
Making Students Read and Review Code

Andreas Zeller
Universit ät Passau

Lehrstuhl Software-Systeme
Innstraße 33

94032 Passau, Germany
zeller@acm.org

Abstract

ThePraktomat system allows students toread, review, and
assess each other’s programsin order to improve quality and
style. After a successful submission, the student can retrieve
and review a program of some fellow student selected by
Praktomat. After the review is complete, the student may
obtain reviews and re-submit improved versions of his pro-
gram. The reviewing process is independent of grading; the
risk of plagiarism is narrowed bypersonalized assignments
andautomatic testingof submitted programs. In a survey,
more than two thirds of the students affirmed that reading
each other’s programs improved their program quality; this
is also confirmed by statistical data.

1 Introduction

How do we teach people how to write programs? By letting
them write programs, of course. But how do we teach people
how to writegoodprograms? As instructors, we can easily
assess the functionality by testing programs. We can also
assess the readability by scrutinizing the code. But wouldn’t
it be much more beneficial if the students learned how to
improve program qualitybeforesubmitting their programs?

In industry, there are twobest practicesknown to improve
quality. The first istesting,which helps to improve the func-
tionality. The second is to let someone elseread and review
the program. This is still the most effective way to obtain un-
derstandable, maintainable code. Not only does the quality
of the programs increase this way. In the long term, authors
and reviewers can foster a culture of egoless programming—
no matter how smart a programmer is, reviews will be bene-
ficial.

In a “traditional” programming course, students only expe-
rience one side of reviewing—the result of the instructor’s
assessment. What we’d like is that the student also finds her-
self in areviewer’s situation—struggling with code written

0To appear inProceedings of the 5th ACM SIGCSE/SIGCUE
Annual Conference on Innovation and Technology in Computer Sci-
ence Education, Helsinki, Finland, July 11-13, 2000.
Copyright c
 2000 ACM.

by fellow students, and experiencing what it means if a pro-
gram cannot be read or understood by other people.

For this purpose, we implementedPraktomat,an automated
system for managing the submission, test, and mutual re-
viewing of student’s programs. Praktomat streamlines pro-
gram management byon-line submission,usesautomated
testingto assess program functionality, and provides volun-
tary mutual reviewingto improve readability and maintain-
ability. The danger ofplagiarism is countered by a couple
of constructive measures, among thempersonalized assign-
ments. An evaluation shows that program readability im-
proved significantly for students that had written or received
reviews.

2 Background: The Praktomat system

Our freshman programming course was attended by 118 stu-
dents, with little or no programming knowledge from school.
In a period of three months, they had to implement four pro-
grams realizing fundamental algorithms and data structures
such as quicksort, graphs, or splay trees. The programs were
to be written by each student alone; cooperative work would
be taught in a subsequent large-scale software engineering
project.

Our local legal situation allows teaching assistants only to
give help and assistance for fellow students. The assessment
of programs itself had to be carried out by the four instructors
alone. Fearing to be overwhelmed with work, we built an
automated system to manage the submission and assessment
of student programs, named Praktomat (from “practice” and
“automation”).

In Praktomat, this is the basic process for solving a task:

1. The student logs into Praktomat and gets her assignment.

2. The student submits her program to Praktomat.

3. Programs that cannot be compiled or fail the test are re-
jected.

4. After successful submission, the student can retrieve pro-
grams of her fellow students in order to read and review
them.



5. The student may obtain reviews and re-submit improved
versions of her program.

6. Eventually, one of the instructors assesses and grades the
program for functionality and understandability.

The system was implemented as a Python [7]CGI script, ac-
cessible via theWWW. Today, Praktomat consists of about
10,000 lines of code; it has been designed to be easily re-
used in other contexts.

3 Automatic Testing

In order to achieve basic functionality, Praktomat compiles
and tests each submitted program, using the widespreadDE-
JAGNU[6] andEXPECT[4] regression testing packages. The
program itself is run in asandboxwhere it could not access
or manipulate any resources; time and memory usage were
limited as well.

In Praktomat, programs can communicate with the user (and
the testing package) only by means of standard input and
output. Consequently, the assignment itself has to specify
every single bit of interaction; and it has to be realizedex-
actly as specified. Otherwise, the testing package rejects the
program. As told in [2] or [5], our students found the de-
manded precision nit-picking at first, but got quickly used to
read and realized the assignments verbatim.

The public test cases are disclosed to the students (Figure 1).

Figure 1: Testing student solutions in Praktomat

But Praktomat also runs a number ofsecret test caseswhose
results are disclosed to the instructors only when finally as-
sessing the program. The students knew about the existence
of these secret test cases, and they felt encouraged to realize
correct and robust programs.

4 Personalized Assignments

As laid out in Chapter 1, we wanted to allow the students
to read and review each other’s programs. The first means to
reduce the risk of plagiarism was to ensure that a student was
allowed to review a programonly if she already had submit-
ted her own solution—that is, there would be no incentive to
steal one other’s work.

The second means was to ensure that in any case, the pro-
gram author and the reviewer would havediffering assign-
ments. In fact, each assignment wasparametrizedby a num-
ber of boolean variables:

Use the ifdef(V1, Quicksort, Merge-
sort) algorithm to sort the entries
from the ifdef(V2, lowest, greatest)
to the ifdef(V2, greatest, lowest)
value.

This text was run through the macro processor M4, such that
depending on the settings ofV1 andV2, a totally different
assignment would be produced. Altogether, we had up to
256 different configurations, such that the chance of two stu-
dents having exactly the same assignment was very small—
and when matching author and reviewer, Praktomat would
ensure amaximum differencebetween the two assignments.

The tests were personalized along with the assignments. In
the example above, the test would expect a particular sorting
order, depending on the value ofV2.

5 Mutual Reviews

After a student has submitted her program successfully, she
can retrieve a program in order to review it. Reviewing
means that the program code could be read and annotated as
well as assessed for various style considerations, such as pro-
gram indentation, consistent usage of identifiers, structure,
data flow, etc. (Figure 2 on the next page)—very much as
in theBOSSsystem [3]. These style criteria were explained
in the course; this same form would later be used by the in-
structors for the final assessment. Praktomat uses ablind
review process: the author’s identity is disclosed only after
the assessment is done.

An important thing to note is thatthe final assessment is to-
tally independent from any earlier reviewing.The instruc-
tors never see any review, nor do they learn anything about
the review process, nor does the grade depend on sent re-
views. Praktomat hides all these details from the instructors,
making it a “students only” business.



Figure 2: Mutual reviewing in Praktomat

To ensure a maximum of fairness among student reviewers,
we implemented a number ofrulesthat assign a solution to a
reviewer. Whenever a student asks Praktomat for a program
to be reviewed, Praktomat follows these simple rules:

Everyone gets his share.Praktomat prefers programs
which have received a minimum of reviews so far. This
ensures that eventually, every solution is reviewed.

Give, and it shall be given to you.Praktomat prefers pro-
grams whose authors have composed a maximum of re-
views. This encourages early and multiple reviewing.

Tit for tat. Praktomat prefers programs whose authors have
reviewed a program of the requesting student. This means
that students review each otherin pairs: If studentA
gives an unsubstantiated review to studentB, she must
fear thatB applies the same low standards when sending
him her review ofA’s program.

Opposites attract. Among all remaining solutions, Prak-
tomat chooses the one whose assignment has amaximum
distancefrom the reviewer’s assignment—and it never
chooses a solution below a minimum distance. This dis-
courages plagiarism.

In the beginning of our course, each student who would send
in a review was allowed to delay the submission of his final
program for another week. It turned out that this incentive
was not required: people were so eager to obtain reviews that

they competed with each other in submitting a large number
of early reviews.

The students took their job seriously: Much to our shame,
some students complained that they got more feedback from
their reviewers than from the instructors’ assessments. Dur-
ing the course, 84 out of 119 students (70.5%) wrote at
least one review. These 84 students wrote a total number
of 275 reviews—on the average, 3.27 reviews per student.

6 Evaluation and Conclusion

From the student’s view, Praktomat usage was a tremendous
success. In the official evaluation, students were asked to
judge whether some Praktomat usage had improved the qual-
ity of their programs:

� 57.7% confirmed the effectiveness ofautomatic testing
(and an additional 28.8% confirmed this partially)

� 61.5% confirmed the effectiveness ofreading and review-
ing programs of fellow students (and an additional 19.2%
confirmed this partially)

� 63.5% confirmed the effectiveness ofhaving their pro-
grams read and reviewedby fellow students (and an addi-
tional 13.5% confirmed this partially)

The effectiveness of reading and reviewing is also backed by
statistical data. Figure 3 on the following page shows the
final grades obtained forprogram readability, partitioned by
the number of reviews written. (Grades range from 0 “poor”
to 3 “very good”.) On the average, students who wrote no
review at all, had a grade of 1.93; students who wrote one or
more reviews reached a grade of 2.18. Figure 3 shows that
the grade increases with the number of reviews written.

Receiving reviewsimproves readability even more than writ-
ing reviews. Figure 3 on the next page shows readability
grades, partitioned by the number of reviews received. On
the average, students who received no review had a grade
of 1.82; students who received one or more reviews reached
a grade of 2.16. Again, on the average, the grade increases
with the number of reviews received.

These results alone would have sufficed to keep up the good
work; but what is the instructors’ story?

� The initial effort was high. Creating the assignments
and test casesdemanded much more effort than in non-
automated settings. This was due to the high precision
required for automated testing, but also to the high num-
ber of possible configurations. (Writing Praktomatalso
took a great deal of work—but this was a one-time effort.)

� Students and instructors perceived a much higherfairness
in assessing the students’ work. All programs were sub-
jected to the same tests; detailed criteria unified the as-
sessment of programming style.



0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12

C
la

rit
y 

G
ra

de
s

Sent Reviews

Range with average

Figure 3: Grades versussentreviews

� We found thatautomatic testingconsiderably simplified
assessing the functionality of the program. We also found
that theprogramming styleimproved much faster than in
earlier courses—which we assume is a result of mutual
reviewing.

Although we found that personalized assignments helped a
lot to inhibit plagiarism from the start, we want to enhance
Praktomat with means todetect remaining plagiarism auto-
matically [1]. Also, we want to introduce a certainrandom-
nessin test cases to exclude programs tailored to pass the
public tests. Finally, we want to plug in a number ofstatic
and dynamic analysis techniquesto ease assessment (and the
students’ self-improvement) even further.

Altogether, we find that Praktomat killed two birds with one
stone: the course management is streamlined, and the stu-
dents get an initial exposure to industry’s best practices. We
are convinced that automatic testing and mutual reviewing
will help students to improve in all their future programming
tasks.

Further information on Praktomat, including the Praktomat
source code1, is available at

http://www.fmi.uni-passau.de/st/praktomat/ .

References

[1] Gitchell, D., and Tran, N. Sim: A utility for detecting sim-
ilarity in computer programs. InProceedings of the 4th An-
nual Conference on Innovation and Technology in Computer
Science Education—ITiCSE(Cracow, Poland, 1999), pp. 266–
269.

[2] Isaacson, P. C., and Scott, T. A. Automating the execution of
student programs.ACM SIGCSE Bulletin 21, 2 (1989), 15–22.

[3] Joy, M., and Luck, M. Effective electronic marking for on-
line assessment. InProceedings of the 3rd Annual Conference

1Right now, Praktomat is available in German language only.
Please contact us for internationalized versions.

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

C
la

rit
y 

G
ra

de
s

Received Reviews

Range with average

Figure 4: Grades versusreceivedreviews

on Integrating Technology into Computer Science Education—
ITiCSE(Dublin, Ireland, 1998), pp. 134–138.

[4] Libes, D. Regression testing and conformance testing interac-
tive programs. InProceedings of the Summer 1992 USENIX
Conference(San Antonio, Texas, June 1992). Distributed with
DejaGnu.

[5] Reek, K. A. Thetry system—or how to avoid testing student
programs.ACM SIGCSE Bulletin 21, 1 (1989), 112–116.

[6] Savoye, R.The DejaGnu Testing Framework. Free Software
Foundation, Inc., Jan. 1996. Distributed with DejaGnu.

[7] van Rossum, G.Python Tutorial, 1.5.2 ed. www.python.org,
Apr. 1999.


