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ABSTRACT

Debugging is commonly understood as finding and fixing the cause of a problem. But what does “cause”
mean? How can we find causes? How can we prove that a cause is a cause—or even “the” cause? This paper
defines common terms in debugging, highlights the principal techniques, their capabilities and limitations.
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1 How Failures Come to Be

Software bugs are a pain. In the US alone, software bugs cause costs of nearly 60 billion US$ anually,
with more than half of the cost borne by end users[RTI02]. How can we get rid of bugs? Basically,
there are two methods:

• We can prevent bugs (or in other words: write correct software). A plethora of tools and tech-
niques is available to prevent bugs, including better languages, better processes, better anal-
ysis, formal verification. But despite all the advances made in preventing bugs, it seems our
programs just grow accordingly such that the number of bugs stays constant.

• We can cure bugs (or in other words: to fix the defect). This is the dark corner of computer
science—very few people seem to care about debugging. Obviously, to talk about prevention is
nobler than examining the cure. But the cure has been neglected in such a way that the process
of identifying and correcting the root cause of a failure is still as labor-intensive, manual, and
painful as it was 50 years ago.

This paper focus on the cure of bugs—that is, debugging. But what is it that makes debugging so
difficult? In principle, a failure occurs in four steps, illustrated in Figure 1:

1. A programmer creates a defect1in the code. A defect is a piece of the code that can cause an in-
fection—a part of the program state that can cause a failure. In Figure 1, the defect is shown by
a ✘ character.2

2. The input causes execution of the defect. If the defect is not executed, it cannot trigger the failure
in question.

1The appendix of this paper contains a glossary for this and other important terms.
2It is common to say that each defect is created by a mistake made by the programmer. However, there are several settings
where it is difficult to blame an individual for a defect—and anyway, whom to blame is a political, not a technical question.
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Figure 1: How failures come to be

3. The defect causes an infection. An infection is a part of the program state that can cause a failure;
it is created by a defect being executed. In Figure 1, the infected states are shown by ✘ charac-
ters; you can see how the infection propagates along the execution.

A defect in the code does not necessarily cause infections. The defect code must be executed,
and it must be executed under such conditions that the infection actually occurs.

4. The infection causes a failure. A failure is an externally observable error in the program behavior;
it is created by an infection in the program state.

An infection in the program state does not necessarily cause a failure. It may be masked or
corrected by some later program action before it could be observed.
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Figure 2: A program state of the GNU C compiler

One must keep in mind that not every defect results in an infection, and not every infection results
in a failure. Hence, having no failures does not imply having no defects. This is the curse of testing,
as pointed out by Dijkstra [Dij72]: it can only show the presence of defects, but never their absence.
However,

• each failure can be traced back to an infection,

• each infection can be traced back to a defect that caused the infection,

• each defect can be traced back to an input that caused the defect to be executed.

Isolating this cause-effect chain within the program run—from input via the defect to the final state, as
highlighted in Figure 1, is the main part of debugging. The second, smaller, part is to fix the defect
such that the failure no longer occurs—that is, one must break the cause-effect chain.

Why is finding a cause-effect chain so difficult? First, there is a lack of methodology in debugging.
In natural science, it is mandatory to make the scientific method explicit—that is, to write down the
hypotheses, the expectations, the experiments, and the conclusions from these experiments. If you
don’t write down what you’re doing, you must keep all these things in your head—which is why
you cannot leave your desk until the failure cause is found and fixed.

But even if you are conscious about bookkeeping, the search space simply is enormous. Program
states are large, with tens of thousands of variables. Figure 2 shows the program state of the GNU C
compiler with 42,991 variables (vertices) and 44,290 references (edges). And this is only one single
state at one moment in time—an actual run is composed of millions to billions of such program
states. Now, if tell you that one single reference in the shown program state causes the compiler to
crash, how do you find it? You clearly need to be an expert in the program you’re analyzing in order
to make good guesses about problem causes.
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2 About Causality

To understand debugging, we must understand causes and effects. If we say that a defect causes a
failure, what does this actually mean? The most common definition for causality is as follows:

A cause is an event preceding another event without which the event in question would
not have occurred. The event in question is called the effect.

Hence, a defect causes the failure if the failure would not have occurred without the defect.
In natural and social sciences, causality is often hard to establish. Just think about common dis-

putes such as “Did usage of the butterfly ballot in West Palm Beach cause George W. Bush to be
President of the United States?”, “Did drugs cause the death of Elvis Presley?”, or “Does human
production of carbon dioxide cause global warming?”.

To determine whether these are actually causes, formally, we would have to repeat history with-
out the cause in question—in an alternate world that is as close as possible to ours. If in this alternate
world, Albert Gore were president, Elvis were alive, global warming were less, we knew that butter-
fly ballots, drugs, or carbon dioxide had been actual causes for the given effects.

Unfortunately, we cannot repeat history. We can only speculate, and this is why anyone can al-
ways come up with a new theory about the true cause, and this is why some empirical researchers
have suggested dropping the concept of causality altogether.

In our domain of computer science, though, things are different. We can easily repeat program
runs over and over, change the circumstances of the execution as desired, and observe the effects.
Given the right means, the program execution is under total control and totally deterministic.

Scientists frequently use computers to determine causes and effects in models of the real world.
However, such causes and effects run the danger to be inappropriate in the concrete, because the
model may have abstracted away important aspects. If we are determining causes and effects in the
program itself, though, there is no such risk—we are already dealing with the real thing. Hence,
debugging is the only scientific discipline which can claim dealing with actual causality.

However, the above definition of cause is not without problems. Consider some failing program.
By the definition above, its entire code is a cause for the failure (because without the entire code, there
would be no program to execute). Likewise, the existence of electricity is a failure cause, because
without electricity. . . well, you see how the argument goes.

To discriminate between these alternatives, the concept of the closest possible world comes in handy.
A world is said to be “closer” to the actual world than another if it resembles the actual world more
than the other does. The idea is that “the” cause should be a minimal difference between the actual
world where the effect occurs and the alternate world where it would not (Figure 3). In other words,
the alternate world should be as close as possible:

An actual cause is a difference between the actual world where the effect occurs and the
closest possible world where it would not.

The concept of the closest possible world is applicable to all causes—including the causes required
for debugging. So, if we want to find the actual cause for a program failure, we can quickly eliminate
“causes” like the existence of electricity—a world without electricity would be so much different
from ours that it would hardly qualify as “closest”. Instead, we have to search for the closest possible
world in which the failure does not occur:

• The actual failure cause in a program input is a minimal difference between the actual input
(where the failure occurs) and the closest possible input where the failure does not occur.

• The actual failure cause in a program state is a minimal difference between the actual program
state and the closest possible state where the failure does not occur.

• The actual failure cause in a program code is a minimal difference between the actual code and
the closest possible code where the failure does not occur.
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Figure 3: Causes as differences between alternate worlds

The principle of picking the closer alternate world is also known as Ockham’s Razor—whenever you
have competing theories for how some effect comes to be, pick the simplest. As a side effect, this
quickly eliminates unlikely causes like “the compiler doesn’t work”, “the CPU must be wrong”,
“Aliens tampered my computer”—or whatever young programmers come up with to decline re-
sponsibility.3

The definition of actual causes carries important side-effects for debugging. Most important is,
you cannot tell that some property is a failure cause until it has been altered such that the failure no
longer occurs. In other words: The proof of the error is in the fix.

3 Reasoning About Programs

So, how can one find failure causes? Let me first line up some reasoning techniques that do not find
failure causes [Zel03]:

Deduction. Deduction is reasoning from the abstract into the concrete. In debugging, deduction
techniques typically come in the form of static analysis techniques that abstract from the (ab-
stract) program code into the (concrete) program run. They determine what can happen during
a program run (or, more precisely, exclude what cannot happen). In debugging, the typical in-
stance of static analysis is program slicing [Wei82, Tip95].

Deduction techniques are great in finding errors—deviations from what’s correct, right, or true.
Several syntactical and semantical errors can be caught by deduction. So why can’t deduction
find failure causes? To put things straight: deduction can find lots and lots of errors, and it
deserves all our credits.

However, to prove that an error (or a potential error) is an actual failure cause requires pro-
gram execution, and deduction prohibits dealing with the concrete. Furthermore, deduction
works on an abstraction of the real thing, and there is always a risk of some failure cause being
abstracted away.

Observation. Observation allows the programmer to inspect arbitrary aspects of an individual pro-
gram run. Since an actual run is required, the associated techniques are called dynamic. Obser-
vation brings in actual facts of a program execution; unless the observation process is flawed,
these facts cannot be denied.

3Well, not quite. In my 20-year career as a programmer, I actually found one defect in the 6502 CPU, two defects in the GNU
compiler, and one defect in the C++ language definition. This sums up to one “unlikely” defect per five years—a reason to
eliminate all other potential causes first.

Fifth Int. Workshop on Automated and Algorithmic Debugging



XXX6 ANDREAS ZELLER

Deduction

Observation

Induction

Experimentation
finds causes

conducts program runs

finds anomalies
uses fixed number of program runs

finds facts
uses one program run

finds errors
uses no program run

Figure 4: A hierarchy of reasoning techniques

Observation is the base of all interactive debugging tools, and has helped millions of program-
mers narrowing down defects. But observation alone, again, cannot find failure causes. You
need to prove that altering the suspected infection or defect actually causes the failure to disap-
pear.

Induction. Induction is reasoning from the particular to the general. In program analysis, induc-
tion is used to summarize multiple program runs—e.g. a test suite or random testing—to some
abstraction that holds for all considered program runs. The key concept added induction is
anomalies—the way a failing run differs from one or more working runs.

Early uses if induction involved only two runs—a working and a failing one. A relative debug-
ger [SA97] compares two runs and reports any differences it can find. A dice [LW87] or differ-
ence between two dynamic slices shows up the statements that were involved in producing the
failure, but not in producing the correct result—these anomalies frequently include the defect.
Likewise, comparing the code coverage can highlight potentially erroneous code [JHS02]. Dy-
namic invariants [ECGN01] can be also be used to detect anomalous program behavior [HL02].

Anomalies are not necessarily errors; they are not even failure causes unless verified as such.
But they can be excellent starting points when searching for errors and failure causes.

So, what can we use to find failure causes? The answer is the fourth reasoning technique:

Experimentation. Experimentation means to conduct experiments—typically, in order to verify or
reject a specific hypothesis. In our case, these experiments are program runs. While induction is
based on a fixed set of program runs, experimentation adds and assesses new runs, specifically
created for the hypothesis in question.

Experimentation is the only way to prove that an event is an actual cause—because you need
two experiments for this. While deduction, observation, and induction are all helpful in finding
potential causes, only experimentation can separate the wheat from the chaff—and narrow
down the actual cause of a failure. Experimentation is the essence of the scientific method, the
general process of constructing a theory for some aspect of the universe simply by hypotheses
and experiments. Experiments must be repeatable, which in case of programs means that their
execution must be made deterministic—for instance, by means of a capture/replay tool [CS98].
Without determinism, there is no way to prove causality.
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Today, experimentation is still mostly conducted by humans, using all the reasoning techniques
described above. However, under certain conditions, experimentation can be automated, thus
effectively automating the search for failure causes. This is the case when two program runs
exist—a working and a failing one—and the initial difference between these two runs can be
narrowed down to isolate failure causes.

The so-called delta debugging approach has been shown to isolate failure-inducing input [ZH02],
failure-inducing code changes [Zel99], and failure-inducing program states [Zel02]. The pro-
cess is based on an automated test that determines whether the failure persists or not, and an
algorithm that systematically narrows down the difference between the two runs. Applied to
states, this effectively produces cause-effect chains from the input to the failure, as the one shown
in Figure 1.

To sum up, deduction finds errors, observation finds facts, induction finds anomalies, and experimen-
tation finds causes—and most of these techniques can be automated. The four reasoning techniques
do not exist in isolation, though, nor are they used at all as isolated techniques. Each of the “later”
techniques above can make use of “earlier” techniques. For instance, observation can make use of de-
duction when deciding what to observe; Induction requires observation, and experimentation relies
on induction.

On the other hand, deduction cannot use observation because observation requires program exe-
cution, which deduction does not allow; and observation cannot make use of induction, because ob-
servation is based on one single run. Consequently, these four techniques form a hierarchy (Figure 4),
where each “outer” technique can use elements of “inner” techniques, and where each technique is
defined by the number of program runs it uses to make its findings.

4 Finding “the” Error

So, if experimentation can find failure causes automatically, and if deduction can find errors, why
don’t we just fix all the bugs? The reason is subtle: Just because something is a cause, it need not be an
error. If your computer catches a virus from an e-mail, the virus code is the cause of the infection.
However, the virus code is not an error—it is perfectly legitimate for e-mail to contain arbitrary
content. The bad reference in Figure 2, on the other hand, is both a failure cause and an error, as it
violates a GCC invariant.

What’s an error, anyway? Here’s the definition:

An error is a deviation from what’s correct, right, or true.

Note that a cause might be an error or not; likewise, an error might cause a failure (or the failure in
question), or not. The concepts of errors and failure causes are totally unrelated, except that, of course,
a failure is an error. And while we can detect errors and failure causes, automatically, it is hard to
relate a failure to “the” error that caused the failure.

In practice, finding “the” error is not that difficult—provided one has understood how the fail-
ure came to be, and this is where observation, induction, and experimentation are most helpful. In
the cause-effect chain (compare Figure 1), we must find the transition from sane (correct) states to
infected (erroneous) states. This transition is the defect, or the error in the code. This simply works
by deciding whether a state is sane or infected—typically by inspection of the programmer.

Isn’t this something that could (and should) be fully automated, too? Unfortunately, things are
not so simple. A cause in a computer program can be determined without doubt, using experiments—
and consequently, it can be determined automatically. Whether some property is an error, though, can
be formally decided if and only if there is a formal specification of what’s correct, right, or true.

A test case, for instance, decides whether a program is in error or not. A mere comment, or prose
in a requirements document, can be subject to interpretation, though. In the absence of a formal
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specification, there are no errors, only surprises; and we as programmers must decide whether the
surprise is desired or not.

The consequence is: As long as we can tell sane states from infected states, we can narrow down
the search quickly and even automatically, but no further. Once we have reached a cause-effect chain
fragment where such an automated assessment is impossible, the remaining search is up to the user.
Note, though, that the programmer can be guided in her debugging process by querying whether a
state is sane or infected—the essence of algorithmic debugging [Sha82].

Let us now assume we finally found “the” error, and we have proven that it is a failure cause by
altering it such that the failure goes away. Is this the way to go? Not necessarily. First, the change
applied to prove an error is an error is a fix for the failure in question, but not necessarily a fix
for other, related failures too. One should opt for the most general fix available—which may involve
rewriting not only “the” error, but other parts of the program, too. In some cases, the best fix is to
rewrite the entire program from scratch! Since fixing is thus part of writing a program, it is hard to
see how automation could step in here.

There are other “political” issues about errors and fixing. Suppose you find that some function
in a third-party library does not operate as specified. The third party says it’s just your use of the
library, and the library won’t be changed. So, rather than changing the erroneous code, you alter your
original code to work around the problem. Where’s “the” error in that story? Obviously, it depends on
whom you ask—and certainly you won’t ask an automated tool here.

As researchers, we should be very precise about what our techniques can do and what they can-
not do. This is especially important when talking about anomalies, causes, and errors. Yes, we do
have techniques that detect anomalies and errors in programs and runs. Yes, for a given failure, we
can isolate causes and cause-effect chains automatically. But a method that finds “the” error for a
particular failure—the ultimate target of automated debugging—must prove that the error causes the
failure. In other words, it would have to provide not only the error, but the fix as well. I see no way
of achieving this today. I hope, though, that we’ll be able to detect so many anomalies and potential
errors that we can leverage this knowledge in the search for failure causes—and pinpoint the error
as good as we possibly can.

5 Conclusion

What’s the future of automated debugging? In this paper, I have not attempted to cover the entire
field of automated debugging, but rather tried to group typical techniques of dynamic program anal-
ysis and automated debugging—and to identify and relate their key concepts. Today, it is obvious
that the enormous wealth in computing power brings clear benefits: We can afford computations,
tests, and experiments that would have seemed ridiculously large or dumb only a few years ago. In
particular, the original

• deductive methods to determine errors and

• observational methods to determine facts

have now been adjoined by

• inductive methods to determine anomalies, and

• experimental methods to determine causes.

When debugging, the best programmers make use of all reasoning capabilities—deduction, obser-
vation, induction, and experiments. Our tools should do so, too. The best tools will be those that
intertwine and dovetail errors, facts, anomalies, and causes. Designing and building such tools will
be the next challenge for automated debugging.

Acknowledgments. Holger Cleve and Stephan Neuhaus provided substantial comments on earlier
revisions of this paper.
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Glossary

This glossary gives definitions for important terms as they are being used in this paper. Alternate
definitions (2., 3., . . . ) are being found outside of this paper; references within the glossary always
refer to the first definition.

Accident Synonym of→mishap.

Anomaly A program behavior that deviates from expectations based on other runs or other pro-
grams. Also known as incident.

Bug 1. Synonym of→defect. 2. Synonym of→failure. 3. Synonym of→problem. 4. Synonym of→infection.

Cause An event preceding the→effect without which the effect would not have occurred.

Crash The sudden and complete→failure of a computer system or component.

Debugging Relating a→failure or an→infection to a→defect and subsequent→repair of the defect.

Defect An →error in the program, esp. one that can cause an →infection and thus a →failure. Also
known as bug, fault.

Delta Difference between (or change to) code, states, or circumstances.

Effect An event following the→cause that would not have occurred without the cause.

Error 1. An unwanted and unintended deviation from what is correct, right, or true. 2. Synonym of
→infection. 3. Synonym of→mistake.

Exception An event that causes suspension of normal program operation.

Failure An externally visible →error in the program behavior. Also known as malfunction. See also
problem.

Fault Synonym of→defect.

Feature An intended property or behavior of a program.

Fix A→repair where the→defect is removed from the program. See also debugging. Compare workaround.

Incident Synonym of→anomaly.

Infection An→error in the program state, esp. one that can cause a →failure.

Issue Synonym of→problem.

Malfunction Synonym of→failure.

Mishap An unplanned event or series of events resulting in death, injury, occupational illness, or
damage to or loss of data and equipment or property, or damage to the environment. Also
known as accident.

Mistake A human act or decision resulting in an →error.

Problem A questionable property or behavior of a program. Also known as issue. See also failure.

Repair A →delta such that the failure in question no longer occurs. See also fix. See also workaround.

Testing The execution of a program with the intention to find some→problem, esp. a→failure.

Test case A documentation specifying inputs, predicted results, and a set of execution circumstances
for a program.

Workaround A →repair where the→defect remains in the program. Compare fix.
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