

virtual ~, 229
Disagreement/6, see alsat
Disjointness86
Disjunctive normal form85, 162
Distribution

of mandL, 79
Divergence, 76, see alsat
Divide-and-conquerseeorthogonality
DNF, seedisjunctive normal form
DRCS 52
drive-speedeature, 102, 103
Duning, Lars, 195, 213, 265
Dynamic

version creation, 96-97, 135
Dynamically composed system, 25, 56

E

Eaton, David W., 54

Economy

in ICE, 180-181
Editor

multi-variant~, 1617, 20, 56
EFS 46

realization, 47
#elif  directive,188
#else directive,188
EMACS, 17
Emerson, Ralph Waldo, 250
Encoding
as-is~, 194
binary ~, 193-194
C~, 192
dynamic~, 194, 235

of CPPfiles, 191-194

text ~, 192-193
#endif directive, 15188
Ends

odds and-, 251-284
Entity-relationship

model, 15
Environment aspect, 39
Epicurus, 87
EPOS 17,59
Equivalence

feature~, 80, see also—

term~, 85, see also=
#error  directive,189
Estublier, Jacky, 11, 54, 58
Evaluation

partial ~, 169, see alsd-eature term,

partial evaluation

Existence, 75
Existential quantification81, see alsal
Extensible file systenmseeEFS
External consistencyg3

F

Faceted classification, 97
Family
of products, 6
FAQ, seefrequently asked questions
Fault, 18, 53
Favre, Jean-Marie, 7
Feature, 6972, 74
algebra,74
assignment, 74
completion, 231-232
constraint,seeconstraint
delta~, 115
dependent102 see alsdeature,
extrinsic
directives, 184
extrinsic~, 102 102-105
independentl02 see alsdeature,
intrinsic
interpretation,74
intrinsic ~, 102 105-108
logic, v, 65-87
evolution, 71
overview, 72-73
of component, 91-93
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in ICE, 189
of configuration, 101-112

of derived component, 110-111

of version, 91-93, 97-99
in ICE, 189

path, 167

provided~, 102

required-~, 102

rules for assigning., 97-99

set-valued-, seerole

term, see below

unification, 101, 161-175
example, 163-164
speeding up., 164-175

Feature logic, 69
Feature term, 71, 724

basic~, 84

closed-~, 84

coherent., seeconsistent

consistent., 86

disjoint ~, 86

equivalent-, 85

implementation, 195

in DNF, 85

orthogonal-~, seeorthogonality

partial evaluation, 167-175

primitive ~, 84

guantifier-free~, 84

reduction~, 164-165

representation, 183-195

ASCIl ~, 184
CPP~, 184-187
simple~, 85

Featured file systenseeFFs
Federated architecture, 59, 60
Feiler, Peter H., 5, 58
Feldman, Stuart, 38
Fergany, Adel, 33
Fermat'’s last theorem, 67
FFS 180, 223-235, 265
File
encoding,seeencoding
filter, 230
File system
attributed~, seeAtFS
extensible~, seeEFS
featured-~, seeFFs
virtual ~, 45-48, 223

operating system interface, 246

realization, 47-48
First-order logic, 68, 71
Fischer, Bernd, 73, 265
fixedfeature, 96
Form

as component attribute, 40
Foundation layer
ICE ~, 181
Fowler, Glenn, 46
Frame, 68
Free Software Foundation, 265

Frequently asked questions, 257-262

Frost, Robert, 262
fruit feature, 86, 92
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as component attribute, 40
Funk, Petra, 265
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Gentleman, W. Morven, 55
Ghezzi, Carlo, 246
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C++, 263, 265
DIFF, 213, 265
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MAKE, 38, 241, 265
REGEX, 136
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have-srandonfeature, 189
hcxfeature, 198, 199
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derivation,seederivation history
Horwitz, Susan, 51
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Ibsen, Henrik, 180
ICE, vi, 179-250
architecture, 181-182
case studies, 237-246
conflict resolution, 218-219
distribution, 263
foundation layer, 181
inference engine, 213
layers, 181-182
library, seeLIBICE
MAKE, 180, 265
merging, 218-219
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policy layer, 182
primitives layer, 181223-224 235
properties, 179-180
protocol layer, 182
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standards, 180-181
version set access
usingICICLE, 215-220
using theFFs 223-235
version set operations, 197-221
version set representation, 183—-195
virtual file systemseeFFs
ICICLE, 215-220
VS. FFS 223
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of 1, 78
of 4, 79
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CM procedure4
of merged versions, 155-156
revision~, 11-12
variant~, 12-13
version~, 11-13
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#ifdef  directive,188
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Inclusion,85, see alsal
Incremental configuration environmesge
ICE
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Inheritance, 29, 57, 65, 259
Instantiation, 81
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of SCMsystem, 43
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Internal consistencyd4, 51
Interpretation function74
Intersection, 7277, see alsa
IPSEN 50
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interactive variant selection, 17
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Lattice
revision~, 121
subsumption., 86, 121
Lavency, P., 27
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of computer programming, 139
Leblang, David, 263
Level number12
LEX, 195
Lexical-functional grammar, 71
LIBICE, 215
vs. FFS 223
Library
system~, 47
LIFE, 69
Lindig, Christian, 265
#line directive,191
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Link
symbolic~, 228
linkagefeature, 109, 137
LINUX, 234
Localization, 56, 249
lockedfeature, 147, 148, 151-153
Locking, 44,48, 59,148 147-148, 182
constraint, 147
Logic
description~, seedescription logic
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predicate~, seepredicate logic
propositional, 162
terminological~, seedescription logic
Logical versioning, 10
LOGIN, 69
Long transaction43, see alsavorkspace
Long Transaction Modeb, 47

LOOM, 68
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virtual ~, 61
MacOS§ 227
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Maintainability, 248-249
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as standard folCE, 180-181
GNU ~, 241, 265
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versioned-, 193
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Merged version, 49
Merging, 49-52, 57, 259
identification, 155-156
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textual~, 49, 180
Microsoft, 213, 235
MISTRAL, 52
MJGLNER, 51
Modularity
in system modeling, 22
moodfeature, 78
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Multi-site development, 52-53, 147
Multi-variant editor, 16-17, 20, 56
Multiple dimensional file systenseen-DFS
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Munch, Bjgrn, 19
MVPE, 16

N

n-DFS, 46, 49, 235
realization, 47
Nabla set115
Narayanaswamy, K., 17
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file system seeNFsS
for Unified Configuration
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NORA, 180
not , 187, see alsa
not _eq, 187, see alsa=
NSE, 47
cooperation strategy, 49
realization, 47
NUCM, 53, 147
numfeature, 72
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pool, 11,41, see alscCache for
derived components
object 91
objectfeature, 72, 91-98, 101, 102,
105-112, 118, 136, 137,
143-145, 148, 149
Object-oriented
SCM, 29
system design, 25
system modeling, 22
unified SCM model, 66
Odds
and ends, 251-284
ODIN, 39
operating-systerfeature, 77, 79, 98
Operation contextseecontext
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or, 187, see alsd|
or-else operator, 95
Origin, 117
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version managementl
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in database queries, 27-28
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CM ~, 59,138
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53-54
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R
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vs. attribution, 41
Release, 4
number,12
Remove
operation on version sets, 212
Repository, 5, 914-15
distributed~, 52
evolution, 131-134
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lattice, 121
number,11
removing~, 134
Revision control engineseeRCS
Revision Control SystengeeRCS
Revision set118



296 Rochkind, Marc — System Index

Rochkind, Marc, 9
Role, 68, 111
Rounds, William C., 71

S

Satisfiability problem, 162
SCCS 9, 10, 241
configuration, 25
cooperation strategy, 48
repository, 14
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subsystem21
system21
Sommer, Thorsten, 265
Sommerville, lan, 129
Soul of a new machine, 146
Source Code Control SystesgeSCCS
Stahl, Ragnar, 265
Standard
company-~, 60
industry~ in ICE, 180-181
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subjectfeature, 72
sSuBSreduction, 165
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sunfeature, 239
Sun0S 109
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abstract., seeabstract syntax tree
System
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System library, 47

System model, 5, 18, 21, 109
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tagging
Tagging
configurations seeconfiguration
tagging
target-archfeature, 163, 164
TAUT reduction, 165
Team
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modeling~s, 146
teamfeature, 146
Team work, 3
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tensefeature, 72
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TeX, 265
Text difference seeDifference
Thread

version~, 31
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Tichy, Walter, i, 9
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TWICE, 180
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unix-flavourfeature, 96
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using conditional compilation, 16
temporary-~, 10, 48, 49, 56, 149, 154
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for cooperation, 48
for multi-site development, 52
identification, 13
Variant set,118
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verbfeature, 72
Version, 5,9, 92
access
explicit ~, 45-46, 225
implicit ~, 46—-47, 225
in virtual file system, 45—-47
base-, 49
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current~, seecurrency
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differences, 13-14
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search path28-29
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kinds, 10
merged-, 49
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preferred-~, seepreference
relationship,15, 21-24, 58, 259
selection, 72, 93-96
caveats, 94
complexity, 247-248
in ICE, 197-200
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set,see below
shortcut, 227-228
space, 31, 58, 260
specification, 45
thread, 31
unplanned-, 56, 113
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changing-~, 200-212
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file operations, 212
model, 91-159
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representation asPPfile, 183-195
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writing ~ as file, 200-212
Versioning
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Wolf, Alexander L., 60
Word problem, 162
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in the FFS 223, 226228
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through virtual file system, 45-48
synchronizing~, 149,155
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wormyfeature, 86
Write
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X

x-resolutionfeature, 97, 98
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