
Mining Models

Andreas Zeller

Saarland University – Computer Science, Saarbrücken, Germany
zeller@cs.uni-saarland.de

Abstract. Modern Model Checking techniques can easily verify advanced prop-
erties in complex software systems. Specifying these models and properties is as
hard as ever, though. I present techniques to extract models from legacy systems—
models that are precise and complete enough to serve as specifications, and which
open the door to modular verification.

Automated validation of software systems has made tremendous progress over the past
decade. But all validation, be it static, dynamic, or manual, depends on a specification to
be validated against. Where shall we get these specifications from? It is easy to specify
that a pointer be not null, that a buffer shall not overflow, or that a number may stay
within a specific range (and it is hard enough to validate such claims!). But if we want
to validate more complex patterns of behavior, we will have to deal with specifying
these patterns first. This is not so much a technical challenge, but a social challenge:
We can easily incorporate our validation knowledge into automatic verifiers, which can
then be used as black boxes even by laymen. But how shall we teach programmers how
to specify behavior—at a time when entire domains like the Web have programming
languages designed by amateurs and programs written by amateurs? Our only luck so
far is that the exploits are written by amateurs as well.

One attempt to improve the situation is to mine models from existing systems—
models that are precise and concise enough that they can serve as specifications for
building, validating, or even synthesizing new systems. This is motivated by two key
observation: First, it is easier to read (and possibly extend) a given specification rather
than develop one from scratch. Second, the past 40 years of programming have encoded
lots of knowledge into existing programs that is in daily usage, and possibly a more
trustworthy source than any specification I can write from scratch.

Specification mining is hard, however. First, we need accurate approaches: Static
approaches suffer from overapproximation: they encode more behavior than is actually
possible. Dynamic approaches suffer from underapproximation, as they can learn only
from a finite number of executions. Second, the language by which we express speci-
fications needs to be general, such that it can be easily understood, yet specific for the
project at hand, such that we can exploit the abstractions of the domain. Third, there is
an unlimited number of properties one can mine; and we need to find out which of these
are relevant for the functionality—and for the programmer. In this SPIN 2012 invited
keynote, I present some solutions for these challenges and highlight the potential of
model mining, up to a vision of seamless integration of specification and programming.

Reference
1. Zeller, A.: Specifications for Free. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R.

(eds.) NFM 2011. LNCS, vol. 6617, pp. 2–12. Springer, Heidelberg (2011)

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, p. 23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012


	Mining Models
	Reference




