
When Abstraction Fails

Andreas Zeller

Saarland University, Saarbrücken, Germany
zeller@cs.uni-sb.de

Abstract. Reasoning about programs is mostly deduction: the reasoning from
the abstract model to the concrete run. Deduction is useful because it allows us
to predict properties of future runs—up to the point that a program will never
fail its specification. However, even such a 100% correct program may still show
a problem: the specification itself may be problematic, or deduction required us
to abstract away some relevant property. To handle such problems, deduction is
not the right answer—especially in a world where programs reach a complexity
that makes them indistinguishable from natural phenomena. Instead, we should
enrich our portfolio by methods proven in natural sciences, such as observation,
induction, and in particular experimentation. In my talk, I will show how system-
atic experimentation automatically reveals the causes of program failures—in the
input, in the program state, or in the program code.

1 Introduction

I do research on how to debug programs. It is not that I am particularly fond of bugs,
or debugging. In fact, I hate bugs, and I have spent far too much time on chasing and
eradicating them. People might say: So, why don’t you spend your research time on
improving your specification, model checker, software process, architecture, or what-
ever the latest and greatest advance in science is. I answer: All of these helppreventing
errors, which is fine. But none can prevent surprises. And I postulate that surprises
are unavoidable, that we have to teach people how to deal with them and to set things
straight after the fact.

As one of my favorite examples, consider thesampleprogram in Fig. 1 on the fol-
lowing page. Ideally, thesample program sorts its arguments numerically and prints
the sorted list, as in this run (r✔):

sample 9 8 7 ⇒ 7 8 9

With certain arguments,sample fails (runr✘):

sample 11 14 ⇒ 0 11

Surprise! While the output ofsample is still properly sorted, the output is not a per-
mutation of the input—somehow, a zero value has sneaked in. What is the defect that
causes this failure?

In principle, debugging a program likesample is easy. Initially, some programmer
has created adefect—an error in the code. When executed, this defect causes aninfec-
tion—an error in the program state. (Other people call this afault, but I prefer the term



1 /* sample.c -- Sample C program to be debugged */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 static void shell_sort(int a[], int size)
7 {
8 int i, j;
9 int h = 1;

10 do {
11 h = h * 3 + 1;
12 } while (h <= size);
13 do {
14 h /= 3;
15 for (i = h; i < size; i++)
16 {
17 int v = a[i];
18 for (j = i; j >= h && a[j - h] > v; j -= h)
19 a[j] = a[j - h];
20 if (i != j)
21 a[j] = v;
22 }
23 } while (h != 1);
24 }
25
26 int main(int argc, char *argv[])
27 {
28 int i = 0;
29 int *a = NULL;
30
31 a = (int *)malloc((argc - 1) * sizeof(int));
32 for (i = 0; i < argc - 1; i++)
33 a[i] = atoi(argv[i + 1]);
34
35 shell_sort(a, argc);
36
37 for (i = 0; i < argc - 1; i++)
38 printf("%d ", a[i]);
39 printf("\n");
40
41 free(a);
42 return 0;
43 }

Fig. 1.Thesampleprogram (almost) sorts its arguments.

infection, because the error propagates across later states, just like an infection.) When
the infection finally reaches a point where it can be observed, it becomes afailure—in
our case, the zero in the output. Given that a failure has already occurred, it is the duty
of the programmer to trace back this cause-effect chain of infections back to the defect
where it originated—the defect that caused the failure.

As an experienced programmer, you may be able to walk your way through the
source code in Fig. 1 and spot the defect. When it comes to doing so in a general, sys-
tematic, maybe even automated way, we quickly run into trouble, though. The difficulty
begins with the terms. What do we actually mean when we say “the defect that caused
the failure”? What are we actually searching for?

2 Errors are easy to detect, but generally impossible to locate

An error is a deviation from what is correct, right, or true. To tell that something is
erroneous thus requires a specification of what is correct, right, or true. This can be
applied to output, input, state, and code:



Errors in the output. An externally visible error in the program behavior is called a
failure. Our investigation starts when we determine (or decide) that this is the case.

Errors in the input. For the programinput,we typically know what is valid and what
not, and therefore we can determine whether an input is erroneous or not. If the
program shows a failure, and if the input was correct, we know the program as a
whole is incorrect.

Errors in the program state. It is between input and output that things start to get dif-
ficult. When it comes to the programstate,we frequently have specifications that
allow us to catch infections—for instance, when a pre- or postcondition is violated.
Types can be seen as specifications that detect and prevent illegal variable values.
Common programming errors, such as buffer overflows or null pointer derefer-
ences, can be specified and detected at compile time.

Errors in the code. Unfortunately, specifications apply only toparts of the program
state: conditions apply to selected moments in time; types allow a wide range of
values; tools can only check for common errors. Therefore, there will always be
parts of the state for which correctness is not specified. But if we do not know
whether a variable value is correct, we cannot tell whether the code that generated
this value is correct. Therefore, we cannot exactly track down the moment the value
got infected, and therefore, we cannot locate the defect that caused the failure.

Of course, we can catch errors by simply specifying more. A specification that covers
each and every aspect of a program state would detect every single error. Unfortunately,
such a specification would ne no less complex and error-prone than the program itself.

In practice, it is the programmer whodecideswhat is right upon examining the
program—and fixes the program according to thisimpliedspecification. In such a cases,
deciding which part of a program is in error can only be told after the decision has been
made and the error has been fixed. Once we know the correct, right, and true code, we
can thus tell the defect as a deviation from the corrected code. In other words,locating
a defect is equivalent to writing a correct program.And we know how hard this is.

3 Causes need not be errors, but can easily be located

While it may be hard to pinpoint an error, the concept ofcausalityis far less ambiguous.
In general, acauseis an event that precedes another event (theeffect), such that the
effect would not have occurred without the cause. For programs, this means that any
aspect of an execution causes a failure if it can be altered such that the failure no longer
occurs. This applies to input, state, and code:

Causes in the input. We can change the input of thesample program from11 14
(run r✘) to 7 8 9 (run r✔), and the failure no longer occurs. Hence, we know that
the input causes the failure.
One may argue that in any program, the input determines the behavior and thus
eventually causes any failure. However, it may be only parts of the input that are
relevant. For instance, if we runsample with 11 , we find that it is the additional
14 argument which causes the failure:

sample 11 ⇒ 11



Causes in program state.If we can change some variable during execution such that
the failure no longer occurs, we know that the variable caused the failure.
Again, consider the failingsample run r✘. We could use an interactive debugger
and stop the program atmain() (Line 28), changeargc from 2 to 1, and resume
execution. We would find an output of11 , and thus find out that the value ofargc
caused the failure.
As we can see from this example, a cause does not imply an error: The value of
argc probably is correct with respect to some implied specification; yet, it is tied
to the failure.

Causes in the code.All variable values are created by some statement in the code; and
thus, there are statements which cause values which again cause failures.
In thesample program, there is a statement which exactly does that, and which
can (and should) be changed to make the failure no longer occur. The interesting
aspect is that we can find that statement from the causes in the program state. If we
can find a failure cause in the program state, we can trace it back to the statement
which generated it.

Once again, it is important to note that causes and errors are two orthogonal concepts.
We can tell an error without knowing whether it is a cause for the failure at hand, and
we can tell a cause without knowing whether it is an error. In the absence of a detailed
specification, though, we must rely on causality to narrow down those statements which
caused the error—in the hope that the defect is among them.

4 Isolating failure causes with automatic experiments

Verifying that something is a cause cannot be done by deduction. We need at least two
experiments:One with the cause, and one without; if the effect occurs only with the
cause, we’re set. This implies that we need two runs of the program—one where the
failure occurs, and one where the failure does not occur. In debugging, this second run
comes at the very end after fixing the defect—if the failure no longer occurs, this verifies
that the defect actually caused the original failure.

However, having a passing runr✔ and a failing runr✘ initially is the key for finding
causes. The initial difference in the program input causes differences in the program
state, which propagate until we see the final difference in the program outcome. By
comparingr✔ andr✘, we can extract these differences, and compare them to get a first
idea of what caused the failure.

Again, consider thesample program. Table 1 on the next page lists thesample
program states, as well as the differences, as obtained from bothr✔ andr✘ when Line 9
was reached. (a andi occur inshell sort() and inmain() ; theshell sort()
instances are denoted asa′ andi ′.)

Formally, this set of 12 differences is a failure cause: If we change the state ofr✔ to
the state inr✘, we obtain the original failure. However, of all differences, only some may
berelevantfor the failure—that is, it may suffice to change only asubsetof the variables
to make the failure occur. For a precise diagnosis, we are interested in obtaining a subset
of relevant variables that is as small as possible.



Variable Value
in r✔ in r✘

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NULL)
i ′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r✔ in r✘

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

Table 1.One of the state differences betweenr✔ andr✘ causessampleto fail.

Delta Debugging [3] is a general procedure to obtain such a small subset. Given a set
of differences (such as the differences between the program states in Fig. 1), Delta De-
bugging determines arelevant subsetin which each remaining difference is relevant for
the failure to occur. To do so, Delta Debugging systematically and automaticallytests
subsets and narrows down the difference depending on the test outcome, as sketched in
Fig. 2. Overall, Delta Debugging behaves very much like a binary search.

Originally, Delta Debugging was designed for program inputs. However, one may
consider a program state as an input to the remainder of the program execution; hence, it
is pretty straight-forward to apply Delta Debugging on program states to isolate causes.
Applied on the differences in Table 1, Delta Debugging would result in a first test that

– runsr✔ up to Line 9,
– applieshalf of the differences onr✔—that is, it setsargc , argv[1] , argv[2] ,

argv[3] , size , andi to the values fromr✘—, and
– resumes execution and determines the outcome.

This test results in the same output as the original run; that is, the six differences applied
were not relevant for the failure. With this experiment, Delta Debugging has narrowed
down the failure-inducing difference to the remaining six differences. Repeating the
search on this subset eventually reveals one single variable,a[2] , whose zero value is
failure-inducing: If, inr✔, we seta[2] from 7 to 0, the output is0 8 9—the failure
occurs. We can thus conclude that the zero being printed is caused bya[2] —which
we can confirm further by changinga[2] in r✘ from 0 to 7, and obtaining the output
7 11 . Thus, in Line 9,a[2] being zero causes thesample failure.

The idea of determining causes by experimenting with mixed program states (rather
than by analyzing the program or its run, for instance) may seem strange at first. Yet,
the technique has been shown to produce useful diagnoses for programs as large as the
GNU compiler (GCC). As detailed in [2], scaling up the general idea, as sketched here,
requires capturing and comparing program states asmemory graphs[4]. Also, Delta
Debugging must do more than simple binary search; it needs to cope with interferences
of multiple failure-inducing elements as well as with unresolved test outcomes [3].



Passing state Failing state

Mixed state

✔ ✘

?Test outcome

Fig. 2.Narrowing down state differences. By assessing whether a mixed state results in
a passing (✔), a failing (✘), or an unresolved () outcome, Delta Debugging isolates a
relevant difference.

5 Locating the statements that cause the failure—automatically

The tricky question is now: How do we get from failure-causing states to failure-causing
statements? One straight-forward way might be to look at the statements which created
the value. Alas, we won’t find such a statement fora[2] ; it is never assigned a value
before Line 9.

However, it turns out that at the start ofmain() , in Line 28, it is nota[2] which
causes the failure, butargc—if we change the value ofargc from 4 (its value inr✘) to 3
(its value inr✔), the failure no longer occurs. Since initially,argc caused the failure,
and later,a[2] , there must have been some moment in time where this transition from
argc to a[2] took place. This transition can be isolated using binary search over time:
it takes place at Line 35, at the call

shell sort(a, argc);

This is whereargc stops to be a cause, anda[2] begins. This transition implies
that Line 35 causesa[2] to cause the failure—or, in other words, that we can change
Line 35 to make the failure no longer occur. Line 35 is a failure cause.

So, let us focus on Line 35 to see whether it is not only a cause, but in fact, erro-
neous. Let us assume that in the declarationshell sort(int a[], int size) ,
the parametersize stands for the number of elements ina[] . Then, the call in Line 35
is wrong—simply becauseargc is not the number of elements ina[] , but off by one.
The correct call would be

shell sort(a, argc - 1);

By changing the statement, we can re-run the test to see whether the failure still occurs.
It does not; hence, we have proven that the defect actually caused the failure—and
successfully fixed the program.

In this example, the cause transition fromargc to a[2] occurred right at the
place of the defect. As a programmer, though, I may also have decided to change
shell sort() instead such thatsize is the number of elements ina plus one. I



Fig. 3. ASKIGOR with a diagnosis forsample

could also decrease the value ofargc or introduce a new variablearguments initial-
ized with argc - 1 . This number of alternatives shows that it is difficult topredict
an exact change, say, in an evaluation. Therefore, when evaluating whether cause tran-
sitions are effective in locating defects, one uses a measure ofcloseness:If we cannot
predict the exact location of the defect, how close are we in locating it?

To evaluate a defect locator, one thus ranks the statements of the program according
to their likelihood to be defective. In our case, we’d rank the locations of cause transi-
tions at the top, followed by “close” locations—that is, those related by one control or
data dependency—and followed by less close locations by doing an exhaustive breadth-
first search along the system dependency graph. The assumption is that a programmer
starts with the most likely locations (at the top) and then walks down the list until he
or she finds the defect. In a case study [1], it turned out that cause transitions are the
best defect locators available—they locate the failure-inducing defect twice as well as
the best methods known so far. The technique is implemented as part of theASKIGOR
debugging server (Fig. 3).



Yet, we have just begun to explore the idea of making experimenting a part of pro-
gram analysis. There is still a long way to go before these techniques can become part
of the mainstream: in particular, extracting and mixing program states becomes a chal-
lenge if the program is deeply interwoven with its environment. On the other hand,
having automated diagnoses is not only convenient for the programmer, but also may
enable new generations of self-aware systems: Think of a Web server, for instance, that
automatically determines a failure cause in its own code, and thus disables the appro-
priate configuration module—at least as a temporary fix until the code is corrected.

6 Conclusion: Prevent errorsand prepare for surprises

Why focus on cure, when prevention is so much better? Of course, we should continue
to strive for systems that have as few defects as possible. But this must not mean to
neglect the cure altogether. In a world where software systems become more and more
complex, we must be prepared for surprises. And a surprise is exactly what happens
when the given abstraction fails, or where there simply is no abstraction that could tell
what’s right and what’s wrong.

Program analysis has long been based on abstraction alone—deducing predictions
from the program code that hold for future program runs. To analyzepast program
runs, though, requires a much wider portfolio of techniques—simply because there is
much more data to take into account: Besides program code, we can look at actual runs,
test outcomes, version histories—any artifact created during development is welcome.
And if induction to derive common patterns from all these instances is not enough,
we can useexperimentationto generate even more. Fortunately for us, we now have
the computational power available to apply all these techniques. What we need is a
confluence of static and dynamic analysis, of deduction and induction techniques—to
foster the understanding of today’s programs, and to bring surprises and their damage
to a minimum.

Acknowledgments.Thanks to all who gave me feedback on earlier instances of this
talk. Christian Lindig and Stephan Neuhaus gave valuable comments on this paper.

Read more

[1] Holger Cleve and Andreas Zeller. Locating causes of program failures. InProc. International
Conference on Software Engineering (ICSE), St. Louis, Missouri, May 2005.

[2] Andreas Zeller. Isolating cause-effect chains from computer programs. In William G. Gris-
wold, editor,Proc. Tenth ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering (FSE-10), pages 1–10, Charleston, South Carolina, November 2002. ACM Press.

[3] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input.IEEE
Transactions on Software Engineering, 28(2):183–200, February 2002.

[4] Thomas Zimmermann and Andreas Zeller. Visualizing memory graphs. In Stephan Diehl,
editor,Proc. of the International Dagstuhl Seminar on Software Visualization, volume 2269
of Lecture Notes in Computer Science, pages 191–204, Dagstuhl, Germany, May 2002.
Springer-Verlag.

All papers and project news are available online at

http://www.st.cs.uni-sb.de/dd/

http://www.st.cs.uni-sb.de/dd/

	When Abstraction Fails 
	Andreas Zeller

