Making Students Read and Review Code

Andreas Zeller
Universit at Passau
Lehrstuhl Software-Systeme
Innstral3e 33
94032 Passau, Germany
zeller@acm.org

Abstract by fellow students, and experiencing what it means if a pro-

gram cannot be read or understood by other people.
The Praktomat system allows students tead, review, and

assess each other’s prograinsorder to improve quality and H ia th bmissi d I
style. After a successful submission, the student can retrieveSyStém for managing the submission, test, and mutual re-
and review a program of some fellow student selected by viewing of student's programs. Prgktpmat streamlines pro-
Praktomat. After the review is complete, the student may 9r@m management byn-line submissionusesautomated
obtain reviews and re-submit improved versions of his pro- testingto assess program functionality, fa.nd prowde.s V‘?'””'
gram. The reviewing process is independent of grading; the tary mutual reviewingo improve _readab|llty and maintain-
risk of plagiarism is narrowed byersonalized assignments ~ 2Pility. The danger oplagiarismis countered by a couple

and automatic testingf submitted programs. In a survey, °f constructive measures, among thpersonalized assign-

more than two thirds of the students affirmed that reading MeNts: An evaluation shows that program readability im-
each other's programs improved their program quality; this proved significantly for students that had written or received
r

is also confirmed by statistical data. eviews.

For this purpose, we implement@daktomat,an automated

1 Introduction 2 Background: The Praktomat system

_ 5 . Our freshman programming course was attended by 118 stu-
T}OW do we teach peop][e how to W”tﬁ programs: B?’] Iettmgl] dents, with little or no programming knowledge from school.
them write programs, of course. But how do we teach people |, 5 heriod of three months, they had to implement four pro-

how to writegoodprograms? As instructors, we can easily ;.5 mg realizing fundamental algorithms and data structures
assess the functionality by testing programs. We can alsog, 55 quicksort, graphs, or splay trees. The programs were
assess the readability by scrutinizing the code. Butwouldn't) \\ritten by each student alone; cooperative work would
it be much more beneficial if the students learned how 10 o 15,5t in a subsequent large-scale software engineering
improve program qualitpeforesubmitting their programs? project.

In industry, there are twbest practiceknown to improve

. A . _ . Our local legal situation allows teaching assistants only to
quality. The first igesting,which helps to improve the func-

! ’) X give help and assistance for fellow students. The assessment
tionality. The se_co_nd IS to let someone_eﬂead and review of programs itself had to be carried out by the four instructors
the program. Thls_ls s_t|II the most effective way to obtain un- Sione. Fearing to be overwhelmed with work, we built an
derstandable, maintainable code. Not only does the quality 5 ;t,mated system to manage the submission and assessment

of the programs increase this way. In the long term, athors of student programs, named Praktomat (from “practice” and
and reviewers can foster a culture of egoless programming—«g ;o mati on”).

no matter how smart a programmer is, reviews will be bene-
ficial. In Praktomat, this is the basic process for solving a task:

In a “traditional” programming course, students only expe-
rience one side of reviewing—the result of the instructor’s
assessment. What we'd like is that the student also finds her2. The student submits her program to Praktomat.
self in areviewer's situatior—struggling with code written

1. The student logs into Praktomat and gets her assignment.

3. Programs that cannot be compiled or fail the test are re-

°To appear inProceedings of the 5th ACM SIGCSE/SIGCUE jected.

Annual Conference on Innovation and Technology in Computer Sci- L .
ence EducatiopHelsinki, Finland, July 11-13, 2000. 4. After successful submission, the student can retrieve pro-

Copyright(© 2000 ACM. grams of her fellow students in order to read and review
them.

5. The student may obtain reviews and re-submit improved But Praktomat also runs a numbersgfcret test caseghose

versions of her program.

results are disclosed to the instructors only when finally as-
sessing the program. The students knew about the existence

6. Eventually, one of the instructors assesses and grades thg¢ iese secret test cases, and they felt encouraged to realize

program for functionality and understandability.

The system was implemented as a Pythord@] script, ac-
cessible via thevww. Today, Praktomat consists of about

correct and robust programs.

4 Personalized Assignments

10,000 lines of code; it has been designed to be easily re-As laid out in Chapter 1, we wanted to allow the students

used in other contexts.

3 Automatic Testing

In order to achieve basic functionality, Praktomat compiles
and tests each submitted program, using the widespead
JAGNU [6] andEXPECT[4] regression testing packages. The
program itself is run in @andboxwhere it could not access
or manipulate any resources; time and memory usage were

limited as well.

In Praktomat, programs can communicate with the user (and
the testing package) only by means of standard input and
output. Consequently, the assignment itself has to specify
every single bit of interaction; and it has to be realized
actly as specifiedOtherwise, the testing package rejects the
program. As told in [2] or [5], our students found the de-

to read and review each other’s programs. The first means to
reduce the risk of plagiarism was to ensure that a student was
allowed to review a programnly if she already had submit-
ted her own solutior-that is, there would be no incentive to
steal one other’s work.

The second means was to ensure that in any case, the pro-
gram author and the reviewer would hadiffering assign-
ments In fact, each assignment wparametrizedy a num-

ber of boolean variables:

Use the ifdef(V1l, Quicksort, Merge-
sort) algorithm to sort the entries
from the ifdef(V2, lowest, greatest)
to the ifdef(V2, greatest, lowest)
value.

manded precision nit-picking at first, but got quickly used to This text was run through the macro processor M4, such that

read and realized the assignments verbatim.

depending on the settings ®fl andV2, a totally different
assignment would be produced. Altogether, we had up to

The public test cases are disclosed to the students (Figure 1)o54 gifferent configurations, such that the chance of two stu-

852l Netscape: Practice of Programming: Test Result o o]

=

File Edit View Go Window Help

1453 Bod a8 3

] & Bookmarks B GoTo: [htto:/ /v, ame. eduspractomat]

/

Your program

sort.mi

MODULE sort;

FROM Inout IMPORT WriteString, WriteBf, Writeln, WriteInt, ReadInt, ReadString:
(progran text follows...)

EMD sort.
Compile log
Your program was compiled successfully:

Mocka 9605

>> p sort

.. Compiling Program Module sort I/000012345678 1T,/000012345678
.. Linking sort

> g

Testlog
Your program failed on some public test cases:

spawn Spublic/bin/sandbox .. /sort

songs>» Running ./sort.tests/public.exp ...

add Dont—want-no—scrubs 5

songs> PASS: add Dont—want-no-scrubs 5

add Boom-Boom—-Shake-The—Room 251

songs: invalid speed

songs> PASS: add Boom-Boom-Shake-The—Room 251

add Boom-Boom-Shake—The—Room 7

songs> PASS: add Boor—Bootr-Shake-The—Roaom 7

add Ne-me—quitte—pas 0

FAIL: add Ne-me—quitte-pas 0 (expected error message)

add Ne-me—quitte—pas 3

songs> PASS: add Ne-me-quitte—pas 3

write

Dont—want-no-scrubs 5, Boom-Boom-Shake-The—Room 7, Ne—me—guitte-pas 0, Ne—me-quitte-pas 3
®g x, % hake—-Thi 7 ox,

FAIL: write (expected "Dont-want: b

it
q
Your program cannot he aceepted. Please find out why your prograrm does not pass the test and try again,

Questions Comiinents PJease ack youw (DSt dnctnistor® some i, Thisis Practonmat 1.0(1999-11-18)
s for e Tes:

Do you frave ity e sTions fov PRaTINRAE> Eari & CROCORaTE BT i, NOEINDeP 23 TSGR 1999

] =

s

==
[o0 |

Figure 1: Testing student solutions in Praktomat

dents having exactly the same assignment was very small—
and when matching author and reviewer, Praktomat would
ensure anaximum differencbetween the two assignments.

The tests were personalized along with the assignments. In
the example above, the test would expect a particular sorting
order, depending on the value\¢2.

5 Mutual Reviews

After a student has submitted her program successfully, she
can retrieve a program in order to review it. Reviewing
means that the program code could be read and annotated as
well as assessed for various style considerations, such as pro-
gram indentation, consistent usage of identifiers, structure,
data flow, etc. (Figure 2 on the next page)—very much as
in the BOSSsystem [3]. These style criteria were explained

in the course; this same form would later be used by the in-
structors for the final assessment. Praktomat uskeknd
review processthe author’s identity is disclosed only after
the assessment is done.

An important thing to note is thahe final assessment is to-
tally independent from any earlier reviewind@.he instruc-

tors never see any review, nor do they learn anything about
the review process, nor does the grade depend on sent re-
views. Praktomat hides all these details from the instructors,
making it a “students only” business.

B e : f‘:‘ they competed with each other in submitting a large number
T4e63 e sg@ 3 of early reviews.
e s s s il 4 The students took their job seriously: Much to our shame,
o oo some students complained that they got more feedback from
3 18 the solufion as subrmitted by Jimmy Corrgan, . . .
I their reviewers than from the instructors’ assessments. Dur-
PROCEDURE gcd(a,b:CARDINALY: CARDINAL; .
Ceimputs 3663 ing the course, 84 out of 119 students (70.5%) wrote at
w o 1njgf?tszﬁga:?;m;5ve; J least one review. These 84 students wrote a total number
g of 275 reviews—on the average, 3.27 reviews per student.
RETURN(a) ;
END ggt;
VR .7 CARDINAL . 6 Evaluation and Conclusion
I~]
Assessment grades From the student’s view, Praktomat usage was a tremendous
Please use the followhng grades fo your assessinent success. In the official evaluation, students were asked to
T s mets judge whether some Praktomat usage had improved the qual-
D ey s, e ity of their programs:
gues thisklfn’ugramkfl.\lfil the assignm/z{\t'." A4 vBvC D
lease use ‘F? tomark problematc code, use “f° to mork well-done code. . 3 .)
re components and procedures sl ; Sh VBT D e 57.7% confirmed the effectiveness afitomatic testing
Please use “d7° to mark problematic code, use ‘1" to mark well-done code. (and an add|t|0na_| 28.8% Conflrmed thIS part|a|ly)
Is the program structure fllustrated by consistent indentation and white space? vA4°B+C~D
Please nse ‘w?" to mark problematic code, nse “w!” to mark well-done code.
1s tallowing the control fow simplifed by sroal wellstructured fanctions? ch B +CvD e 61.5% confirmed the effectivenessreding and review-
Please use “s?’ to mark problematic eode, nse ‘s’ to mark well-done code. . ey 0
v s comtenty s end el chone B oo ing programs of fel!ow students (and an additional 19.2%
Please use i7" to mark problematic code, nse “it” to mark well-done code. Conf|rmed th|S part|a||y)
Is each component (function, variable, type) chosen as local as possible? “A~vB~C~D |4
= | e 63.5% confirmed the effectiveness ladving their pro-
grams read and revieweuly fellow students (and an addi-
Figure 2: Mutual reviewing in Praktomat tional 13.5% confirmed this partially)

The effectiveness of reading and reviewing is also backed by
statistical data. Figure 3 on the following page shows the
final grades obtained fqrogram readability partitioned by

the number of reviews written. (Grades range from O “poor”
to 3 “very good”.) On the average, students who wrote no
review at all, had a grade of 1.93; students who wrote one or
more reviews reached a grade of 2.18. Figure 3 shows that
the grade increases with the number of reviews written.

To ensure a maximum of fairness among student reviewers,
we implemented a number nilesthat assign a solution to a
reviewer. Whenever a student asks Praktomat for a program
to be reviewed, Praktomat follows these simple rules:

Everyone gets his sharePraktomat prefers programs
which have received a minimum of reviews so far. This
ensures that eventually, every solution is reviewed.

))) Receiving reviewsnproves readability even more than writ-

Give, and it shall be given to you. Praktomat prefers pro- g reviews. Figure 3 on the next page shows readability
grams whose authors have composed a maximum of re-graqdes, partitioned by the number of reviews received. On
views. This encourages early and multiple reviewing. the average, students who received no review had a grade

Tit for tat. Praktomat prefers programs whose authors have of 1.82; students who_ received one or more reviews reached
reviewed a program of the requesting student. This means® 9rade of 2.16. Again, on the average, the grade increases
that students review each othier pairs: If student A with the number of reviews received.
gives an unsubstantiated review to stud@jtshe must These results alone would have sufficed to keep up the good
fear thatB applies the same low standards when sending work; but what is the instructors’ story?
him her review of4’s program.

e The initial effort was high. Creating the assignments
and test casedemanded much more effort than in non-
automated settings. This was due to the high precision
required for automated testing, but also to the high num-
ber of possible configurations Witing Praktomatalso
took a great deal of work—but this was a one-time effort.)

Opposites attract. Among all remaining solutions, Prak-
tomat chooses the one whose assignment magxamum
distancefrom the reviewer's assignment—and it never
chooses a solution below a minimum distance. This dis-
courages plagiarism.

In the beginning of our course, each student who would sende Students and instructors perceived a much hifgieness

in a review was allowed to delay the submission of his final in assessing the students’ work. All programs were sub-
program for another week. It turned out that this incentive jected to the same tests; detailed criteria unified the as-
was not required: people were so eager to obtain reviews that sessment of programming style.

T T
Range with average :---e---:

25

. S

Clarity Grades
N
R in st ﬂ»+++++ B i
H-
e

=
o

0.5

0 2 4 6 8 10 12
Sent Reviews

Figure 3: Grades versisentreviews

e We found thatautomatic testingconsiderably simplified

assessing the functionality of the program. We also found

that theprogramming stylémproved much faster than in

earlier courses—which we assume is a result of mutual

reviewing.

Although we found that personalized assignments helped a[5)
lot to inhibit plagiarism from the start, we want to enhance

Praktomat with means tbetect remaining plagiarism auto-
matically[1]. Also, we want to introduce a certaiandom-

nessin test cases to exclude programs tailored to pass the

public tests. Finally, we want to plug in a numberstétic

and dynamic analysis techniquesease assessment (and the

students’ self-improvement) even further.

Altogether, we find that Praktomat killed two birds with one

Clarity Grades

(6]

[7]

stone: the course management is streamlined, and the stu-

dents get an initial exposure to industry’s best practices. We
are convinced that automatic testing and mutual reviewing
will help students to improve in all their future programming

tasks.

Further information on Praktomat, including the Praktomat

source codk is available at

http://www.fmi.uni-passau.de/st/praktomat/ .

References

[1] Gitchell, D., and Tran, N. Sim: A utility for detecting sim-
ilarity in computer programs. |RProceedings of the 4th An-

nual Conference on Innovation and Technology in Computer

Science Education—ITiCSEracow, Poland, 1999), pp. 266—
269.

(2]
student programsACM SIGCSE Bulletin 212 (1989), 15-22.

[3] Joy, M., and Luck, M. Effective electronic marking for on-

Isaacson, P. C., and Scott, T. A. Automating the execution of

line assessment. Aroceedings of the 3rd Annual Conference

!Right now, Praktomat is available in German language only.
Please contact us for internationalized versions.

T T T
Range with average :---e---:

25

15

0.5

0 1 2 3 4 5 6 7
Received Reviews

Figure 4: Grades versusceivedreviews

on Integrating Technology into Computer Science Education—
ITICSE(Dublin, Ireland, 1998), pp. 134—-138.

Libes, D. Regression testing and conformance testing interac-
tive programs. IrProceedings of the Summer 1992 USENIX
ConferencéSan Antonio, Texas, June 1992). Distributed with
DejaGnu.

Reek, K. A. Thetry system—or how to avoid testing student
programs ACM SIGCSE Bulletin 211 (1989), 112-116.

Savoye, R.The DejaGnu Testing Frameworlree Software
Foundation, Inc., Jan. 1996. Distributed with DejaGnu.

van Rossum, G.Python Tutoria) 1.5.2 ed. www.python.org,
Apr. 1999.

