
Object Usage: Patterns and Anomalies

Andrzej Wasylkowski

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten der
Universität des Saarlandes

Saarbrücken, 2010

c� 2010 by Andrzej Wasylkowski
All rights reserved. Published 2010
Printed 14 September 2010

Day of Defense 13 September 2010
Dean Prof. Dr. Holger Hermanns
Head of the Examination Board Prof. Dr. Reinhard Wilhelm
Members of the Examination Board Prof. Dr. Andreas Zeller

Prof. Dr. Sebastian Hack
Dr. Gordon Fraser

To Łucja, with love

Contents

Abstract xi

Zusammenfassung xiii

Acknowledgments xv

1 Introduction 1
1.1 Publications . 4

2 Mining Object Usage Models 5
2.1 Motivation . 5
2.2 How Object Usage Models Are Created 10
2.3 Minimizing Object Usage Models 18
2.4 Examples of Object Usage Models 22
2.5 Related Work . 27

2.5.1 Modeling Usage of Classes and Objects 28
2.5.2 Inferring Models . 28
2.5.3 Validating Programs against Models 32

2.6 Summary . 33

3 Patterns and Anomalies in Object Usage 35
3.1 Introduction . 35
3.2 Finding an Appropriate Abstraction 36

3.2.1 Sequential Constraints Abstraction 36
3.2.2 Other Possibilities . 38

3.3 Detecting Whole-Program Patterns 40
3.3.1 General Approach . 40
3.3.2 Fine-tuning the Approach 43
3.3.3 Case Study . 45

3.4 Detecting Anomalous Methods . 52

vi CONTENTS

3.4.1 Anomalies as Missing Functionality 52
3.4.2 Ranking violations . 55
3.4.3 Experimental results . 56

3.5 Scaling Up to Many Projects . 66
3.6 Related Work . 69
3.7 Summary . 72

4 Operational Preconditions 75
4.1 Introduction . 75
4.2 Operational Preconditions . 75

4.2.1 The Concept of Operational Preconditions 75
4.2.2 Operational Preconditions as Temporal Logic Formulas 77

4.3 Mining Operational Preconditions 80
4.3.1 Creating Kripke Structures 82
4.3.2 From Kripke structures to CTLF formulas 85
4.3.3 Mining Operational Preconditions and their Violations . 90

4.4 Operational Preconditions: A Case Study 92
4.5 Operational Preconditions’ Violations: Experiments 94
4.6 Related Work . 100
4.7 Summary . 101

5 Conclusions and Future Work 103

References 106

List of Figures

1.1 Sample source code . 2
1.2 Object usage model of an iterator 3

2.1 Typestate for the java.security.Signature class. 6
2.2 Sample source code . 9
2.3 Object usage model of a list . 9
2.4 Raw, unminimized object usage model of a list 19
2.5 Example of a minimization problem 20
2.6 Example of anoter minimization problem 20
2.7 Object usage model for a Stack object 24
2.8 Object usage model for a Class object 24
2.9 Another object usage model for a Class object 25
2.10 Object usage model for a StringTokenizer object 26
2.11 Another object usage model for a StringTokenizer object . . . 27

3.1 Object usage model for a Stack object 38
3.2 Hypothetical object usage model for a Stack object 39
3.3 Creating method’s sequential constraints abstraction 42
3.4 Sample cross table input to a formal concept analysis 44
3.5 The “iterator” pattern . 46
3.6 Sample pattern found in Vuze . 47
3.7 Pattern from Act-Rbot illustrating database API usage. 48
3.8 Partial pattern from Act-Rbot illustrating database API usage . . 49
3.9 Sample pattern found in AspectJ . 50
3.10 Influence of minimum support on the number of patterns . . . 51
3.11 Influence of minimum size on the number of patterns 51
3.12 Sample code violating a pattern . 53
3.13 Sample cross table input to a formal concept analysis 54
3.14 Defect found in Vuze . 58
3.15 Code smell found in AspectJ . 58

viii LIST OF FIGURES

3.16 Defect found in AspectJ . 60
3.17 Defect found in Columba . 61
3.18 Another defect found in Columba 62
3.19 Defect found in Act-Rbot . 62
3.20 Code smell found in ArgoUML . 63
3.21 Influence of minimum support on effectiveness 64
3.22 Influence of minimum confidence on effectiveness 65
3.23 Influence of the number of violations classified on effectiveness 65
3.24 Sample code from Conspire 0.20 66
3.25 Screenshot of the checkmycode.org Web site 69

4.1 The reapPropertyList() method from AspectJ. 76
4.2 CTLF and model checking in a nutshell. 79
4.3 Sample source code containing a call to reapPropertyList(). . 81
4.4 Object usage model for a list . 82
4.5 Kripke structure induced by an object usage model 85
4.6 Object usage model for a Stack object 89
4.7 Hypothetical object usage model for a Stack object 89
4.8 Sample operational precondition 93
4.9 Defect found in AspectJ . 96
4.10 Another defect found in AspectJ . 97
4.11 Defect found in ArgoUML . 97
4.12 Defect found in Act-Rbot . 97
4.13 Code smell found in AspectJ . 98
4.14 Influence of minimum support on effectiveness 99
4.15 Influence of minimum confidence on effectiveness 99
4.16 Influence of the number of violations classified on effectiveness 100

checkmycode.org

List of Tables

2.1 Projects used as case study subjects 22
2.2 Object usage models created by analyzing case study subjects . 23

3.1 Patterns found in the case study subjects. 45
3.2 Violations found in the case study subjects. 57
3.3 Classification results for top 10 violations 59
3.4 Classification results for top 10% violations 59
3.5 Projects submitted to cross-project analysis 67
3.6 Classification results for top 25% violations 68

4.1 Operational preconditions found in the case study subjects. . . 93
4.2 Violations found in the case study subjects. 94
4.3 Classification results for top 25% violations 95

Abstract

Using an API often requires following a protocol—methods must be called
in a specific order, parameters must be appropriately prepared, etc. These
requirements are not always documented, and not satisfying them almost
always leads to introducing a defect into the program. We propose three
new approaches to help cope with this problem:

• We introduce the concept of so-called object usage models, which model
how objects are being used. We show how to efficiently mine object
usage models from a program.

• We show how to use object usage model to find patterns of object usage
and anomalous object usages. We have implemented the technique in a
tool called “JADET” and evaluated it on six open-source projects. JADET
was able to find insightful patterns, and had found defects and code
smells in all six projects. In total, JADET found 5 defects and 31 code
smells.

• We introduce the concept of operational preconditions. Traditional
preconditions show the state an object must be in before being used as
a parameter. Operational preconditions show how to achieve that state.
We have created a tool called “Tikanga” that mines operational precon-
ditions as temporal logic (CTLF) formulas. We have applied Tikanga
to six open-source projects, and found 12 defects and 36 code smells.
This is the first time that specifications in the form of temporal logic
formulas have been fully automatically mined from a program.

Zusammenfassung

In vielen Fällen erfordert die Verwendung einer Programmbibliothek das
Einhalten eines Protokolls: Methoden dürfen nur in einer bestimmten Rei-
henfolge aufgerufen werden und Parameter müssen im richtigen Zustand
übergeben werden. Derartige Anforderungen sind nur selten dokumentiert,
obwohl eine Nichtbeachtung häufig einen Fehler im Programm verursacht.
In dieser Arbeit stellen wir drei neuartige Ansätze zur Lösung solcher Prob-
leme vor:

• Wir präsentieren Objektverwendungsmodelle, eine neue Art, die Ver-
wendung eines Objektes in einem Programm zu charakterisieren und
zeigen, wie solche Modelle effizient aus Programmen gelernt werden
können.

• Wir zeigen, wie man Objektverwendungsmodelle einsetzen kann, um
Verwendungsmuster zu lernen und Stellen zu finden, an denen Ob-
jekte auf ungewöhnliche Art verwendet werden. In einer Evaluation
mit sechs quelloffenen Programmen war unser Prototyp JADET in der
Lage, 5 bisher unbekannte Fehler und 31 Stellen schlechten Program-
mierstils in allen sechs Programmen zu finden.

• Wir führen eine neue Art von Vorbedingungen für den Aufruf von
Methoden ein. Herkömmliche Vorbedingungen zeigen, in welchem
Zustand ein Objekt sein muss, um als Parameter für einen Method-
enaufruf verwendet zu werden. Im Gegensatz dazu zeigen die hier
vorgestellten operationalen Vorbedingungen, wie der benötigte Zus-
tand erreicht wird. Unser Prototyp “Tikanga” lernt operationale Vorbe-
dingungen und repräsentiert sie als temporallogische (CTLF) Formeln.
Wir haben Tikanga auf sechs quelloffene Programme angewendet, und
dabei 12 Fehler und 36 Stellen schlechten Programmierstils identifiziert.
Unser Ansatz ist der Erste, der vollautomatisch Spezifikationen in der
Form von temporallogischen Formeln aus einem Programm lernt.

Acknowledgments

First and foremost, I thank my adviser Andreas Zeller for supporting me
for the last five years and for teaching me many of the things I learned
while working on my PhD. A big thank you also goes to Sebastian Hack
for being my second examiner and for sharing with me with some insights
into research while in Dagstuhl in 2010. Part of my doctoral studies was
financially supported by a research fellowship of the DFG Research Training
Group “Performance Guarantees for Computer Systems”; I thank all the
people that made it possible.

While working on my PhD I had the pleasure of working with excellent
people. I thank Christian Lindig for answering my many questions during
the first months of my work, and for a lot of help in moulding some of the
ideas I had into the research that ultimately became this dissertation. I had
a lot of helpful discussions with Valentin Dallmeier. Valentin also proofread
this dissertation and translated its abstract into German. Thank you! I thank
Michael Ernst for the discussions we had while Michael was in Saarbrücken
on a sabbatical. I thank Kim Herzig, Sebastian Hafner, Christian Holler, and
Sascha Just for maintaining the infrastructure at our chair. Without them I
would never be able to do some of the research I did. A special thank you
goes to Yana Mileva, my office mate through most of my PhD time.

My family provided a lot of help and support, without which I would not
be able to accomplish what I did. I thank my parents, Grażyna and Stefan, for
always believing in me and for all the help and support that actually made
this PhD possible. My son, Julian, made a day without a smile impossible.
Last, but not least, I thank my wife, Łucja, for her love and support, and for
believing in me even in the most difficult times. I dedicate this work to her.

Chapter 1

Introduction

If a programmer wants to use the API, she has to use it correctly—and
this typically means making sure that the API is used the way it was in-
tended to be used. Since a typical API consists of a number of functions (or
classes/methods in object-oriented languages), this boils down to knowing
how to combine these functions to accomplish the task that the program-
mer is interested in. If the API is not documented in any way, this is a very
difficult task. However, even if documentation is available, the task can still
be difficult, as the documentation can be outdated, incomplete, difficult to
understand, or—as is often the case when natural language is being used—
ambiguous. The best solution would be having an up-to-date, complete and
easy-to-understand documentation combined with formal specification of the
API (to resolve any ambiguity issues), but this is a standard that will not be
achieved for a long time, if ever, especially considering how difficult it is to
write a formal specification even for simple functions. Programmers typi-
cally try to cope with this problem by consulting code examples, where the
API they are interested in is actually used. However, there is no guarantee
that these examples are actually correct, and the programmer—trying to get
to know how to use the API—is not in a position to decide if the code uses
the API correctly or not. As a result, it is possible that the code written by
the programmer will turn out to be defective, too, and the program will fail
during testing (which is the optimistic scenario) or at a client’s site. In any
case, the program will have to be fixed, and the costs of fixing the program
are larger the later in the development cycle the defect is found (Dunn 1984).

In this dissertation we will present a set of approaches that are designed
to help the programmer use the API correctly, by providing her with the
following information:

2 CHAPTER 1. INTRODUCTION

public List trimPropertyList (Set properties) {
List list = new ArrayList ();
createPropertyList (this.cl, list);
Iterator iter = properties.iterator ();
while (iter.hasNext ()) {

Property p = (Property) iter.next ();
addProperty (p, list);

}
reapPropertyList (list);
if (list.size () == 1)

Debug.log ("Empty property list");
return list;

}

Figure 1.1: Sample source code using iterator and list-operating API.

Models of API usage. We introduce the concept of object usage models
that show how objects are being used in a program. Object usage
models are finite state automata (FSAs) that show which events (typically
method calls) can follow which other events, and how the object being
modeled participates in the events. We show how object usage models
can be fully automatically mined from a given program. (See Chapter 2).
As an example, consider the method shown in Figure 1.1. One of the
objects used in this method is the iterator iter. Its object usage model
is shown in Figure 1.2.

API usage patterns. We introduce the concept of sequential constraints
and patterns consisting thereof. Sequential constraints represent se-
quencing of events related to one object, and patterns are frequently
occurring sets of sequential constraints that represent sequencing of
events related to one or multiple object. We show how we can abstract
object usage models into sets of sequential constraints, and how we can
find sets that occur frequently and thus form patterns. (See Chapter 3).
For example, the object usage model shown in Figure 1.2 can be ab-
stracted into a set of sequential constraints such as:

RETVAL: Set.iterator ≺ Iterator.hasNext @ (0)
Iterator.hasNext @ (0) ≺ Iterator.next @ (0)
...

If we analyze a program where many iterators are being used, we will
come up with the following frequently occurring pattern:

3

RETVAL: Set.iterator

Iterator.

hasNext @ (0)

Iterator.

next @ (0)

Figure 1.2: Object usage model of the iter object from Figure 1.1.

Iterator.hasNext @ (0) ≺ Iterator.hasNext @ (0)
Iterator.hasNext @ (0) ≺ Iterator.next @ (0)
Iterator.next @ (0) ≺ Iterator.hasNext @ (0)
Iterator.next @ (0) ≺ Iterator.next @ (0)

This pattern states that iterators are used by calling hasNext() before
calling next() and vice versa, and this is indeed how iterators should
be used.

Operational preconditions. We introduce the concept of operational pre-
conditions. They are akin to traditional preconditions, but instead of
saying what the state of a parameter needs to be for a function call
to be correct, operational preconditions say how to achieve that state,
thus helping the programmer to actually write code that correctly uses
a function. Operational preconditions are expressed as temporal logic
formulas, and this is the first time temporal logic specifications are fully
automatically inferred from programs. (See Chapter 4). As an exam-
ple, the operational precondition of the first parameter (the list) of the
reapPropertyList() method used by the code in Figure 1.1 contains
formulas such as:

AG ASTNode.createPropertyList @ (2)
AG (ASTNode.createPropertyList @ (2)�

EX EF ASTNode.addProperty @ (2))

The first of those formulas states that the list must always be passed
as the second parameter to createPropertyList(), and the second that

4 CHAPTER 1. INTRODUCTION

after passing the list as the second parameter to createPropertyList(),
there should exist a path where the list is passed as the second param-
eter to addProperty().

Potential defects in code. We show how programs can be checked for con-
formance with API usage patterns and operational preconditions found
earlier. Our approach is fully automatic and results in a user being
given a ranked list of methods that violate a pattern or an operational
precondition, respectively. We show that it is effective in finding previ-
ously unknown defects in existing programs. (See respective sections
in Chapters 3 and 4).
Code that uses an iterator and does not call hasNext() before call-
ing next() (i.e., violates the iterator pattern shown above) will get re-
ported to the user as potentially defective. Likewise code that calls
reapPropertyList(), but only calls createPropertyList() condition-
ally (i.e., violates the operational precondition shown above).

1.1 Publications
This dissertation builds on the following papers (in the chronological order):

• Wasylkowski, Andrzej. 2007. Mining object usage models. In ICSE
COMPANION 2007: Companion to the proceedings of the 29th Inter-
national Conference on Software Engineering, 93–94. Los Alamitos,
CA: IEEE Computer Society. Presented at the Doctoral Symposium.

• Wasylkowski, Andrzej, Andreas Zeller, and Christian Lindig. 2007.
Detecting object usage anomalies. In ESEC-FSE 2007: Proceedings
of the 6th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations of
software engineering, 35–44. New York, NY: ACM.

• Wasylkowski, Andrzej, and Andreas Zeller. 2009. Mining temporal
specifications from object usage. In ASE 2009: Proceedings of the 24th
IEEE/ACM International Conference on Automated Software Engi-
neering, 295–306. Los Alamitos, CA: IEEE Computer Society.

• Gruska, Natalie, Andrzej Wasylkowski, and Andreas Zeller. 2010.
Learning from 6,000 projects: Lightweight cross-project anomaly de-
tection. In ISSTA 2010: Proceedings of the nineteenth international
symposium on Software testing and analysis. (At the time of writing
this has not been published yet).

Chapter 2

Mining Object Usage
Models

2.1 Motivation
Programs can be in general treated as processes operating on objects. This is
especially clear in the context of object-oriented languages, but is also true for
all programming languages: any entity that can be stored and manipulated
by a program is essentially an object of some kind. Each such object has its
type, such as an integer, a character, a database connection, etc. The type of
an object puts a restriction on what the program can do with that object. For
example, integers can be added, characters can be concatenated, database
connections can be initialized, and so on. Without losing generality we can
say that each type corresponds to a class in an object-oriented language, and
each object of that type corresponds to an instance of that class.1 This allows
us to represent the set of operations that can be performed on a certain object
of a certain type by the set of methods that are applicable to objects of that
type; accordingly, the type—and thus the set of methods—puts a restriction
on what can be done with objects of that type.

However, specifying the set of allowed operations is not enough to guar-
antee that objects will always be properly used. Consider a file object that
can be opened, read from, and closed. These operations are not always
applicable—for example, the file must first be opened before it can be read
from, and reading from it is not allowed after it has been closed. We can say
that each object apart from its type is characterized by its state, and some

1This is not true for so-called primitive types, but these can be wrapped into classes.

6 CHAPTER 2. MINING OBJECT USAGE MODELS

initVerify initSign

update

verify

update

sign

Figure 2.1: Typestate for the java.security.Signature class.

operations are applicable only in certain states. This idea has been known by
the name of a typestate (Strom and Yemini 1986) and is based on describ-
ing possible sequences of operations that can be performed on objects of a
certain type using a finite state automaton (FSA). Figure 2.1 shows a typestate
for the java.security.Signature class. Even without knowing what is the
purpose of this class, we can immediately see that there are two principal us-
age modes: verifying and signing, and they should not be mixed (e.g., calling
initVerify() and then sign() is incorrect).

Typestates contain some very useful information, but one of their draw-
backs is that they are limited to operations that can be performed on an ob-
ject. This has a very important disadvantage: the abstraction level is constant
for each type. First, this makes it impossible to model how methods using a
higher abstraction level (e.g., treating a list as a specific list containing specific
data, and not a generic data structure) can be combined to perform mean-
ingful operations. One good example is if a Java programmer has written a
method that fills a given vector with a given number of random integers, and
another method that expects such a vector as one of its parameters. These
two methods are related in that the second one needs the result of the first
one to work correctly, but this relationship cannot be represented using type-
states. Another problem introduced by the constant abstraction level is that
it is impossible to model the behavior of values of primitive types, such as
integers. In an ideal world each distinct concept would be represented in
a program by a distinct type, and this problem would be irrelevant, but in
reality this is not the case—file handles in C are a perfect example of what
reality looks like.

To avoid the problems associated with the constant abstraction level this
dissertation introduces object usage models (OUMs). An object usage model
is a nondeterministic finite automaton (NFA) that describes sequences of op-

2.1. MOTIVATION 7

erations that a particular object goes through in a particular method. The
idea is to use the abstraction level of the method using the object. This of
course means that an OUM not only must represent calls, where the object of
interest is the call target, but also where it is a parameter. Another important
consideration is that not all objects used inside a method are created by that
method. Some come as parameters, others are read from fields, etc. Hence,
an OUM must represent the origin of the object being modeled, which is not
needed in case of a typestate, because its starting state is always the point
where the lifecycle of the object starts. Before we introduce the formal defi-
nition of an object usage model, let us first introduce the concept of an event
associated with an object.

Definition 2.1 (Event). An event associated with an object is one of the fol-
lowing:

• A method call with the object being used as the target or a parameter
(possibly in multiple positions). Here we differentiate between normal
and abnormal (i.e., because of an exception being thrown) return from
the call.

• A method call with the object being the value that was returned.

• A field access with the object being the value that was read.

• A cast of the object to a different type (as in the Java expression (A)b).

Events are represented using strings as follows:

• A method call with the object being used as the target or a parameter
is denoted by Class.method signature @ parameters, where:

– Class is the fully qualified (i.e., including full package path to the
class) name of the class defining the method being called (e.g.,
java.lang.Object)

– method is the name of the method being called (e.g., hashCode)
– signature is the type signature of the method being called (e.g.,
(ZC)V; see the Java virtual machine specification (Lindholm and
Yellin 1999) for a description of symbols used in signatures). This
part is only used to differentiate between overloaded methods’ names
and is otherwise irrelevant.

– parameters is a list of numbers indicating positions in the param-
eter list, where the object being modeled was used as a parameter;
thus, if the call happened with the object being used as the third

8 CHAPTER 2. MINING OBJECT USAGE MODELS

parameter only, this would be (3); if the object was used as the
third and fifth parameter, this would be (3, 5); if the object was
used as the target of the call, this would be (0); and so on.

Thus, for example, a call to hashCode with the object as the target of
the call would be denoted by java.lang.Object.hashCode()Z @ (0).
If the return is abnormal as a result of an exception being thrown, we
denote it by EXC(exception): Class.method signature @ parameters,
where the additional exception is the fully qualified (i.e., including full
package path to the class) class name of the exception that was thrown.

• A method call with the object being the value that was returned is de-
noted by RETVAL: Class.method signature, where Class, method, and
signature are as defined above; thus, for example, the fact that the ob-
ject is the return value of the clone method call would be denoted by
RETVAL: java.lang.Object.clone()Ljava/lang/Object;.

• A field access with the object being the value that was read is denoted
by FIELDVAL: Class.field, where Class is as defined above and field is
the field’s name. FIELDVAL: java.lang.System.in is one example.

• A cast with the object being cast to a different type is denoted by CAST:
Class, where Class is a fully qualified name of the class, to which the
object is cast, as in CAST: java.lang.String.

Definition 2.2 (Object usage model). Let Classes be the set of all valid fully
qualified Java classes’ names. An object usage model is a tuple oum =
(Q� Σ� T� �0� F � Exc), where Q is a finite set of states, Σ is a finite set of events
associated with the object being modeled, T : Q × (Σ ∪ {�}) � �(Q) is a
transition function, �0 ∈ Q is an initial state, F ⊆ Q is a set of final states, and
Exc : F � Classes ∪ {⊥} is a function that assigns exceptions’ classes’ names
to final states.

An object usage model is essentially a nondeterministic finite automaton
with epsilon transitions. Its final states are designated by the type of the
method exit they represent. There is always only one final state �0 ∈ F
representing normal exit from the method, for which Exc(�0) = ⊥. There
can also be any number of final states �1� � � � � �� representing abnormal exits
from the method (i.e., because of an exception being thrown). In this case
Exc(��) is always a fully qualified name of the class of the exception being
thrown.

Before we show how OUMs are being created, let us take a look at a
sample OUM. Consider the source code shown in Figure 2.2. One of the

2.1. MOTIVATION 9

public List getPropertyList (Set properties) {
List list = new ArrayList ();
createPropertyList (this.cl, list);
Iterator iter = properties.iterator ();
while (iter.hasNext ()) {

Property p = (Property) iter.next ();
addProperty (p, list);

}
reapPropertyList (list);
return list;

}

Figure 2.2: Sample source code using list-operating API.

ArrayList.<init> @ (0)

ASTNode.createPropertyList @ (2)

ASTNode.addProperty @ (2)

ASTNode.reapPropertyList @ (1)

Figure 2.3: OUM for the list created by the method from Figure 2.2.

objects being used in this code is the list created in the very first line of
the method getPropertyList. The method performs some operations on
the list, and these operations can be represented using the OUM shown in
Figure 2.3. There is one important point to be made here. Object creation
is not represented as a separate event. This is strictly unnecessary, because
each created object has to have its constructor called, and it is always the
first method call on such an object; thus having the constructor call as the
first event in the OUM is a sign for the object being created by the method
as opposed to being received as a parameter, a return value of a method call,
or being read from a field. We will also always follow the same convention
when presenting OUMs:

10 CHAPTER 2. MINING OBJECT USAGE MODELS

• We will remove the packages’ names and methods’ signatures from the
events’ labels to improve readability. We will do this whenever it does
not introduce any ambiguity.

• Epsilon transitions will be denoted by unlabeled dashed edges.

• The initial state �0 is always denoted by a state with an ingoing arrow
that has no source state associated with it.

• The one final state representing normal exit is always denoted by an
anonymous state with an outgoing arrow that has no destination state
associated with it.

• All final states representing abnormal exits (if present) are always de-
noted by states labeled with the name of the class of the exception,
and they always have an outgoing arrow that has no destination state
associated with it.

2.2 How Object Usage Models Are Created
Object usage models for a particular method can be created by performing
forward data flow analysis on that method. Before we get to the detailed
description of the approach, let us provide you, the reader, with a high-level
overview of the technique.

Our goal when creating OUMs was not only to allow them to be flexible
when it comes to the abstraction level being used (as indicated earlier), but
also to mirror the programmer’s idea about how the object being modeled is
supposed to be used. This idea is present in the source code using the object,
and the structure of that code is a very important part of it. Consider as an
example a method that fills a collection with elements in a loop just to add
one more element immediately after the loop. From the collection’s point of
view, this last addition does not differ from all the previous additions. Can we
then just represent the way the collection is being used by having only a loop
in the OUM with addition as the operation being performed? Is this what the
programmer intended? While the answer to the first question may not be
obvious, the answer to the second question must of course be a resounding
“no.” This is not what the programmer intended.

If we are to mirror programmer’s intentions, we have to include relevant
parts of the program’s structure in the OUMs. To achieve this goal, we have
decided to base states of the OUMs on the locations in the code. This idea is
not new, as it has been already used in the work of Eisenbarth, Koschke, and

2.2. HOW OBJECT USAGE MODELS ARE CREATED 11

Vogel (2002) on static trace extraction.2 Its main advantage is that it allows
the OUMs to mirror the program’s structure (e.g., if an operation performed
on an object is in a body of a loop, it will be part of a respective loop in the
OUM; if an operation is conditional, it will be conditional in the OUM, and so
on). The main drawback of this technique is that it can overfit at times. One
example is if a method operating on a collection uses an iterator to iterate
through one element of the collection only. This is not a common iterator
usage, and yet the OUM will mirror it. In Section 3.4 we will show how can
we turn this drawback into an advantage.

Object usage models are created by performing intraprocedural data flow
analysis on the program’s methods. The analysis keeps track of events that
happen to objects in a method, and locations where they happen. Our analysis
works on Java bytecode. The reason for this is that the bytecode’s syntax is
quite low-level, and thus particularly suitable for analysis purposes. Let us
now give some preliminary definitions that will be of use later on.

Definition 2.3 (Control flow graph). Let � be a method and let Classes be
the set of all valid fully qualified Java classes’ names. The control flow graph
of � is a tuple G = �V � E� �0� �1�, where:

• V is the set of nodes in the control flow graph. Each bytecode instruc-
tion in � is represented by a separate node3, and there are also two
additional nodes: �0 and �1.

• E ⊆ V × V × (Classes ∪ {⊥}) is the set of edges in the control flow
graph. Given an edge � = (��� ��� �), �� and �� are the source and target
nodes, respectively, and � is either ⊥ if the edge denotes exception-free
execution of the instruction in �� , or the name of the exception thrown
when executing the instruction in �� if the edge denotes an exception-
causing execution of that instruction.

• �0 is the single artificial entry node, and given �’s actual entry node
�entry there exists � ∈ E such that � = (�0� �entry � ⊥).

• �1 is the single artificial exit node, and each node corresponding to a
bytecode instruction resulting in an exit from � (this can be either a
normal return instruction, or any instruction that causes an abnormal
exit from �) has an edge leading to �1.

2We will defer the comparison of their work with that of ours until Section 2.5.
3Java bytecode permits so-called subroutines in the bytecode. These can lead to a very impre-

cise analysis results if handled straightforwardly, so we have decided to inline them everywhere
they are being called. This means that instructions that occur in those subroutines can have
more than one node assigned to them.

12 CHAPTER 2. MINING OBJECT USAGE MODELS

Definition 2.4 (Abstract objects). Let � be a method. Obj(�) is the set of
abstract objects used by �. Formally, � ∈ Obj(�) iff � is an object (i.e., not a
primitive value) and one of the following holds:

• � is the ���� pointer.

• � is one of the formal parameters of �.

• � is a result of a read of field value instruction present in � (as in x =
System.out).

• � is a return value of a method call occurring in � (as in x = map.items
()).

• � is a constant appearing in � (like "OK" or null).

• � is an object created in � (as in x = new Calendar ()).

Apart from ���� and formal parameters of �, each abstract object is
uniquely identified by the location of the bytecode instruction that creates it.4

Definition 2.5 (Variables). Let � be a method. Var(�) is the set of variables
(in the Java bytecode sense) used by �. Formally, Var(�) = StackVar(�) ∪
LocalVar(�), where:

• StackVar(�) = (sv0� � � � � svmax_stack(�)−1), where max_stack(�) is the max-
imum depth the operand stack of � can have at any point during the
execution of �.

• LocalVar(�) = (lv0� � � � � lvnum_locals(�)−1), where num_locals(�) is the size
of the array holding local variables of �.

The Java virtual machine allocates an operand stack and a local variable
array for each method. The stack has a limited maximum depth, which is
fixed for each method. The same is true for the array of local variables,
which also contains entries for ���� (for a nonstatic method), and all formal
parameters of �. Java also distinguishes between values that are byte-sized
and word-sized, and each slot in the stack and in the array is byte-sized.
This means that the Java virtual machine allocates two slots for each word-
sized value. Our data flow analysis framework will mirror this behavior, but
the second slot will always be treated as empty (i.e., as a slot with no object
assigned to it).

4Constants are in this respect no exception, as there is a dedicated bytecode instruction that
creates them and pushes them onto the stack.

2.2. HOW OBJECT USAGE MODELS ARE CREATED 13

Definition 2.6 (Internal model). Let � be a method, G = �V � E� �0� �1� be
�’s control flow graph with a designated entry node �0 and a designated
exit node �1, and Classes be the set of all valid fully qualified Java classes’
names. An internal model based on � is a tuple im = (Q� Σ� T� �0) where
Q = V ∪ Classes ∪ {⊥} is a finite set of states, Σ is a finite set of all possible
events stemming from �, T ⊆ Q × (Σ ∪ {�}) × Q is a transition relation, and
�0 = �0 ∈ Q is the initial state corresponding to the entry node of �’s control
flow graph.

The set of states of an internal model contains states corresponding to
control flow graph nodes (elements of V), one state corresponding to the
normal exit from � (⊥), and states corresponding to abnormal exits from �
(elements of Classes). The transition relation is essentially a list of all con-
nected states with the information about the type of a transition connecting
them (either some event or an epsilon transition).

Definition 2.7 (Merging internal models). Let � be a method, and im =
(Q� Σ� T� �0) and im� = (Q� Σ� T �� �0) be internal models based on �. im�� =
im_merge(im� im�) is a merge of im and im�, and is defined as follows: im�� =
(Q� Σ� T ��� �0) where T �� = T ∪ T �.

Lemma 2.8. im_merge is idempotent (i.e., im_merge(��� ��) = ��).

Proof. Follows directly from the definition of im_merge and the fact that the
set union operation is idempotent.

Lemma 2.9. im_merge is associative (i.e., im_merge(��1� im_merge(��2� ��3))
= im_merge(im_merge(��1� ��2)� ��3)).

Proof. Follows directly from the definition of im_merge and the fact that the
set union operation is associative.

Lemma 2.10. im_merge is commutative (i.e., im_merge(��1� ��2) =
im_merge(��2� ��1)).

Proof. Follows directly from the definition of im_merge and the fact that the
set union operation is commutative.

Definition 2.11 (Data flow facts). Let � be a method. A = �(Obj(�))Var(�) ×
N × ((IM × Q) ∪ {⊥� �})Obj(�) is the set of potential data flow facts about �,
where:

• IM is the set of internal models based on � (see definition 2.6).

• Q is the set of states in all internal models (recall that all internal models
for a fixed � have the same set of states, see definition 2.6).

14 CHAPTER 2. MINING OBJECT USAGE MODELS

Data flow facts in our setting represent associations between variables and
objects, and keep track of the events each object can go through when the
method is executed. The second goal is achieved by constructing for each
object its internal model on the fly while performing the data flow analysis.
After the analysis is completed, internal models will be transformed into ob-
ject usage models. (We will describe this later in more detail.) The natural
number that is a part of each data flow fact is the current depth of the operand
stack (see definition 2.5).

Definition 2.12 (Join semilattice). Let � be a method. L = �A� 0� ≥� ∨� is a join
semilattice of the OUM-constructing data flow analysis framework, where:

• A is the set of potential data flow facts about � (see the definition 2.11).

• 0 is an element of A defined as follows: 0 = (var2obj0� 0� obj2im0) where
var2obj0(�) = ∅ for all � ∈ Var(�) and obj2im0(�) = ⊥ for all � ∈ Obj(�).

• ≥ is a partial order defined as follows: �≥� iff � = � ∨ �.

• ∨ is a join operation defined as follows: Let � = (var2obj�� depth��
obj2im�) and � = (var2obj�� depth�� obj2im�) be elements of A. � ∨ � =
� = (var2obj�� depth�� obj2im�) is defined as follows:

1. var2obj�(�) = var2obj�(�) ∪ var2obj�(�) for all � ∈ Var(�)
2. depth� = max(depth�� depth�)

3. obj2im�(�) =

� iff obj2im�(�) = � or obj2im�(�) = �,

⊥ iff obj2im�(�) = ⊥ and obj2im�(�) = ⊥,

(im�� ��) iff obj2im�(�) = (im�� ��) and
obj2im�(�) = ⊥,

(im�� ��) iff obj2im�(�) = ⊥ and
obj2im�(�) = (im�� ��),

(im� �)
iff obj2im�(�) = (im�� �) and
obj2im�(�) = (im�� �) and
im = im_merge(im�� im�),

� iff obj2im�(�) = (im�� ��) and
obj2im�(�) = (im�� ��) and �� �= ��.

Theorem 2.13. 0 is a bottom element of L (i.e., � ∨ 0 = � for all � ∈ A).

Proof. Follows directly from definitions of 0 and ∨.

Lemma 2.14. ∨ is idempotent (i.e., � ∨ � = � for all � ∈ A).

2.2. HOW OBJECT USAGE MODELS ARE CREATED 15

Proof. Set union, max, and im_merge operations are idempotent (see lemma
2.8), and from this and the definition of ∨ given above it follows that ∨ is
idempotent as well.

Lemma 2.15. ∨ is associative (i.e., � ∨ (� ∨ �) = (� ∨ �) ∨ � for all �� �� �� ∈ A).

Proof. Trivial from the definition of ∨ by considering all possible cases for
the obj2im part of all elements and the fact that the set union, max, and
im_merge operations are associative (see lemma 2.9).

Lemma 2.16. ∨ is commutative (i.e., � ∨ � = � ∨ � for all �� � ∈ A).

Proof. Follows from the definition of ∨ and the fact that the set union, max,
and im_merge operations are commutative (see lemma 2.10).

Lemma 2.17. ≥ is reflexive (i.e., �≥� for all � ∈ A).

Proof. From the definition of ≥ it follows that �≥� iff � = � ∨ �. On the
other hand lemma 2.14 shows the right part of the equivalence to be true,
and this proves that the left part of the equivalence is true as well.

Definition 2.18 (Data flow analysis framework). Let � be a method, C������
be the set of all valid fully qualified Java classes’ names, and live : V �
�(Var(�)) be the mapping assigning to each node in a control flow graph
the set of variables alive directly before that point in the program execution.
The data flow analysis framework (Marlowe and Ryder 1990, 124–129) we
use to create internal models from � is defined as D = �G� L� F � M� where:

• G = �V � E� �0� �1� is �’s control flow graph.

• L is a join semilattice from definition 2.12.

• F ⊆ LL is a class of transfer functions, that is, the smallest class of
functions satisfying the following conditions:

– F has an identity function I , such that I(�) = � for all � ∈ L.
– Each control flow graph edge � ∈ E has a corresponding function

�� ∈ F defined as follows: Let � = (var2obj� depth� obj2im) be an
element of L and let � = (��� ��� �) be the edge. We define ��(�) as
a function that represents the effect of the transition information
in �� , �� , � and the liveness status of variables on the var2obj and
obj2im mappings, and on the depth value. (See below for a detailed
discussion of these functions.)

– For any two functions �� � ∈ F the function � = � ◦ � is in F .

16 CHAPTER 2. MINING OBJECT USAGE MODELS

– For any two functions �� � ∈ F the function �(�) = � (�) ∨ �(�) is in
F .

• M : E � F is an edge transition function that assigns to each edge
from a control flow graph a function from F . For a given � ∈ E,
M(�) = �� ∈ F .

Functions in F created from the edges of the control flow graph add
transitions to internal models of objects according to the events these ob-
jects participate in. Generally, the idea is to build the internal models during
the analysis. Upon analysing each control flow graph edge, transitions are
added to internal models of objects. If a particular object participates in the
event denoted by the edge, the transition represents that event. If it does not,
the transition is an epsilon transition. If an object is assigned to dead vari-
ables only, its model is not updated, etc. There are around two hundred Java
bytecode instructions, so presenting an appropriate function in F for each
instruction would be too tedious and we will refrain from doing it. Instead,
we will show one example to give the reader a feel for how the functions
look like.

Some Java bytecode instructions are responsible for moving elements
from the operand stack to the local variables array and back. One of such
instructions is aload. This instruction pushes a local variable of type ref-
erence (i.e., word-sized) stored in the local variables array at a given index
index onto the operand stack. Let ��� be the �-th element of a local variable
array, ��� be an element of the operand stack at depth � (see definition 2.5),
and � = (��� ��� ⊥) ∈ E be a control flow graph edge with �� containing an
aload instruction. (We know that the last element of the edge tuple is ⊥,
because the aload instruction always succeeds; compare the definition 2.3.)
The function �� ∈ F is defined as follows: Let � = (var2obj� depth� obj2im) be
an element of L. Then ��(�) = � where � = (var2obj �� depth�� obj2im�) where:

• var2obj �(�) =

∅ iff � �∈ live(��),

O iff � ∈ live(��) and � �= svdepth and
var2obj(�) = O,

O� iff � ∈ live(��) and � = svdepth and
var2obj(lvindex) = O�.

• depth� = depth + 2

2.2. HOW OBJECT USAGE MODELS ARE CREATED 17

• obj2im�(�) =

� iff � �∈ var2obj(�) for all � ∈ Var(�) and
obj2im(�) = �,

� iff � ∈ var2obj(�) for some � ∈ Var(�) and
obj2im(�) = � ∈ {⊥� �},

(im�� � �)

iff � ∈ var2obj(�) for some � ∈ Var(�) and
obj2im(�) = (im� �) where
im = (Q� Σ� T� �0) and im� = (Q� Σ� T �� �0)
where T � = T ∪ {(��� �� ��)} and � � = �� .

Theorem 2.19. The data flow analysis framework D = �G� L� F � M� from
definition 2.18 is distributive (i.e., � (� ∨ �) = � (�) ∨ � (�) for all �� � ∈ L and
� ∈ F).

Proof of the theorem above would require knowing the definitions of all
functions in F and we did not give them. We will instead give a brief sketch of
the proof. Functions in F manipulate the depth, the mapping from variables
to abstract objects, and the mapping from objects to internal models. All
those functions only add new transitions to the internal models, and the join
operator takes a union of those; thus, distributivity holds here (it does not
matter if we first add elements to two sets and then take their union, or if we
do this the other way around). The depth for a given function � is changed
in the same way irrespectively of the lattice element involved, and the join
operator takes a maximum of two numbers. Again, this makes distributivity
hold here (it does not matter if we first increase two numbers by the same
increment and then take their maximum, or if we do this the other way
around). The last element is the mapping from variables to abstract objects.
All functions in F change this mapping only by overwriting existing elements,
and the join operator only creates a union of two mappings; thus, distributivity
holds here as well (it does not matter if we first overwrite two mappings with
the same value and then take their union, or if we do this the other way
around).

Based on the properties we have stated in lemmas 2.14, 2.15, 2.16, 2.17,
and theorems 2.13 and 2.19 we conclude that the data flow analysis frame-
work from definition 2.18 is solvable (i.e., the iterative algorithm for data
flow analysis works [Marlowe and Ryder 1990; Aho, Sethi, and Ullman 1988,
680–94]).

After creating internal models for all abstract objects in a method, we
transform them into object usage models by removing unused states.5 Let
im = (Q� Σ� T� �0) be an internal model, and Classes be the set of all valid

5For a given internal model these are states corresponding to source code locations at which
the object being modeled was either not visible or not alive.

18 CHAPTER 2. MINING OBJECT USAGE MODELS

fully qualified Java classes’ names. An object usage model stemming from
im is defined as oum = (Q�� Σ�� T �� �0

�� F � Exc) where:

• Q� = {� ∈ Q : ∃ �� σ � (�� σ� �) ∈ T} ∪ {�0� ⊥} (where ⊥ ∈ Q; see the
definition 2.6)

• Σ� = Σ

• T � is defined as follows: T �(�� σ) = R iff � ∈ Q� and R = {� : (�� σ� �) ∈ T}

• �0
� = �0

• F = (Classes ∩ Q�) ∪ {⊥} ⊆ Q�

• Exc is defined as Exc(�) = � for all � ∈ F

In the end, the analysis described above gives us an object usage model for
every abstract object in the method being analyzed. By repeating this process
for every method in a program we get object usage models for every abstract
object in the program.

2.3 Minimizing Object Usage Models
Object usage models created by applying the analysis described in the pre-
ceding section accurately reflect structures of methods they stem from, but
they can be at times too large to be understandable while at the same time
not containing a lot of information. This is because an object usage model in-
herits states from a method, and methods can have hundreds of instructions.
At the same time, the object being modeled does not participate in most of
these instructions, and thus most transitions in an object usage model are ep-
silon transitions. Consider the source code shown in Figure 2.2. The object
usage model shown in Figure 2.3 is a minimized one; the raw, unminimized
object usage model is shown in Figure 2.4. It has over 30 states and a similar
number of epsilon transitions.

Minimizing models is necessary, but simply collapsing two states when
there is an epsilon transition between them is too invasive. Imagine a case
when there is a conditional event in the model (i.e., there are two states
connected by two transitions: one of them being an epsilon transition and
another being the event transition [see Figure 2.5(a)]). The meaning of such
a structure is that the instruction to which the event corresponds is optional
and can be in some circumstances omitted; however, if we collapse those two
states, the conditional event turns into a loop, and this changes the meaning
of the structure as well (see Figure 2.5(b)). Even though this particular case

2.3. MINIMIZING OBJECT USAGE MODELS 19

ASTNode.addProperty @ (2)

ASTNode.reapPropertyList @ (1)

ASTNode.createPropertyList @ (2)

ArrayList.<init> @ (0)

Figure 2.4: Raw, unminimized OUM for the list from method in Figure 2.2.

20 CHAPTER 2. MINING OBJECT USAGE MODELS

File.isDirectory @ (0)

File.delete @ (0)

(a) OUM before minimization

File.isDirectory @ (0)

File.delete @ (0)

(b) OUM after naïve minimization

Figure 2.5: OUM, for which minimization by merging states connected with epsilon
transitions leads to undesirable results: the language changes.

ArrayList.add @ (0)

ArrayList.add @ (0)

(a) OUM before minimization

ArrayList.add @ (0)

(b) OUM after naïve minimization

Figure 2.6: OUM, for which minimization using standard finite state automata min-
imization algorithms leads to undesirable results: the structure changes.

can be properly handled using standard finite state automata minimization al-
gorithms, these are unusable for minimizing object usage models in general,
because they can preserve the language of the automaton (as they would in
the example above) but cannot preserve its structure. Imagine a case when
there is a loop in some state, and that the same state has two additional out-
going transitions leading to some other state (the same for both). Let one
of those transitions be an epsilon transition, and another be the same tran-
sition as the one in the loop (see Figure 2.6(a)). Now, merging the two states
preserves the language but destroys the structure (see Figure 2.6(b)). The
language in both cases is �∗ where � is the event, but the structure in the
first case is a loop followed by a conditional event, and in the second case it is
only a loop. Even if there is only an epsilon transition between two states, col-
lapsing them can change the meaning of the structure; thus, we can clearly
see that a different approach is needed.

2.3. MINIMIZING OBJECT USAGE MODELS 21

As stated above, we need to minimize the models while preserving their
structure. Our idea behind preserving the structure of a model is to preserve
the programmer’s intentions, which are inherent in this structure. On the
other hand, we do not aim at minimizing each model to the point where
it cannot be minimized further without destroying its structure. There is
no clear benefit in having the smallest possible model instead of one that is
simply small enough. Once again, what we want is to make it easier for a
human to understand the model, and to do this we need models that do not
consist of mostly epsilon transitions.

We have come up with three simple cases where epsilon transitions can
be removed without destroying a model’s structure. Minimizing the model
to the point where neither of those cases holds anymore has proven to be
enough to get rid of most epsilon transitions and thus make models easier to
understand (see Section 2.4 for examples of minimized object usage models).
When introducing the conditions, under which epsilon transitions can be
removed, we have assumed that oum = (Q� Σ� T� �0� F � Exc) is the object usage
model given as an input. An epsilon transition can be removed if:

• it is a loop in some state. Formally, if T(�� �) = R for some � and � ∈ R,
we can change the transition function, so that T(�� �) = R \ {�}.

• it is a transition between two different states �1 and �2, where �1 is not
the entry state and it has no other outgoing transitions. Intuitively, the
idea here is that once we reach �1 we have no other choice, but to go to
�2 without any event happening in-between. Formally, if T(�1� �) = {�2}
for some �1 �= �2 where �1 �= �0, and T(�1� σ) = ∅ for all σ �= � , we can
merge �1 and �2 by replacing Q and T with Q� and T �, respectively, as
follows:

– Q� = Q \ {�1}
– T � : Q� × (Σ ∪ {�}) � �(Q�) is defined as follows:

T �(� �� σ) =

R iff T(� �� σ) = R and �1 �∈ R,

R� iff T(� �� σ) = R and �1 ∈ R and
R� = (R \ {�1}) ∪ {�2}.

• it is a transition between two different states �1 and �2, where �2 is not
a final state and it has no other ingoing transitions. Intuitively, the idea
here is that there is no other way to reach �2 than through �1, so if we
ever get to �2, we must have been in �1 directly before (no event could
have happened in-between). Formally, if �2 ∈ T(�1� �) for some �1 �= �2
where �2 �∈ F , and �2 �∈ T(�� σ) for all �� σ such that � �= �1 or σ �= � , we

22 CHAPTER 2. MINING OBJECT USAGE MODELS

Table 2.1: Projects used as case study subjects
Program Size (K SLOC) Classes Methods
Vuze 3.1.1.0 345 5�532 35�363
AspectJ 1.5.3 327 2�957 36�045
Apache Tomcat 6.0.18 254 1�462 16�347
ArgoUML 0.26 187 1�897 13�824
Columba 1.4 100 1�488 8�590
Act-Rbot 0.8.2 47 344 3�401

can merge �1 and �2 by replacing Q and T with Q� and T �, respectively,
as follows:

– Q� = Q \ {�2}
– T � : Q� × (Σ ∪ {�}) � �(Q�) is defined as follows:

T �(� �� σ) =

R iff T(� �� σ) = R and � � �= �1,

R� iff T(� �� σ) = R and � � = �1 and
R� = (R \ {�2}) ∪ T(�2� σ).

Applying the transformations given above until a fixed point is reached,
where none of those three cases apply, is enough to make object usage mod-
els much smaller. Additionally, these transformations not only preserve the
language of a model but also preserve its structure (i.e., loops remain loops
and branchings remain branchings), which is exactly what we want. We
would like to emphasize once again the fact that we do not claim these trans-
formations produce the smallest model possible. It is possible that more
transitions can be removed and more states can be merged without destroy-
ing the model’s structure; however, the transformations given above do make
the models much smaller and thus more understandable for humans.

2.4 Examples of Object Usage Models
We have implemented the data flow analysis framework and the minimization
algorithm presented in Sections 2.2 and 2.3, and analyzed six open-source
projects with it. Table 2.1 shows the summary of the projects. For each
project we report on the version analyzed, Java Physical Source Lines of Code
(SLOC)6, and the number of classes and methods comprising the project. We

6generated using ’SLOCCount’ by David A. Wheeler

2.4. EXAMPLES OF OBJECT USAGE MODELS 23

Table 2.2: Object usage models created by analyzing case study subjects
Program OUMs created Total time (mm:ss)
Vuze 3.1.1.0 237�569 3:08
AspectJ 1.5.3 233�731 3:09
Apache Tomcat 6.0.18 117�042 1:10
ArgoUML 0.26 95�463 2:10
Columba 1.4 63�981 0:30
Act-Rbot 0.8.2 54�079 1:08

have tried to analyze only those classes that truly belong to a project; for
example, we ignored third-party libraries in the Act-Rbot jar file.

Our analysis created object usage models for each of the projects shown in
Table 2.1. The summary of the results can be found in Table 2.2. We report on
the number of object usage models created and on the time (wall clock time,
averaged over ten consecutive runs) that was needed to perform the analysis
on a 2�53 GHz Intel Core 2 Duo machine with 4 GB of RAM. We did not do an
experimental evaluation of the models’ usefulness, but we think that object
usage models can be very helpful for programmers not knowing how to use
certain classes or having to maintain code they are not very familiar with. To
support this statement, we took a closer look at models extracted from one
of the projects we analyzed, namely, AspectJ. AspectJ is an aspect-oriented
extension to the Java programming language. Investigating all 233�731 object
usage models that we extracted is of course impossible because of their sheer
number. Instead, we looked at a few randomly selected models. Below we
present and explain some of those that we found particularly interesting and
small enough to be easily understandable.

Figure 2.7 shows a model of a java.util.Stack object mined from one
of the methods in AspectJ. The model tells us that the stack was first created,
then elements have been pushed onto it in a loop, and finally an enumeration
of all the elements was requested.7 This model illustrates well the difference
between approaches that base model states on object states, and our approach
that bases model states on locations in the code. Although the first call to
push() is bound to change the state of the object (from empty to nonempty), it
does not result in a state-changing transition in our model. This is because in

7An astute reader will notice that the call to elements() is depicted as a call to a method
from the Vector class. The reason for this is that most parts of AspectJ are compiled using Java
1.1, and this results in method calls being represented as happening on an object of a class that
actually defines the method. Newer Java versions always represent method calls as happening
on an object of a class that was actually declared as the type of the target.

24 CHAPTER 2. MINING OBJECT USAGE MODELS

Stack.<init> @ (0)

Stack.push @ (0)

Vector.elements @ (0)

Figure 2.7: OUM for a Stack object mined from AspectJ.

Map.get @ (1)

AjTypeImpl.<init> @ (1) AjTypeImpl.<init> @ (1)

Map.put @ (1) Map.put @ (1)

Figure 2.8: OUM for a Class object mined from AspectJ.

this particular case there is no difference between the first and the subsequent
calls to push() from the programmer’s perspective. If this code were split in,
say, two loops, this would be represented in the model by two loops, as well.
Similarly, the call to elements() that does not change the state of the stack
is depicted as a state-changing transition, because the way the stack is being
used has changed. We no longer put elements into it, but rather we extract
them.

Another model is shown in Figure 2.8. This model does not contain a
single call with the object being modeled used as a target. What is more
important, limiting the model to only such operations (e.g., by not sticking to
the method’s abstraction level, but by going deeper until either such calls are
found, or the object is not passed anywhere else anymore) would result in
an empty model. There are two reasons for this. First, Map is an interface,

2.4. EXAMPLES OF OBJECT USAGE MODELS 25

Class.isArray @ (0)

Class.getName @ (0) Class.getComponentType @ (0)

Figure 2.9: OUM for a Class object mined from AspectJ.

so all its methods are only declared and the implementation is unknown.
Second, AjTypeImpl constructor only stores the class reference it gets in
a field, without issuing any method calls. Our object usage model is quite
interesting, as it encompasses operations on objects of two different classes
in one entity; and it has two identical, but distinct paths. It shows how AspectJ’s
internal mapping between Java classes (objects of Class class) and AspectJ
type implementations (objects of AjTypeImpl class) works. This model has
been mined from the method called getAjType(), which gets an AjTypeImpl
object corresponding to a given Class (subsequently called c). As we can
see, the method uses a Map object to represent the mapping. It first gets the
mapping for the class c from the map. If the mapping is not present, a new
type implementation is created and the map is updated (the leftmost path in
the model). If the class c is present in the map, there are two possibilities:
either its corresponding AjTypeImpl object is returned (the rigthmost path),
or a new AjTypeImpl object is created, put in the map, and then returned
(the middle path). Now, the model reveals an interesting information: the
fact that c is present in the mapping does not preclude creating new type
implementation for it—that is why there are two identical paths through the
model. Why is that so? If we take a look at the code, we will see that what
is actually being stored are weak references to type implementations, and
the code checks for their nullness. Only if a reference is null, a new type
implementation is created.

A different model of an object of class Class is shown in Figure 2.9. We
can learn several things from it. First, arrays are represented in Java just
like classes. We know this because the first event in the model is a call to a
method that checks whether this particular Class instance represents a real
class or just an array. Second, methods getComponentType() and getName()
behave differently when called on instances that represent real classes than

26 CHAPTER 2. MINING OBJECT USAGE MODELS

StringTokenizer.<init> @ (0)

StringTokenizer.countTokens @ (0)

StringTokenizer.nextToken @ (0)

Figure 2.10: OUM for a StringTokenizer object mined from AspectJ.

when called on instances that represent arrays. We know this because only
one of those methods is called, and the decision which one is dependent on
the result of the call to isArray()8. A quick glance at the API specification for
the Java 2 Platform Standard Edition 5.0 at the Sun Microsystems webpage
confirms these facts.

There is one important lesson to be learned from the two examples above.
The way objects should be used depends not only on their class but also on
their purpose in the program. There is a deeper concept behind this, namely,
that of so-called abstract types (O’Callahan and Jackson 1997; Guo et al. 2006).
The idea here is that it often happens that variables having the same type are
used for different purposes. For example, this is the case when using integers
to represent both age and distance. Variables representing those two concepts
will have the same type, but their purpose, their real type, differs. In the first
case this is years, and in the second case this is kilometers. This underlying
type of a variable is called an abstract type. Two variables sharing the same
type, but having different abstract types may have the same usage patterns,
but may also have completely different usage patterns. Our analysis does not
partition variables according to their abstract types but it does allow us to see
differences in usage of objects having the same type, as in the two examples
given above.

A related, but orthogonal concept is that of a type allowing different usage
patterns that boil down to doing the same thing. This redundancy allows
the user to choose calls that for some reason fit him more (this can be
stylistic consistency, code convention, etc.). Figures 2.10 and 2.11 illustrate

8The object usage model does not show this explicitly, but we can see that the choice of calling
either getComponentType() or getName() comes after calling isArray().

2.5. RELATED WORK 27

StringTokenizer.<init> @ (0)

StringTokenizer

.hasMoreTokens @ (0)

StringTokenizer

.nextToken @ (0)

Figure 2.11: OUM for a StringTokenizer object mined from AspectJ.

this concept. Both show object usage models of StringTokenizer instances
used for the same purpose, but in different ways. Figure 2.10 shows iterating
through tokens by first retrieving the number of tokens available (the call
to countTokens()), and then calling nextToken() multiple times. Another
philosophy is more akin to the way iterators are being used and is shown in
Figure 2.11. Here there is a pair of calls to hasMoreToken() and nextToken()
which is being called multiple times. In other words, in this setting we do not
a priori know the number of tokens we will have to go through. Instead, at
each step we check if there is at least one more token we can extract.

2.5 Related Work
Our work (Wasylkowski 2007; Wasylkowski, Zeller, and Lindig 2007) has been
preceded by works of other researchers, both in the area of specifying how
the models9 should be built to be useful, and in the area of inferring models
from artifacts such as code, execution traces, etc. There are also works
that appeared later and some that build on our discoveries presented in this
chapter. An important related research direction is finding ways to check
programs for conformity with a priori specified models with the assumption
that deviations point to defects. There is a lot of work in these areas, and we
can show only a fraction of what is available. Additionally, sometimes a work
does not fit into one category (e.g., if authors have introduced new ideas for

9In this section we will use the name „model” for each formalism having as its goal modeling
the way classes or objects are, or should be used. In some case these will be finite state automata,
in other axiomatic expressions, etc.

28 CHAPTER 2. MINING OBJECT USAGE MODELS

how the models should look like alongside with an inference mechanism for
them). In such a case we put the work in the subsection where we think it
fits best.

2.5.1 Modeling Usage of Classes and Objects
The seminal work concerning modeling the way classes are supposed to be
used is the work on typestates by Strom and Yemini (1986). Briefly, the idea
is that values not only have type but also have state (e.g., a file can be either
open or closed), and we can represent operations available in each such state
using specially crafted finite state automata, so-called typestates. See Section
2.1 for a more detailed description of this approach.

Yellin and Strom (1997) introduced so-called protocols. The main differ-
ence between protocols and typestates is that protocols use outgoing as well
as ingoing method calls as transitions. The authors have described how this
distinction can be used to find sets of components that fit together and to build
adapters for sets of components that do not. A similar idea with the same
distinction was presented by de Alfaro and Henzinger (2001) in their work
on so-called interface automata. Later, Chakrabarti et al. (2002) introduced
so-called stateless and stateful software module interfaces, with even more
expressiveness.

Allan et al. (2005) introduced tracematches. A tracematch is a pattern
of events combined with code that will be triggered if the execution of the
program matches the given pattern. Tracematches can be used as a speci-
fication language for expected object behavior, but also—what is impossible
when using typestates—for specifying expected behavior of multiple objects
when there is interplay between them.

Other authors have introduced their own ideas as well, either as models
external to the program (Nierstrasz 1993), or as extensions to programming
languages allowing as one of the possibilities the specification of how meth-
ods change objects’ states (DeLine and Fähndrich 2001; Lee and Xiong 2001;
DeLine and Fähndrich 2004; Bierhoff and Aldrich 2005).

2.5.2 Inferring Models
Cook and Wolf (1995, 1998) have introduced the technique they called process
discovery. Their work focused on creating a model for the behavior of a
software development process. They create finite state automata based on
traces of the events recorded during software development. To this end they
have applied and compared approaches based on Markov models, neural
networks, and grammar inference. This seminal work had a big influence

2.5. RELATED WORK 29

on further model inference approaches, even though its goal was to discover
software development processes instead of models of program behavior.

Our idea of object usage models was inspired by the idea of object pro-
cess graphs introduced by Eisenbarth, Koschke, and Vogel (2002, 2005) in
their work on static trace extraction. Object process graphs have nodes
labeled with events (most importantly method calls, reads from, and writes to
variables) and unlabeled edges. Whenever there is a call to a method defined
by the program being analyzed, the callee’s object process graph is included
in the caller’s process graph as an extension of the method call node. This
makes the analysis quite costly (over six minutes for the benchmark program
with less than 150 methods), and the object process graphs quite large (with
the average number of nodes being 209 for the benchmark program). Later
the same idea was presented by Quante and Koschke (2007) in a dynamic
setting, where completeness of the results was sacrificed for their precision
and scalability of the analysis.

Nguyen et al. (2009) presented GrouMiner, which mines so-called graph-
based object usage models (groums). Groums are directed acyclic graphs
representing object usage; they extend the notion of events used in our work
to include control-flow structures (while-loop, if-statement), and can model
usage of multiple objects when there is interplay between them10

Ammons, Bodík, and Larus (2002) have introduced the idea of mining
specifications from programs. They use dynamic analysis of C programs to
create so-called specifications automata, where nodes are function calls, and
edges represent the ordering and have weights assigned to them (the more
often a particular ordering was observed, the more weight is assigned to the
edge). Their automata are at first created from traces by a probabilistic finite
state automaton learner. Later, edges with low weights are pruned. This
approach is quite precise, but pruning may result in removing legitimate
behavior that was not observed because of the weakness of the test suite
used to generate the traces. Another problem is that the user is required to
provide information relating functions to objects (e.g., to specify that bind()
uses the return value of socket()).

Whaley, Martin, and Lam (2002) presented both static and dynamic anal-
ysis techniques for inferring finite state automaton models of classes. Static
analysis is server-side (i.e., the component to be modeled is analyzed, not its
clients). The inferred FSAs use methods’ names as states’ labels, and anony-
mous transitions shown allowed ordering of method calls. One interesting
thing in this work is that it proposes using multiple submodels per class,
each focusing on a certain aspect of the class being modeled. In practice,
each submodel focuses on a field or a set of fields of the class being mod-

10Section 3.6 contains further details on GrouMiner.

30 CHAPTER 2. MINING OBJECT USAGE MODELS

eled. One problem of this work is that even though the models are FSAs,
in reality they just represent sets of properties of the type “a call to b may
follow after a call to a” (i.e., the actual language used is weaker than regular).

Alur et al. (2005) presented an approach for synthesizing interface speci-
fications for Java classes (really slightly modified typestates) by using server-
side analysis. Their approach is based on model checking and requires the
user to provide two things as an input: the initial predicate abstraction, and
exceptions that, when thrown, indicate illegal usage of the class. One prob-
lem is that the user needs to have some knowledge of the class already to
provide the inputs. Another is that there is an underlying assumption here
that an interaction with a class is correct if it does not cause an exception to
be thrown; however, this is too permissive, as it is possible that an incorrect
interaction leads to wrong results instead.

A similar idea based on using model checking on the class definition was
presented by Henzinger, Jhala, and Majumdar (2005). Their approach creates
full interfaces (i.e., ones which are both safe and permissive); however, it
suffers from the same problems as the work described above: a user needs
to provide the initial predicate abstraction and define what does it mean that
a class is in an erroneous state (only in this case this does not have to be an
exception). This means that even though the interfaces are guaranteed to be
safe with respect to the erroneous state defined, they can in reality be too
permissive (i.e., unsafe) if the definition of the erroneous state is incorrect,
or is too complicated to be applicable to model checking.

Shoham et al. (2008, 2007) presented an approach for mining specifications
(really typestates) from programs. They use interprocedural static analysis
to find out how a client program uses a given class, and based on that knowl-
edge construct a specification for that class. Their approach is quite accurate
but also time consuming: they have reported running times of less than 30
minutes for their benchmarks, which were all applications with less than 5000
methods11.

Pradel and Gross (2009) presented a dynamic analysis technique for gen-
erating specifications out of traces of program runs. Their approach builds
FSAs for sets of related object, with a FSA modeling sequences of method
calls. This work suffers from the same problem as Whaley, Martin, and
Lam’s work: the language actually used is weaker than regular, with its ex-
pressiveness restricted to just being able to say that one method call can
follow another method call. On the other hand, focusing on a set of related
objects instead of one class is a very interesting and potentially very valuable
idea.

11AspectJ, which we used as our main evaluation subject, has over 36�000 methods

2.5. RELATED WORK 31

Acharya et al. (2007) presented an approach for mining so-called usage
scenarios and specifications. Both are sets of partial orders between method
calls, like “XCreateGC() is typically called before XFreeGC().” The difference
is that specifications are stronger (i.e., contain partial orders that occur more
often compared to those in usage scenarios, and can thus be trusted more).
They can be represented as graphs where nodes are method calls and edges
represent partial order relationships. The authors use a model checker to
create traces related to the set of methods given as an input. One problem
with this approach is that a user must provide as a seed a set of methods that
are related and he is interested in for the approach to be useful in finding
other related methods and finding the relationship between them.

Dallmeier et al. (2006) introduced so-called object behavior models, which
are finite state automata with states providing the information about the state
of an object and transitions being method calls. They use return values of
so-called inspectors (pure methods with no parameters) to characterize state
of an object. This allows them to represent facts such as “Adding an element
to an empty vector (i.e., one for which isEmpty() returns true) causes it to
become a nonempty one (i.e., one for which isEmpty() returns false)”. They
use dynamic analysis to produce their models, and this of course makes the
quality of the results dependent on the quality of the test suite used as the
analysis input.

Xie et al. developed a set of approaches constructing so-called object state
machines. Object state machines are somewhat related to typestates, but
their states and transitions are labeled with additional information. The au-
thors have used several types of information here: return values of so-called
observer method calls (Xie and Notkin 2004a), fields’ values (Xie and Notkin
2004b), and branch coverage information (Yuan and Xie 2005). Their ap-
proach is based on dynamic analysis (i.e., they observe the behavior of the
program, and construct the machines based on their observations). This
makes object state machines very precise but also most of the time incom-
plete. A related drawback is that the quality of the final results very heavily
depends on the quality of test cases used as analysis subjects.

Other authors have introduced their own ideas and inference methods
as well (Lorenzoli, Mariani, and Pezzè 2006, 2008; Reiss and Renieris 2001;
Mariani and Pezzè 2005; Gabel and Su 2008), including reverse engineering
of sequence diagrams (Rountev, Volgin, and Reddoch 2005; Rountev and Con-
nell 2005; Systä, Koskimies, and Müller 2001), statecharts (Systä, Koskimies,
and Müller 2001), live sequence charts (Lo, Maoz, and Khoo 2007), inferring
algebraic specifications (Henkel and Diwan 2003; Ghezzi, Mocci, and Monga
2007), probabilistic FSAs (Lo and Khoo 2006) and using software repositories
to mine usage rules (Williams and Hollingsworth 2005).

32 CHAPTER 2. MINING OBJECT USAGE MODELS

There is also a body of work in the area of automatically preparing (or
finding) code examples or suggestions for the user on how to use a certain
method, class, or sets thereof. MAPO (Xie and Pei 2006; Zhong et al. 2009)
provides sample sequences of method calls given a few methods the user is
interested in. Strathcona (Holmes and Murphy 2005) uses structural infor-
mation from the user’s code to find related code examples in an example
repository. Prospector (Mandelin et al. 2005), XSnippet (Sahavechaphan and
Claypool 2006), and PARSEWeb (Thummalapenta and Xie 2007) provide the
user with information on how to create an object of a given type.

2.5.3 Validating Programs against Models
Reiss (2005) developed the CHET system, which lets developers use extended
finite state automata over parametrized events to specify the way compo-
nents should be used, and checks programs for conformance with these
specifications. CHET allows a variety of different events, such as method
calls, returns from calls, allocations, method entries, etc. Specifications writ-
ten for CHET can additionally contain variables, whose values are changed
when certain events happen. This gives a lot of flexibility and power, but the
user is required to create the automata himself.

Fink et al. (2006, 2008) showed how we can verify programs for their
conformance with typestates given as input. They have used a novel staging
approach, where there is a set of verifiers, from least accurate and fastest to
most accurate and slowest, and potential points of failure are verified with the
simplest verifier possible first. This makes the whole analysis as precise as
the analysis implemented in the best verifier, but keeps performance costs at
a reasonable level. Bodden, Lam, and Hendren (2008) presented an approach
for verifying programs for their conformance with tracematches. They also
use staged analysis. Another verification approach for tracematches was pre-
sented by Naeem and Lhoták (2008). Das, Lerner, and Seigle (2002) presented
ESP: a tool for checking if a program satisfies a given temporal safety prop-
erty (provided as a FSA—being essentially a typestate).

Dwyer and Purandare (2007) proposed combining static and dynamic
analysis to check if programs violate a given typestate. Their idea is to
use static analysis first, and then do a so-called residual dynamic analysis
on those parts of the program, on which the static analysis was not able
to give definite results. This reduces the potentially very high cost of hav-
ing to instrument the whole program with instructions checking, whether a
typestate property has been violated or not. Dwyer, Kinneer, and Elbaum
(2007) propose so-called adaptive online analysis, aiming at checking if pro-
grams violate given “protocol FSAs” (very closely related to typestates). Their

2.6. SUMMARY 33

idea is to replace traditional “dynamic analysis produces a trace that is later
analyzed” approach with an online (analyze the output while the program
is running), adaptive (change the dynamic analysis scope depending on the
analysis results) approach.

2.6 Summary
This chapter makes the following contributions:

• We have introduced the notion of object usage models. Compared
to other means of modeling classes’ and objects’ usage, the have the
following advantages:

– They allow the programmer to focus on one object at a time, thus
freeing him from distraction caused by long code snippets, where
the usage the programmer is interested in is scattered across whole
methods.

– Object usage models use a variable abstraction level—they show
how an object is being used from the perspective of a method using
it, and thus from the perspective of the programmer that wrote
the method.

• We have presented an interprocedural static analysis that creates object
usage models from program’s bytecode. We have shown that our anal-
ysis scales to large programs: Analyzing Vuze (the largest program we
used in our experiments, 345 K SLOC, 35�363 methods in 5532 classes)
takes slightly more than three minutes and results in 237�569 object
usage models being produced.

To learn more about our work on model mining and related topics, see:

http://www.st.cs.uni-saarland.de/models/

http://www.st.cs.uni-saarland.de/models/

34 CHAPTER 2. MINING OBJECT USAGE MODELS

Chapter 3

Patterns and Anomalies in
Object Usage

3.1 Introduction

In the preceding chapter we have shown how we can mine object usage mod-
els from a program’s code. These models represent the way objects are used
in methods and are intended to capture the programmers’ intentions as well.
Each abstract object has its own model, and thus there are as many models
representing usage of a particular type as there are abstract objects of that
type. For example, there are 1050 abstract objects of the java.util.Iterator
type in the AspectJ project, and each of those objects has its own model. With
that many models for a single type, each representing a particular usage of
that type, we can expect to find patterns recurring in those models. For ex-
ample, it might be that some method is always called before another method
can be called (like hasNext() is typically always called before next()), or that
there are some specific initialization and/or shutdown methods that have to
be called if the object is to be kept in a consistent state (like initVerify()),
and so on. And whenever there is a pattern, there can also be models that do
not adhere to it and can therefore be flagged as being anomalous. Anoma-
lous models can be signs of inconsistency or perhaps rarity of the usage
they represent, but they can also point us to code that is defective. It is this
automatic defect detection possibility that we will focus on in this chapter.

36 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

3.2 Finding an Appropriate Abstraction
To find patterns in a set of object usage models we have to choose the abstrac-
tion in which we will look for those patterns. This is very important, because
depending on the abstraction chosen different patterns can be found, and
some can be more valuable and containing more insight than others. One
obvious but too extreme abstraction is to treat each object usage model as its
own abstraction. A pattern in this setting is just a set of identical models. All
models that differ are considered to be violating the pattern. This abstraction
is simple to understand and easy to implement. However, it assumes that
models do not contain noise, and this assumption is overly simplistic. As an
example consider a set of models representing the way files are being used.
It can happen that most of those models are identical (i.e. the file is first
created, then it is read or written from, and later it is closed). But what if
someone checks the size of the file as well? Is she violating the pattern in any
way? By the definition we have given above, she does; however, it is obvious
that checking the file size does not violate the pattern per se.

Unfortunately, there is no single abstraction that we could call “the right
one.” The reason for this is as follows: the goal of any kind of abstraction
should be to make some models indistinguishable (i.e., abstract away from
their details); but how do we know if we have not abstracted away an impor-
tant difference, or kept a difference that is unimportant? The answer to this
question depends in particular on the way the API is supposed to be used, and
because this is something we want to learn (i.e., do not have the knowledge
a priori), we cannot construct a flawless abstraction. There is a very broad
spectrum of abstractions, and many of them can be shown to be useful in
some way. In this chapter, we will focus on a simple abstraction based on
possible sequencing of method calls when using a class1; this will allow us
to gently introduce the concept of patterns and anomalies. In Chapter 4, we
will show how these concepts can be applied to a much more sophisticated
and powerful abstraction.

3.2.1 Sequential Constraints Abstraction
For the purpose of finding patterns in object usage we can abstract each
model into a set of so-called sequential constraints and define a pattern as
a set of such constraints. We call this abstraction the sequential constraints
abstraction. The underlying idea is as follows: Object usage models for
a certain class represent the way objects of that class are used throughout
the program. The emphasis is on method calls and their ordering. Since

1Section 3.2.2 contains some ideas on how to refine this abstraction.

3.2. FINDING AN APPROPRIATE ABSTRACTION 37

comparing models directly to find the required ordering of method calls is
too rigid, we can abstract each model into a set of constraints describing the
ordering of method calls represented by the model. This abstraction leads
of course to information loss but nevertheless it lets us compare sets instead
of models, and this is what makes it possible to actually find patterns. If a
particular ordering is present in sets abstracted from many (or perhaps all)
models for a particular class, this ordering can be considered part of a pattern
that has to be followed if objects of that class are to be used consistently or
even correctly.

Before we introduce the sequential constraints abstraction formally, let us
first define what we understand by a reachability relation of a given object
usage model:

Definition 3.1 (Reachability relation). Let oum = (Q� Σ� T� �0� F � Exc) be an
object usage model (see definition 2.2). T � ⊆ Q × Q is called a reachability
relation of oum iff T � is the transitive closure of {(�1� �2) : �1 = �2 or ∃ σ � �2 ∈
T(�1� σ)}.

Intuitively, a pair of states in a specific OUM is a member of the reachabil-
ity relation of that OUM iff there is a path (potentially empty) between those
two states. We will use this relation in the definition of sequential constraints
abstraction below:

Definition 3.2 (Sequential constraints abstraction). Let oum = (Q� Σ� T� �0� F �
Exc) be an object usage model (see definition 2.2) and T � ⊆ Q × Q be the
reachability relation of oum (see definition 3.1). The sequential constraints
abstraction of oum is defined as sca(oum) = {σ1 ≺ σ2 : ∃ �1� �2� �3� �4 � �2 ∈
T(�1� σ1) and (�2� �3) ∈ T � and �4 ∈ T(�3� σ2) and σ1 �= � and σ2 �= �}.

The sequential constraints abstraction of an object usage model contains
all pairs of events such that there is a path through the model with the first
event in a pair preceding the second event in a pair (perhaps indirectly, as
expressed by the reachability relation between the states �2 and �3 in the
definition above). This precedence relation is denoted using ≺, with σ1 ≺ σ2
expressing the fact that σ1 precedes σ2.

Let us illustrate the definition of a sequential constraints abstraction using
an example. Consider the object usage model of a Stack object shown in
Figure 3.1. The sequential constraints abstraction of that model consists of
the following sequential constraints:

Stack.<init> @ (0) ≺ Stack.push @ (0)
Stack.<init> @ (0) ≺ Stack.elements @ (0)
Stack.push @ (0) ≺ Stack.push @ (0)
Stack.push @ (0) ≺ Stack.elements @ (0)

38 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

Stack.<init> @ (0)

Stack.push @ (0)

Vector.elements @ (0)

Figure 3.1: OUM for a Stack object.

The main benefit of the sequential constraints abstraction is that it can
express the sequencing of events that an object goes through using a simple
set of constraints. This simplicity, however, is also one of its weaknesses.
Consider another object usage model of a Stack object, shown in Figure 3.2.
It differs from the one in Figure 3.1 in that push() is called twice instead of
being called in a loop. And yet the sequential constraints abstractions of those
two models are identical (i.e., the models are indistinguishable under this ab-
straction). In general we can say that the sequential constraints abstraction
does not differentiate between an event occurring multiple times and once
in a loop. Despite this weakness, it allows us to find quite accurate and in-
teresting patterns and their violations, whereas its simplicity makes it easy to
understand and facilitates gentle introduction of the concept of patterns and
violations.

3.2.2 Other Possibilities
Obviously, the sequential constraints abstraction is not the only abstraction
possible. There are other possibilities that we did not try out but that remain
viable alternatives worth investigating. Generally, there are two directions
possible: improving the sequential constraints abstraction, or coming up with
an entirely new abstraction. In Chapter 4 we will introduce a new, much more
powerful abstraction based on temporal logic formulas. For now, though,
let us concentrate on possible ways of improving the sequential constraints
abstraction:

“Must” and “succeeds” constraints. Constraints in the sequential constraints
abstraction are “may” constraints (i.e., σ1 ≺ σ2 iff σ1 may precede σ2).
This means that if there is any path through the OUM where σ1 pre-

3.2. FINDING AN APPROPRIATE ABSTRACTION 39

Stack.<init> @ (0)

Stack.push @ (0)

Stack.push @ (0)

Stack.elements @ (0)

Figure 3.2: Hypothetical OUM for a Stack object with the same sequential con-
straints abstraction as the OUM shown in Figure 3.1.

cedes σ2, this constraint will be present in the abstraction; however, it
is easy to come up with examples where an event must precede an-
other event on all paths for the usage to be correct, e.g, whenever an
initialization is required before anything can be done. Adding “must”
constraints could deal with this issue, but it introduces a distinction that
is currently not present and would have to be dealt with as well: for
“may” constraints, stating that σ1 may precede σ2 and that σ2 may suc-
ceed σ1 is equivalent, but not so for “must” constraints. The solution
would mean differentiating between “must precede” and “must succeed”
constraints.

“Precedes all” and “Precedes first” constraints. If we add the aforemen-
tioned “must” constraints, we become able to differentiate between “must
precede first” and “must precede all” constraints.2 The idea here is that
some method has to be called just once, and then another method can
be call as many times as needed. This is the case, for example, with
List.size() and List.get() methods; once the first gets called, we
can call the second as many times as needed, because we have the
ability to check if the index is not outside the boundaries. But there
is also another possibility, namely, that some method must be called
before every call to some other method. A good example here is the

2“may precede first” and “may precede all” are do not seem as useful.

40 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

pair Iterator.hasNext() and Iterator.next(). Similarly we could add
“must succeed last” and “must succeed all” constraints. Distinguishing
between those two possibilities might add useful information to the pat-
terns and thus increase their overall accuracy and usefulness.

Contextual constraints. It would be interesting to add contextual informa-
tion to constraints (e.g., “Typically Iterator.hasNext() is called inside
a conditional expression of a while loop, and Iterator.next() in its
body”). This might help detect programming constructs that are typ-
ically used together with certain methods. This would, however, re-
quire the object usage models to be extended as well, because currently
contextual information is not represented by them. A more limited ex-
tension to the constraints (and one that does not requiring changes to
object usage model) is just differentiating between events that happen in
a loop and those that happen outside of any loop. The main challenge
here would be to develop an approach for dealing with nested loops.

3.3 Detecting Whole-Program Patterns
3.3.1 General Approach
After abstracting object usage models into sequential constraints we can start
looking for patterns amongst those constraints. Finding patterns amongst
models of objects of the same class gives us information about how objects
of this class are typically used; however, what we would like to learn are
patterns that also show how objects of several classes are typically used
together. To achieve this goal, we do not look for patterns amongst ob-
ject usage models, but amongst methods those models stem from. In other
words, we now abstract each method into a set of sequential constraints that
have been created from object usage models that stem from that method.
An example shown in Figure 3.3 will make it clear: We start with the copy
method shown in 3.3(a). There are exactly four abstract objects used by copy
(see definition 2.4): the two input objects out and in, the return value of a
call to Vector.set at the end of the loop, and the return value of a call to
Vector.get near the end of the loop. Their object usage models and those
models’ sequential constraints abstractions are shown in Figures 3.3(b)–(d).
copy’s sequential constraints abstraction is now simply a union of those four
sequential constraints abstractions, as shown in Figure 3.3(f). Formally, the
method’s sequential constraints abstraction is defined as follows:

Definition 3.3 (Method’s sequential constraints abstraction). Let � be a meth-
od, Obj(�) be the set of abstract objects used by � (see definition 2.4), and

3.3. DETECTING WHOLE-PROGRAM PATTERNS 41

let oum(�) be defined as an object usage model of an abstract object �. Let
oums(�) be the set of object usage models stemming from �, defined as
oums(�) = {oum(�) : � ∈ Obj(�)}. �’s sequential constraints abstraction
is defined as sca(�) =

�
oum ∈ oums(�) sca(oum).

Now we can look for sequential constraints that are common to many
methods and thus discover patterns amongst those methods. These might
turn out to be limited to objects of one class only, but we now also have the
ability to discover patterns encompassing several objects of different classes.
The general idea we make use of is as follows: if a particular set of sequential
constraints is common to many methods, it is a pattern shared by those
methods. Formally, we can define a pattern in the following way:

Definition 3.4 (Pattern, support, size, closed pattern). Let �1� � � � � �� be
methods. P is a pattern supported by � methods iff |{�� : P ⊆ sca(��)}| = �.
� is called the support of P. |P| is called the size of P. P is a closed pattern
iff for all P� ⊃ P we have |{�� : P� ⊆ sca(��)}| < �.

Speaking informally, a pattern is a set of sequential constraints that oc-
curs in sequential constraints abstractions of a number of methods, and the
support of a pattern is that number. The size of a pattern is the number of
sequential constraints that constitute it. A pattern is closed if adding even a
single sequential constraint to it would cause the support of the resulting pat-
tern to drop (i.e., at least one of the methods that support the original pattern
does not support the new one). We will normally use the term “pattern” to
mean “closed pattern”, and all exceptions will be explicitly stated.

To detect patterns as defined above we use formal concept analysis (Gan-
ter and Wille 1999). Formal concept analysis takes as an input a set of concep-
tual objects, a set of conceptual properties, and a cross table representing an
association between conceptual objects and conceptual properties that hold
for those objects. The idea is to find sets of conceptual properties that are
common to a number of conceptual objects. If we take methods to be con-
ceptual objects and sequential constraints to be conceptual properties, this
boils down to finding patterns as defined by us above.

Figure 3.4 shows a sample cross table with conceptual objects represented
by rows and conceptual properties represented by columns. Generally speak-
ing, discovering all patterns in such a setting is equivalent to discovering
all filled rectangles in the cross table. (Not every rectangle needs to be
contiguous—it is enough if there is a transposition of columns and rows
in the cross table such that the rectangle becomes contiguous). Each filled
rectangle corresponds to a pattern (not necessarily closed; this depends on
the rectangle itself), where the rectangle’s columns are the properties that

42 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

static void copy (List out, List in, int from, int to) {
for (int index = from; index < to; index++) {

if (index >= out.size ()) {
return;

}
out.set (index, in.get (index));

}
}

(a) Sample input method copy.

List.size @ (0) List.set @ (0)

List.size @ (0) ≺ List.set @ (0)
List.size @ (0) ≺ List.size @ (0)
List.set @ (0) ≺ List.size @ (0)
List.set @ (0) ≺ List.set @ (0)

(b) Object usage model for out and its sequential constraints abstraction.

List.get @ (0) List.get @ (0) ≺ List.get @ (0)

(c) Object usage model for in and its sequential constraints abstraction.

RETVAL: List.set (sequential constraints abstraction empty)

(d) Object usage model for the return value of Vector.set with its (empty) sequential constraints
abstraction.

Figure 3.3: Creating method’s sequential constraints abstraction. (Continued on
next page.)

3.3. DETECTING WHOLE-PROGRAM PATTERNS 43

RETVAL: List.get

List.set @ (2)

RETVAL: List.get ≺ List.set @ (2)

(e) Object usage model for the return value of Vector.get and its sequential constraints abstraction.

List.get @ (0) ≺ List.get @ (0)
List.size @ (0) ≺ List.set @ (0)
List.size @ (0) ≺ List.size @ (0)
List.set @ (0) ≺ List.size @ (0)
List.set @ (0) ≺ List.set @ (0)
RETVAL: List.get ≺ List.set @ (2)

(f) Sequential constraints abstraction of the copy method.

Figure 3.3: Creating method’s sequential constraints abstraction. (Continued.)

form the pattern, and its rows are objects that support the pattern (see Fig-
ure 3.4). The support of the pattern shown in the Figure 3.4 is 4 (because
there are four conceptual objects that exhibit this pattern), and the size of the
pattern is 2 (because the pattern consists of two conceptual properties). We
will not go into more detail on formal concept analysis here; the reader can
find additional information elsewhere (Lindig 2007).

3.3.2 Fine-tuning the Approach

The number and size of patterns that will be discovered can be influenced by
adjusting two input parameters of formal concept analysis: minimum size
and minimum support. Minimum size specifies the minimum number of
conceptual properties (in our case—sequential constraints) that a pattern must
consist of if it is to be reported to the user. In our case this parameter is best
set to 1, so that we find patterns of all possible sizes. The reason for this is
that even if a pattern consists of just one sequential constraint, it represents
a relationship between two events, and any such relationship might be of
interest.

44 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

Conceptual properties

Co
nc

ep
tu

al
 o

bj
ec

ts

a pattern

• • • •
• •

• • • •
• • •

• • • •
• • •

•

•
• • •

•

Figure 3.4: Sample cross table input to a formal concept analysis. The (noncon-
tiguous) rectangle in the cross table represents a sample pattern (Lindig 2007).

Minimum support specifies the minimum number of conceptual objects
(in our case—methods) that must exhibit a pattern if it is to be reported to
the user. Finding the optimal value of minimum support to use is difficult, if
at all possible. The problem here is that judging a pattern’s usefulness by the
number of times it occurs is misleading. There can be very important, strong,
and useful patterns that occur very rarely simply because they pertain to a
very specific event that does not occur very often. Unfortunately, we cannot
simply set the minimum support to 1, as we do with minimum size, because
there would be too many useless patterns in the results. We do not have a
good solution to this problem, and we have arbitrarily decided to use 20 as
the minimum support value in our experiments. We will later show that this
number is good enough for our purposes (i.e., detecting methods that violate
one or more patterns in the hope that these are defective; see Section 3.4.3).

On the other hand, there exist events that happen almost everywhere
(such as calls to StringBuffer.toString ()), yet patterns these frequent oc-
currences yield are useless from a practical point of view. The phenomenon
here is that those patterns come to be not because this is the way those APIs
are supposed to be used. Instead, these patterns are due to the scale effect:
these APIs are used so often that almost every possible combination of se-
quential constraints related to them has a large chance of occurring often
enough to become a pattern. One idea to deal with fake patterns related to
too frequently occurring events is to simply ignore such events when calcu-
lating the sequential constraints abstraction. We can identify too frequently
occurring events by calculating how often (i.e., in how many object usage

3.3. DETECTING WHOLE-PROGRAM PATTERNS 45

Table 3.1: Patterns found in the case study subjects.
Program Sequential constraints Patterns Time (mm:ss)
Vuze 3.1.1.0 178�034 2�887 0:19
AspectJ 1.5.3 290�041 583 0:18
Apache Tomcat 6.0.18 89�793 98 0:09
ArgoUML 0.26 133�575 387 0:10
Columba 1.4 58�936 245 0:06
Act-Rbot 0.8.2 27�557 56 0:05

models) each event occurs and finding the outliers. Unfortunately, just as in
the case of minimum support, there exist events that occur frequently, but
always (or most of the time) follow the same usage pattern. During pre-
liminary experiments we have noticed that there are three Java classes that
contain mostly methods of the kind described above: StringBuffer, String,
and StringBuilder. Intuitively, the reason for this is that these classes are
not really stateful (i.e., they act more like data containers that can be ac-
cessed any time in any way). It seems very likely that it is this characteristic
that separates classes that do have object usage patterns from those that do
not. Unfortunately, finding such classes automatically is a problem, if only
because we need a precise definition of what we are looking for. We have
decided to simply ignore all the events related to one of the three classes
mentioned above. Better solutions are definitely possible, but we will leave
them as potential future extensions of this work.

3.3.3 Case Study
We have implemented the approach described above and applied it to the
projects listed in Table 2.1. As a formal concept analysis tool, we have used
Colibri/Java (Götzmann 2007). Table 3.1 lists all the projects and the results
obtained for them: number of distinct sequential constraints found, number of
patterns found, and the time (wall clock time, averaged over ten consecutive
runs) that was needed to perform the analysis on a 2�53 GHz Intel Core 2
Duo machine with 4 GB of RAM.

Detecting patterns is fast, with less than half a minute needed per project.
The number of patterns found varies from relatively few (e.g., 56 for Act-Rbot)
to quite many relative to the size of the project (e.g., 2887 for Vuze compared
to 583 for AspectJ). As we will see later (see Section 3.4.3), the less patterns
found, the better—at least when it comes to defect detection capabilities. The
intuitive explanation of this fact is that the less different patterns, the more

46 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

Iterator.next @ (0)

Iterator.hasNext @ (0)

Figure 3.5: The “iterator” pattern found in all projects from Table 3.1.

homogenous the project, and the bigger the probability that any deviation
from a pattern is a real defect as opposed to just being an irregularity.

Let us now introduce a graphical representation of patterns and then take
a look at some of the patterns found. Patterns are sets of sequential con-
straints (cf. definition 3.4), but representing them in this way makes them
difficult to understand. Instead, we will use a graphical representation that
will make the data flow represented by the pattern easier to follow. Con-
sider a pattern P = �1� � � � � �� with each �� being a sequential constraint
σ�1 ≺ σ�2. We will represent a pattern as a directed graph G = (V � E),
where V = {σ : ∃ �� σ � � �� ∈ P and (�� = σ ≺ σ � or �� = σ � ≺ σ)} and
E = {(σ�� σ�) : (σ� ≺ σ�) ∈ P}. Let us consider the following pattern:

Iterator.hasNext @ (0) ≺ Iterator.hasNext @ (0)
Iterator.hasNext @ (0) ≺ Iterator.next @ (0)
Iterator.next @ (0) ≺ Iterator.hasNext @ (0)
Iterator.next @ (0) ≺ Iterator.next @ (0)

If we assume σ1 = Iterator.hasNext @ (0) and σ2 = Iterator.next @ (0),
then this pattern can be represented as a directed graph G = (V � E), where
V = {σ1� σ2} and E = {(σ1� σ1)� (σ1� σ2)� (σ2� σ1)� (σ2� σ2)}. This graph (with full
names of nodes instead of symbols) is shown in Figure 3.5. The pattern it
represents can be found in all projects listed in Table 3.1 and it occurs very
frequently. Its support (see definition 3.4) ranges from 176 for Act-Rbot to 876
for ArgoUML. This pattern illustrates the most common way to use iterators,
namely combining calls to hasNext() with calls to next(). It also shows one
of the weaknesses of the sequential constraints abstraction: information about
the alternating character of these calls is lost.

Figure 3.6 shows one of the patterns found in Vuze. This pattern (with
support of 77) illustrates how instances of the DERSequence class are cre-
ated. One of the constructors of DERSequence takes as a parameter an object
of type DEREncodableVector, and a call to exactly this constructor is part

3.3. DETECTING WHOLE-PROGRAM PATTERNS 47

DERSequence.<init> @ (1)

ASN1EncodableVector.<init> @ (0)

ASN1EncodableVector.add @ (0)

Figure 3.6: Pattern from Vuze illustrating how instances of the DERSequence class
are created.

of the pattern. However, the pattern shows that it is an instance of the
ASN1EncodableVector that is passed to the constructor instead. A quick look
at the source code of DEREncodableVector explains everything: There is a
comment stating that this class has been superseded by the ASN1Encodable-
Vector class, and thus the latter should be used in preference to the former.

Figure 3.7 shows a pattern with support 52 found in Act-Rbot. This pat-
tern illustrates how some parts of the database API (executing a query and
accessing its results) are intended to be used. As can be seen, the pattern is
very complicated, but we can simplify it a little bit by discarding events that
represent method calls ending in an exception being thrown. The remaining
part of the pattern is shown in Figure 3.8. This pattern consists of four clearly
separated “subpatterns”3:

• The connection that is used to create the statement to be executed (via
the call to createStatement() of the Connection class) must be freed
by passing it as the second parameter to the freeConnection() method
of the DBConnectionManager class.

• The DBConnectionManager class is a singleton, and we can get its in-
stance by calling the static method getInstance() on it.

• After creating the statement to be executed (via the call to createState-
ment()), we execute it (by calling executeQuery() on it), and must close
it afterwards (by calling close() on it).

3We use the term informally here. We treat each connected component of the graphical
representation of a pattern as a subpattern.

48 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

E
X
C
(
S
Q
L
E
x
c
e
p
t
i
o
n
)
:

R
e
s
u
l
t
S
e
t
.
c
l
o
s
e

@
(
0
)

E
X
C
(
S
Q
L
E
x
c
e
p
t
i
o
n
)
:

R
e
s
u
l
t
S
e
t
.
n
e
x
t

@
(
0
)

R
e
s
u
l
t
S
e
t
.
c
l
o
s
e
@
(
0
)

R
E
T
V
A
L
:

S
t
a
t
e
m
e
n
t
.
e
x
e
c
u
t
e
Q
u
e
r
y

R
e
s
u
l
t
S
e
t
.
n
e
x
t

@
(
0
)

S
t
a
t
e
m
e
n
t
.
e
x
e
c
u
t
e
Q
u
e
r
y

@
(
0
)

S
t
a
t
e
m
e
n
t
.
c
l
o
s
e

@
(
0
)

E
X
C
(
S
Q
L
E
x
c
e
p
t
i
o
n
)
:

S
t
a
t
e
m
e
n
t
.
c
l
o
s
e

@
(
0
)

R
E
T
V
A
L
:

C
o
n
n
e
c
t
i
o
n
.
c
r
e
a
t
e
S
t
a
t
e
m
e
n
t

E
X
C
(
S
Q
L
E
x
c
e
p
t
i
o
n
)
:

S
t
a
t
e
m
e
n
t
.
e
x
e
c
u
t
e
Q
u
e
r
y

@
(
0
)

R
E
T
V
A
L
:

D
B
C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r
.
g
e
t
I
n
s
t
a
n
c
e

D
B
C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r
.
f
r
e
e
C
o
n
n
e
c
t
i
o
n

@
(
0
)

C
o
n
n
e
c
t
i
o
n
.
c
r
e
a
t
e
S
t
a
t
e
m
e
n
t

@
(
0
)

D
B
C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r
.
f
r
e
e
C
o
n
n
e
c
t
i
o
n

@
(
2
)

Figure 3.7: Pattern from Act-Rbot illustrating database API usage.

3.3. DETECTING WHOLE-PROGRAM PATTERNS 49

R
E
T
V
A
L
:

C
o
n
n
e
c
t
i
o
n
.
c
r
e
a
t
e
S
t
a
t
e
m
e
n
t

S
t
a
t
e
m
e
n
t
.
e
x
e
c
u
t
e
Q
u
e
r
y

@
(
0
)

S
t
a
t
e
m
e
n
t
.
c
l
o
s
e

@
(
0
)

R
e
s
u
l
t
S
e
t
.
c
l
o
s
e
@
(
0
)

R
E
T
V
A
L
:

S
t
a
t
e
m
e
n
t
.
e
x
e
c
u
t
e
Q
u
e
r
y

R
e
s
u
l
t
S
e
t
.
n
e
x
t

@
(
0
)

R
E
T
V
A
L
:

D
B
C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r
.
g
e
t
I
n
s
t
a
n
c
e

D
B
C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r
.
f
r
e
e
C
o
n
n
e
c
t
i
o
n

@
(
0
)

D
B
C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r
.
f
r
e
e
C
o
n
n
e
c
t
i
o
n

@
(
2
)

C
o
n
n
e
c
t
i
o
n
.
c
r
e
a
t
e
S
t
a
t
e
m
e
n
t

@
(
0
)

Figure 3.8: Part of the pattern shown in Figure 3.7, illustrating database API
usage. Events representing method calls that end in an exception being thrown
were removed to make the pattern more comprehensible.

50 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

ArrayList.<init> @ (0)

ASTNode.createPropertyList @ (2)

ASTNode.addProperty @ (2)

ASTNode.reapPropertyList @ (1)

Figure 3.9: Pattern from AspectJ illustrating how property lists are constructed.

• The call to executeQuery() returns an instance of the ResultSet class.
We can iterate through the rows returned by repeatedly calling next()
on the result set. After extracting the results we must close the result
set (via the call to close() on it).

As we can see, this pattern is very informative and contains a lot of informa-
tion on the interplay between different classes and their methods.

Figure 3.9 shows a pattern from AspectJ illustrating how property lists are
created. This pattern’s support is 71. Incidentally, the Java method shown in
Figure 2.2 is an example of code that adheres to this pattern.

All the patterns were mined using 20 as minimum support, 1 as mini-
mum size, and with filtering of events related to StringBuffer, String, and
StringBuilder turned on (cf. Section 3.3.2). We will use these settings through-
out this dissertation, but before we proceed further, let us take a look at how
the number of patterns changes if we change those values. Figure 3.10 shows
the influence of the minimum support on the number of patterns found in As-
pectJ. Minimum size was fixed at its default value—1, and filtering was turned
on as well. We can see that the number of patterns decreases exponentially
with the increase in the minimum support value. Overall, a minimum sup-
port of 10 results in 2324, and a minimum support of 30 in 290 patterns being
found. Figure 3.11 shows the influence of minimum size on the number of
patterns found in AspectJ. Minimum support was fixed at its default value—20,

3.3. DETECTING WHOLE-PROGRAM PATTERNS 51

0

400

800

1200

1600

2000

2400

10 12 14 16 18 20 22 24 26 28 30

#
 P

at
te

rn
s

Minimum support

Figure 3.10: Influence of minimum support on the number of patterns found in
AspectJ (minimum size fixed at 1).

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19

#
 P

at
te

rn
s

Minimum size

Figure 3.11: Influence of minimum size on the number of patterns found in AspectJ
(minimum support fixed at 20).

52 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

and filtering was turned on as well. Again, the number of patterns decreases
exponentially with the increase in the minimum size value, but this time the
effect is much more pronounced. Overall, a minimum size of 1 (the default
value) results in 583, and a minimum size of 20 in 33 patterns being found.
When it comes to filtering, after turning it off (with minimum support and
minimum size fixed at their default values) the number of patterns found in
AspectJ goes up to 1906, which is a more than threefold increase.

3.4 Detecting Anomalous Methods
3.4.1 Anomalies as Missing Functionality
Having found patterns, we can now turn to the task we wanted to focus
on from the very beginning: detecting methods that violate one or more
patterns. Our hope here is that these methods will be defective and that
the violations they exhibit will pinpoint the problem. More precisely, our
sequential constraints abstraction abstracts each method in the program into
a set of sequential constraints (cf. definition 3.3), and a pattern is a set of
sequential constraints that are common to a number of methods. Now, given
a pattern, we may ask the following question: which methods violate this
pattern? Of course we must assume that there is something that the pattern
and the method have in common (i.e., there must be sequential constraints
that are present both in the pattern and in the method’s sequential constraints
abstraction). Otherwise there is no violation, but just a plain disjunction.
Hence, a violation of a pattern occurs when there are sequential constraints
that are common both to the pattern and the violating method, and there are
also constraints that are present in the pattern, but not in the method:

Definition 3.5 (Violation, deviation, deviation level). Let � be a method and
P be a pattern. Let sca(�) be �’s sequential constraints abstraction (see
definition 3.3). � violates P iff P ∩ sca(�) �= ∅, and there exists � ∈ P such
that � �∈ sca(�). D(P� �) = P \ sca(�) is the deviation of the violation.
|D(P� �)| is the deviation level of the violation.

Consider the replaceName() method shown in Figure 3.12. Its sequential
constraints abstraction looks as follows:
ASTNode.changeName @ (0) ≺ ASTNode.postReplaceChild @ (0)
ASTNode.preReplaceChild @ (0) ≺ ASTNode.changeName @ (0)
ASTNode.preReplaceChild @ (0) ≺ ASTNode.postReplaceChild @ (0)
ASTNode.preReplaceChild @ (1) ≺ ASTNode.postReplaceChild @ (1)
ASTNode.preReplaceChild @ (1) ≺ ASTNode.postReplaceChild @ (2)
ASTNode.preReplaceChild @ (2) ≺ ASTNode.changeName @ (1)

3.4. DETECTING ANOMALOUS METHODS 53

public void replaceName (ASTNode root, ASTNode old, ASTNode new) {
root.preReplaceChild (old, new, NAME_PROPERTY);
root.changeName (new);
root.postReplaceChild (old, old, NAME_PROPERTY);

}

Figure 3.12: Sample source code using pre- and postReplaceChild() methods
in a way that violates a pattern.

Now consider the following pattern P���_���� :

ASTNode.preReplaceChild @ (0) ≺ ASTNode.postReplaceChild @ (0)
ASTNode.preReplaceChild @ (1) ≺ ASTNode.postReplaceChild @ (1)
ASTNode.preReplaceChild @ (2) ≺ ASTNode.postReplaceChild @ (2)

Let us represent the three sequential constraints that constitute P���_���� as
σ1� σ2� σ3, respectively (so P���_���� = {σ1� σ2� σ3}). The replaceName()method
violates the pattern P���_���� , because P���_���� ∩ sca(replaceName()) = {σ1� σ2}
�= ∅, and there exists � = σ3 ∈ P���_���� such that � �∈ sca(replaceName()).
The deviation of this violation is D(P���_���� � replaceName()) = P���_���� \
sca(replaceName()) = {σ3}. Since this set has one element, the deviation
level of this violation is 1.

The definition we have just given allows us not only to identify violations
but also gives us a way to calculate the deviation level of a violation which
is a measure of how strongly a method deviates from a pattern. There is
also another important property, which we have not mentioned yet: it is the
confidence of the deviation. As its name implies, it is supposed to give us a
measure of confidence in that the deviation is a real anomaly and a potential
defect, and not a harmless difference:
Definition 3.6 (Confidence). Let �1� � � � � �� be methods and P be a pattern
supported by � methods. Let �� violate P and D(P� ��) be the deviation of the
violation. Let �� = |{�� : D(P� ��) = D(P� ��)}| be the number of methods
that violate the same pattern in the same way. �/(� + ��) is the confidence of
the deviation D(P� ��).

Consider again the pattern P���_���� shown above. If the support of P���_����
is 133 (i.e., there are 133 methods that adhere to it), and there are seven meth-
ods, �1� � � � � �7, for which D(P���_���� � ��) = D(P���_���� � replaceName()) (i.e.,
those seven methods violate P���_���� in the same way as the replaceName()
method shown in Figure 3.124), then the confidence of the deviation D(P���_���� �
replaceName()) is equal to 133/(133 + 7) = 133/140 = 0�95.

4replaceName() is one of them, so there must be 6 other methods with the same violation.

54 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

Conceptual properties

Co
nc

ep
tu

al
 o

bj
ec

ts

a violation
• • • •

• •
• • • •

• • •
• • • •

• • •

•

•
• • •

•

Figure 3.13: Sample cross table input to a formal concept analysis. The two (non-
contiguous) rectangles in the cross table represent a violation (Lindig 2007).

Confidence of a deviation tells us how often the pattern is adhered to rel-
ative to how often it is being violated in the same way. This extends straight-
forwardly to violations as well, giving us the notion of a confidence of a
violation. Confidence and deviation level give us some quantitative data about
each violation.

To detect violations as we have defined them, we can use the results re-
turned by concept analysis. The idea, first presented by Lindig (2007), is as
follows: if we have two closed patterns P1 and P2, with P1 being a proper
subset of P2, the support of P1 must be strictly greater than support of P2
(otherwise P1 is not closed; cf. definition 3.4). This means that there are meth-
ods that adhere to P1 but do not adhere to P2. In other words, properties
from the set P1 are present in those methods’ sequential constraints abstrac-
tions, but those from the set P2 \ P1 are not. According to the definition of
a violation given above (definition 3.5), these methods violate the pattern P2.
Similarly we can show that if a set of methods violates a pattern P2, there
must exist a pattern P1 ⊂ P2 such that only those methods adhere to it.

Consider the cross table shown in Figure 3.13. There are two patterns
marked as rectangles in this cross table, with one pattern being a proper
subset of another. These two patterns induce the violation shown in the
Figure. The deviation level of this violation is 1. This is because there is
only one conceptual property that is present in one pattern, but not the other.
The confidence of the violation is 0�75. This is because the pattern being
violated (the one with the bigger size [i.e., wider] and the smaller support
[i.e., smaller]) is supported by three objects, and there is only one conceptual
object violating this pattern. Therefore, the confidence of the violation is
3/(3 + 1) = 0�75. We will not go into more detail here, the reader can consult
the work by Lindig (2007) for a thorough discussion of this topic.

3.4. DETECTING ANOMALOUS METHODS 55

3.4.2 Ranking violations
The procedure described above can lead to quite a lot of violations being
found, not all of them being worthy of investigation. The reason for this
is that it is based on purely statistical reasoning: anomalous behavior is
likely to be erroneous behavior (Engler et al. 2001). But it can also happen
that anomalous behavior is just that: a harmless anomaly. To mitigate this
problem, we rank violations in the hope that the ones that point to erroneous
behavior will be placed higher than the ones that are harmless.

To rank violations, we treat them as so-called “association rules”. Origi-
nally this term was introduced by Agrawal, Imieliński, and Swami (1993) in
a work on analyzing market-basket data. Agrawal, Imieliński, and Swami’s
idea was to find rules of the form X � �, where X is a set of items and � is
an item. The meaning of the rule is “clients that buy items from the set X
typically also buy an item �”. The word “typically” is used to represent a modi-
fiable threshold (typically confidence) that is used for mining such association
rules. The original definition of an association rule by Agrawal, Imieliński,
and Swami is as follows:

“Let � = I1� I2� � � � � I� be a set of binary attributes, called items. Let
T be a database of transactions. Each transaction � is represented
as a binary vector, with �[�] = 1 if � bought the item I� , and �[�] = 0
otherwise. There is one tuple in the database for each transaction.
Let X be a set of some items in �. We say that a transaction �
satisfies X if for all items I� in X, �[�] = 1.
By an association rule, we mean an implication of the form X � I� ,
where X is a set of some items in �, and I� is a single item in �
that is not present in X.”

We can easily notice a very close similarity between the definition of an
association rule above and our definition of a violation (definition 3.5). The
only important difference is that Agrawal, Imieliński, and Swami—to use the
terminology used in this dissertation—only allow a deviation level of 1. It
is therefore only natural to treat violations as “extended” association rules
X � Y , where both X and Y are sets. Let us give the precise definition for
this “translation”:
Definition 3.7 (Violation’s association rule). Let � be a method and P be a
pattern. Further, let us assume a violation of P in �, and let D(P� �) be the
deviation of this violation. The violation’s association rule is X � Y , where
X = P \ D(P� �) and Y = D(P� �).

We can now treat every violation as its association rule, as defined above.
Also, it is easy to show that an association rule uniquely defines a violation.

56 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

This allows us to approach our problem (ranking violations) from a slightly
different viewpoint: instead of ranking violations, we can rank their associ-
ation rules. One effective method of ranking was proposed by Brin et al.
(1997): using so-called conviction measure. Original definition of conviction
by Brin et al. is as follows: conviction(X � Y) = P(X)P(¬Y)/P(X� ¬Y), where
P(X) is the probability of X occurring. Conviction measures the deviation of
X ∧ ¬Y from independence (i.e., how much more often would the pattern be
violated if X and Y were independent; note that, logically, X � Y is equiv-
alent to ¬(X ∧ ¬Y)). The original formula can be alternatively expressed as
conviction(X � Y) = (� − �Y)/(� ∗ (1 − �XY)), where �Y is the support of the
set Y , �XY is the confidence of the violation, and � is the normalization factor
(for sequential constraints abstraction: the number of methods in the pro-
gram being analyzed). We rank all violations according to their conviction
measures such that the user can focus on the top-ranked violations instead
of investigating all of them.

After ranking, we filter away all violations with conviction values ≤ 1�25.
This threshold is quite arbitrary, but the same value was used by Brin et al..
Next, we remove violations that look like other, higher-ranked, violations. We
follow here again the approach of Brin et al.: Let X1 � Y and X2 � Y be
violations’ association rules with X1 ⊂ X2. If conviction value of X1 � B is at
least as high as conviction value of X2 � B, the latter will be removed. This
step compares all pairs of violations, independent of the method that exhibits
the violation. Therefore, it can happen that a violation exhibited by method
�1 will get filtered away because another method, �2 exhibits a similar (in
the sense of the description above), but higher-ranked violation. This can lead
to defect-uncovering violations being removed, and we have indeed observed
that such things happen. However, most of the time the removed violations
are either duplicates (if the methods are the same) or false positives (if they
are different). In cases where true positives are filtered away, most of the time
the higher-ranked violation (that was kept) turns out to be a true positive as
well—so fixing the problem and then rerunning the analysis uncovers the
next-ranked violation. In any case, we feel that missing a few true positives
is a small price to pay for a significantly higher true positives rate.

3.4.3 Experimental results
We have implemented the procedure described above in a tool called JADET5

and run it on all the projects shown in Table 2.1. Summary of the results can
be found in Table 3.2. For each project we report on the total number of
violations found and on the time (wall clock time, averaged over ten con-

5Java Anomaly DETector

3.4. DETECTING ANOMALOUS METHODS 57

Table 3.2: Violations found in the case study subjects.
Program Violations Time (mm:ss)
Vuze 3.1.1.0 890 0:33
AspectJ 1.5.3 163 0:20
Apache Tomcat 6.0.18 16 0:09
ArgoUML 0.26 128 0:11
Columba 1.4 113 0:07
Act-Rbot 0.8.2 11 0:05

secutive runs) that was needed to perform the analysis on a 2�53 GHz Intel
Core 2 Duo machine with 4 GB of RAM. As we can see, there is a large dif-
ference between the number of violations found in different projects, even
for projects that are of similar size (like Apache Tomcat and ArgoUML, cf.
Table 2.1). Ideally we would investigate every single violation found in each
project and classify it to find out how many of those are true positives (more
on that below). While for Apache Tomcat and Act-Rbot it is entirely possible
to investigate all the violations, for Vuze 3.1.1.0 the number of violations found
is so large that this would be a time-consuming and mundane task. There-
fore, we have investigated 10 top-ranked and 10% top-ranked violations for
each project and classified them into three categories:

Defects. This category is self-explanatory, but there is one important point
we want to make here. It sometimes happens that there is a method that
violates the contract of its base class, but the application itself does not
fail because of this. One example is if a comment in the base class states
that a particular method accepts null values passed as a parameter, but
the implementation of that method in the derived class does not. If this
method is public, we still mark it as defective, because someone may
cause it to fail by following the contract of the base class. Example of a
code classified as a defect can be found in Figure 3.14.

Code smells. This category contains all violations that are not defects, but
the violating methods have properties indicating that something may go
wrong (Fowler 1999) or they might be improved in a way that improves
readability, maintainability or performance of the program. An example
might be a method that uses a for loop to iterate through a collection
and breaks unconditionally out of the first iteration. If the collection can
have at most one element, this code will work, but it cannot be treated
as fully correct (See Figure 3.15).

58 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

public void execute (..., List args)
{

if (args.isEmpty())
{

...
return;

}
...
String arg = (String)args.remove(0);
if (args.isEmpty() && "list".equalsIgnoreCase(arg))
{

...
return;

}
File path = new File ((String)args.get(0));
...

}

Figure 3.14: A Vuze defect found by JADET. If the args list con-
tains just one element, different than “list”, this method will throw an
IndexOutOfBoundsException.

public String getRetentionPolicy () {
...
for (Iterator it = ...; it.hasNext();) {

... = it.next ();

...
return retentionPolicy;

}
...

}

Figure 3.15: Example of a code smell, coming from AspectJ. The loop body is
executed at most once—but this is not a defect, since the collection iterated
through can have at most one element.

3.4. DETECTING ANOMALOUS METHODS 59

Table 3.3: Classification results for top 10 violations in each project. “CSs” stands
for the number of code smells. “FPs” stands for the number of false positives.

Program Classified Defects CSs FPs Effectiveness
Vuze 3.1.1.0 10 1 4 5 50%

AspectJ 1.5.3 10 1 2 7 30%

Apache Tomcat 6.0.18 10 0 4 6 40%

ArgoUML 0.26 10 0 5 5 50%

Columba 1.4 10 2 4 4 60%

Act-Rbot 0.8.2 10 1 4 5 50%

Overall 60 5 23 32 47%

Table 3.4: Classification results for top 10% violations in each project. “CSs” stands
for the number of code smells. “FPs” stands for the number of false positives.

Program Classified Defects CSs FPs Effectiveness
Vuze 3.1.1.0 89 1 17 71 20%

AspectJ 1.5.3 16 1 4 11 31%

Apache Tomcat 6.0.18 1 0 0 1 0%

ArgoUML 0.26 12 0 6 6 50%

Columba 1.4 12 2 4 6 50%

Act-Rbot 0.8.2 1 1 0 0 100%

Overall 131 5 31 95 27%

False positives. This category contains all violations that are neither defects
nor code smells.

The results of this classification can be found in Tables 3.3 (for 10 top-ranked
violations in each project) and 3.4 (for 10% top-ranked violations in each
project). For each project we report on the number of violations that were
classified6, the number of defects, code smells (CSs), false positives (FPs), and
the effectiveness (i.e., the percentage of violations that were defects or code
smells). We also report on the overall effectiveness.

We can see at a glance that, overall, investigating top 10 violations is much
more efficient than investigating top 10% violations. Not only is the overall
effectiveness for top 10 violations higher (47% vs. 27%), but the increase in

6In Table 3.4 this is sometimes more than exactly 10%. The reason for this is that some
violations have the same ranking (i.e., the same conviction value), so we had to include all such
equally-ranked violations.

60 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

public void visitCALOAD(CALOAD o){
Type arrayref = stack().peek(1);
Type index = stack().peek(0);

indexOfInt(o, index);
arrayrefOfArrayType(o, arrayref);

}

Figure 3.16: The defect found by JADET in AspectJ. This method verifies a CALOAD
bytecode instruction, but misses one check: if the array contains elements of type
char.

the number of defects and code smells found is much smaller than the in-
crease in the number of violations that had to be classified (only 8 additional
true positives for 81 additionally classified violations), so we get diminishing
returns on our investigations. This is actually a good thing, because it sug-
gests that our ranking system is effective in placing true positives high in the
ranking. Let us now take a look at some of the violations we have classified.

Figure 3.14, presented earlier as an example of a defect, shows a skeleton
of the defect found in Vuze. This code is responsible for parsing a com-
mand line, and args is a list of arguments. The method is full of checks
for errors and special cases to make sure that a helpful error message can
be shown if needed. However, if the arguments list contains just one argu-
ment, and this argument is different than “list”, then the method will throw
an IndexOutOfBoundsException. This special case was overlooked by the
programmers.

Figure 3.16 shows the defect found in AspectJ. The task of the visitCALOAD
method is to verify a CALOAD bytecode instruction. This instruction is part of
the family of array loading instructions (AALOAD, BALOAD, CALOAD, etc.)7, each of
which takes an array and an index from the stack and pushes back the value
contained in the array under the given index. These instructions all differ by
the expected type of the elements in the array; for CALOAD, for instance, this is
char. In order for the instruction to be legal, two conditions must be satisfied:
The first element on the stack must be an array of appropriate type and the
second element on the stack must be an integer. The visitCALOAD method
checks the second condition and the first half of the first condition (i.e., it
checks whether the first element on the stack is an array), but it does not
check the second half of the first condition—if the array is of an appropriate
type. This makes the visitCALOAD method positively verify illegal CALOAD

7Details can be found in the Java VM specification (Lindholm and Yellin 1999).

3.4. DETECTING ANOMALOUS METHODS 61

public JStatusBar() {
...
JPanel rightPanel = new JPanel();
rightPanel.setOpaque(false);
rightPanel.add(resizeIconLabel, BorderLayout.SOUTH);
...

}

Figure 3.17: One of the defects found by JADET in Columba. The panel uses the
default flow layout, but an element is added to it with a border layout constraint.

instructions. This defect was found by JADET, because JADET found out that
the visitCALOADmethod misses the call to constraintsViolated()—and it is
this call that would have to be issued if the method discovered that the array
is not of the correct type.

Figure 3.17 shows one of the defects found in Columba. The panel
rightPanel is created using a default constructor, which amounts to it us-
ing the default layout (so-called “flow layout”) for laying out components that
will be added to it. However, a component is added to the panel with a layout
constraint applicable to border layout only (BorderLayout.SOUTH). This code
is defective, and the only reason it does not crash is because flow layout ig-
nores all constraints: the way it lays out components cannot be parametrized.
JADET found this defect because, as a rule, if a panel is created using the de-
fault constructor, and the two-parameter version of the add() method is used
(i.e., the one that takes a layout constraint as the second parameter), then
there should be a call to setLayout() somewhere in-between, which is not
the case here.

The second defect found in Columba is shown in Figure 3.18. The panel
mainPanel is created using the constructor that takes the layout as a param-
eter. However, later the layout is set again (via the call to setLayout()), and
the layout used in this call is different than the one used in the constructor
call. This code works, but it is clearly wrong, in addition to being misleading.
JADET found this defect because of the same rule as in the last case, albeit
violated in a different way: if a two-parameter version of the add() method
is used (i.e., the one that takes a layout constraint as the second parameter),
and there is a call to setLayout(), then the constructor should be the default
one (i.e., without a layout specified).

Figure 3.19 shows the defect found in Act-Rbot. This code looks fine at
first glance. However, it turns out that the loop will terminate during the first
iteration with the NullPointerException being thrown. The reason for this
is that the weakest link is initialized to be null, and in the first iteration of
the loop getActivation() gets called on it. This defect was found by JADET

62 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

private void layoutComponents() {
...
JPanel mainPanel = new JPanel(new BorderLayout());
...
FormLayout layout = ...;

CellConstraints cc = new CellConstraints();
mainPanel.setLayout(layout);

mainPanel.add(createGroupNamePanel(), cc.xy(1, 1));
...

}

Figure 3.18: Another one of the defects found by JADET in Columba. The panel
gets its layout set twice, and to a different one at that.

public Link getWeakestLink() {
Link weakestLink = null;
for (Link link : links) {

weakestLink = (weakestLink.getActivation() >
link.getActivation() ? link : weakestLink);

}
return weakestLink;

}

Figure 3.19: The defect found by JADET in Act-Rbot. The loop will terminate during
the first iteration with the NullPointerException being thrown.

3.4. DETECTING ANOMALOUS METHODS 63

private List<String> buildOptions() {
Object asc = ...;
...

// Get the ends from the association ...

Iterator iter = Model.getFacade().getConnections(asc).iterator();

Object ae0 = iter.next();
Object ae1 = iter.next();

Object cls0 = Model.getFacade().getType(ae0);
Object cls1 = Model.getFacade().getType(ae1);
...
if (...) {

start = Model.getFacade().getName(cls0);
}
if (...) {

end = Model.getFacade().getName(cls1);
}
...

}

Figure 3.20: One of the code smells found by JADET in ArgoUML.

because the iterator created implicitly by the for loop is used to retrieve just
the first element and this happens very rarely (typically, iterators are used
just for that: iterating through multiple elements).

As a last example, consider the code smell found in ArgoUML (shown in
Figure 3.20). Part of what the buildOptions()method does is getting the two
ends from the association (cf. the comment in the method). As each associa-
tion is directional, the two ends are not equivalent; there is a clear distinction
between a “start” and “end” end, and this distinction is made by the method
as well (cf. the variables start and end). However, the getConnections()
method returns a collection, and collections in Java do not guarantee any
iteration order. Normally this means that the code that depends on such
order—like the one shown in Figure 3.20—is buggy. Why did we mark it
as a code smell only, then? Because the getConnections() method is only
declared as returning a collection. Its implementation actually returns a list,
so the code shown works fine. This is an example of a very badly designed
interface, because users of the API make use of assumptions that are not
exported by the API, but are true by virtue of the implementation.

64 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

0%

10%

20%

30%

40%

50%

60%

15 16 17 18 19 20 21 22 23 24 25

Ef
fe

ct
iv

en
es

s

Minimum support

Figure 3.21: Influence of minimum support on the effectiveness of JADET for AspectJ
(other parameters fixed at their default values).

Sensitivity Analysis

The results presented above prove that our approach is effective in finding
defects and code smells in software fully automatically: by learning patterns
and looking for where they are violated. However, it is possible that we might
get much better or much worse results by small changes to parameters such
as minimum support or the number of violations investigated. We have there-
fore investigated the influence of small changes to minimum support, mini-
mum confidence, and the number of classified violations on the effectiveness
of JADET on AspectJ. While manipulating one parameter, we kept all others at
their default values (when it comes to the number of classified violations, we
used 10% as the default value). Results of these investigations can be found
in Figures 3.21, 3.22, and 3.23, respectively.

We can see that effectiveness is slightly sensitive to small changes to min-
imum support; less so for small changes to minimum confidence. We can
also see that our choice of these two parameters was not the best possible
(for AspectJ; for other projects things might look differently). This suggests
that the JADET’s effectiveness can be improved by choosing better parame-
ters’ values. When it comes to sensitivity of effectiveness to the number of
violations classified, the picture looks roughly like we want it: as the num-
ber of classified violations goes up, effectiveness drops. This means that our
ranking method is effective in giving true positives higher ranking.

3.4. DETECTING ANOMALOUS METHODS 65

0%

10%

20%

30%

40%

50%

60%

0.85 0.87 0.89 0.91 0.93 0.95

Ef
fe

ct
iv

en
es

s

Minimum confidence

Figure 3.22: Influence of minimum confidence on the effectiveness of JADET for
AspectJ (other parameters fixed at their default values).

0%

10%

20%

30%

40%

50%

60%

5% 15% 25% 35% 45%

Ef
fe

ct
iv

en
es

s

Top % of violations investigated

Figure 3.23: Influence of the number of violations classified on the effectiveness of
JADET for AspectJ (other parameters fixed at their default values).

66 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

static int dcc_listen_init(struct DCC *dcc, sess *sess) {
socklen_t len;
dcc->sok = socket(AF_INET, S_STREAM, 0);
if (send_port > 0) {

i = 0;
while (ls_port > ntohs(SAdr.sin_port) && br == -1) {

i++;
bind(dcc->sok, &SAdr, sizeof(SAdr)));

}
setsockopt(dcc->sok, SOL_SOCKET, SO_REUSE_ADDRESS,

(char *)&len, sizeof(len));
}
listen(dcc->sok, 1);
upnp_add_redir(inet_ntoa(addr), dcc->port);

}

Figure 3.24: Sample code from Conspire 0.20. The call to setsockopt() is issued
too late to have any influence on the bind()’s behavior.

3.5 Scaling Up to Many Projects

Up to now we have shown how to mine patterns and anomalies from one
program at a time. This allows us to find out how objects of certain classes
should be used, but only if there are enough usages to learn from. This is
not always the case. Consider, for example, a server that accepts remote
requests from clients. Typically, the code that handles listening for incoming
connections and accepting them will be found in one place in the server.
This means that by analyzing the server’s code we cannot really learn how
to work with connections, because there are not enough examples to allow
us to draw meaningful conclusions. As an example, consider the C function
shown in Figure 3.24. This function, taken from Conspire 0.20—an open-
source IRC client—creates a socket (the call to socket()), and binds it to
a specific address (the call to bind()). Later it calls setsockopt() to allow
binding to an already-in-use address, but it is, alas, too late. For the code to
be correct the call to setsockopt()must come before the call to bind(). The
pattern being violated consists of the following sequential constraints:

setsockopt @ (1) ≺ bind @ (1)
setsockopt @ (1) ≺ listen @ (1)
bind @ (1) ≺ listen @ (1)

3.5. SCALING UP TO MANY PROJECTS 67

Table 3.5: Projects used as case study subjects for cross-project analysis (adapted
from Gruska, Wasylkowski, and Zeller (2010))

Analysis time
Project SLOC Parsing Total Violations
cacao-0.95 91�226 0:08 3:13 0
cksfv-1.3.13 784 0:01 0:04 1
concentration-1.2 1�715 0:01 0:01 0
daudio-0.3 1�476 0:01 0:05 0
dhcpdump-1.8 478 0:01 0:01 0
ggv-2.12.0 13�149 0:02 3:22 3
gimp-2.6.6 595�664 1:54 17:49 61
glade3-3.6.4 53�159 0:07 4:04 18
httrack-3.43-4 41�017 0:03 2:32 8
LDL-2.0.1 904 0:01 0:01 0
memcached-1.3.3 5�412 0:01 0:07 0
mpich-1.2.7p1 196�609 0:13 5:20 12
otp_src_R13B 201�553 0:13 5:18 14
psycopg-1.1.15 3�160 0:01 0:03 6
python-scw-0.4.7 69 0:01 0:01 0
tclxml-2.4 12�354 0:01 0:05 8
vdr-arghdirector-0.2.6 1�109 0:01 0:01 0
viewres-1.0.1 927 0:01 0:02 1
xf86-video-savage-2.2.1 10�950 0:01 0:03 0
Yap-5.1.3 124�410 0:09 4:53 4

This pattern cannot be found by analyzing Conspire, because there are
only two calls to setsockopt() in this project. The solution is to learn usages
from multiple reference projects before looking for anomalies. However,
here we quickly run into scalability issues. While the analysis we have pre-
sented scales very well to large projects, scaling it up to hundreds or even
thousands of reference projects would have to render it useless. The solu-
tion is to use a lightweight analysis that will be able to handle large bodies of
code quickly. If we compare the time spend on mining object usage models
(Table 2.2) with the time spend on looking for patterns and anomalies (Ta-
ble 3.2) it becomes clear that finding patterns and anomalies is very fast, and
it is just the static analysis that needs to be replaced.

This task was solved by Natalie Gruska, who built a lightweight parser
of C code (Gruska 2009). The parser focuses just on basic control flow and
function calls and outputs function models (akin to object usage models, but

68 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

Table 3.6: Classification results for top 25% violations found using cross-project
analysis. Only projects with at least one violation found are listed. “CSs” stands
for the number of code smells. “FPs” stands for the number of false positives
(adapted from Gruska, Wasylkowski, and Zeller (2010))

Program Classified Defects CSs FPs Effectiveness
cksfv-1.3.13 1 1 0 0 100%

ggv-2.12.0 1 0 0 1 0%

gimp-2.6.6 22 1 2 19 14%

glade3-3.6.4 5 2 0 3 40%

httrack-3.43-4 2 0 1 1 50%

mpich-1.2.7p1 5 0 4 1 80%

otp_src_R13B 4 0 0 4 0%

psycopg-1.1.15 6 0 0 6 0%

tclxml-2.4 2 0 0 2 0%

viewres-1.0.1 1 0 0 1 0%

Yap-5.1.3 1 0 0 1 0%

Overall 50 4 7 39 22%

focusing on whole functions instead of objects), which can later be used to
create functions’ sequential constraints abstractions. This allows us to use the
techniques described in this chapter and actually find the defect in Conspire.

In our work (Gruska, Wasylkowski, and Zeller 2010), we have created a
reference database consisting of sequential constraints abstractions of func-
tions coming from more than 6000 C projects from Gentoo Linux distribu-
tion. This meant parsing over 200 million lines of code, and took 18 hours,
with an average analysis time per project of less than 11 seconds using a
single 2�9 GHz Intel Xeon core. We have then chosen 20 random projects
(see Table 3.5) and proceeded to look for anomalies in them. The results of
our investigations can be seen in Tables 3.5 and 3.6. The true positive rate
is lower than for JADET, but we were able to find defects and code smells
that require such cross-project analysis due to scarcity of examples on how
to use certain functions.

We have also created a Web site, checkmycode.org, where a programmer
can upload her own code and have it checked against the projects from the
Gentoo Linux distribution, the same we have used for our experiments. (See
Figure 3.25 for a screenshot). We will not go into more detail here; an inter-
ested reader can consult other sources (Gruska 2009; Gruska, Wasylkowski,
and Zeller 2010), as well as simply use the checkmycode.orgWeb site and the
tutorial provided there.

checkmycode.org
checkmycode.org

3.6. RELATED WORK 69

Figure 3.25: Screenshot of the checkmycode.org Web site. Here programmers can
have their code checked against “the wisdom of Linux code” (adapted from Gruska,
Wasylkowski, and Zeller (2010))

3.6 Related Work
Our work on mining patterns and anomalies (Wasylkowski 2007; Wasylkowski,
Zeller, and Lindig 2007) has been preceded by works of other researchers.
There is also a large body of contemporary work on this and similar topics.
Some of them have been described by us already in Section 2.5; we will now

checkmycode.org

70 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

present other works that have more to do with finding anomalies.
The idea that what is common is typically correct, and what is uncommon

is likely to be defective comes from Engler et al. (2001). Our own work on
mining pattern patterns and anomalies was motivated by the PR-Miner tool
Li and Zhou (2005). PR-Miner builds on Engler et al.’s idea, too: it looks for
entities (function calls, variables, types) that frequently occur together. Such
sets of frequently occurring entities form patterns, and their violations are
reported to the user. We build directly on this idea, but with a few improve-
ments: First, we use sequential constraints, and this allows us to represent or-
dering between method calls (Kagdi, Collard, and Maletic (2007b) performed
an evaluation showing that providing ordering information is worth the ad-
ditional cost). Second, we model data flow and make use of it to find which
method calls are related (and how) and which are not. Third, we use concept
analysis for finding patterns and their violations, which is a cleaner (though
equivalent) solution than using two passes of frequent itemset mining, as Li
and Zhou did.

GrouMiner by Nguyen et al. (2009) mines groums (which are directed
acyclic graphs; see Section 2.5.2) from source code and finds usage patterns—
being frequently occurring subgraphs—and their violations. GrouMiner has
access to much more information that JADET, but it’s true positive rate is
worse than JADET’s (between 7% and 20% for top 15 violations investigated
in eight out of nine case study subjects for GrouMiner8 compared to between
30% and 60% for top 10 violations in JADET’s case). This is an unexpected
result and it would be interesting to see why this is the case.

Ramanathan, Grama, and Jagannathan presented Chronicler (Ramanathan,
Grama, and Jagannathan 2007a)—a tool for learning patterns consisting of
precedence relationships between function calls. Chronicler’s static analysis
is path sensitive, increasing its accuracy, but the precedence relationships do
not take data flow into account, so that unrelated functions can become part of
one pattern just because they occur often together. These authors presented
also another work (Ramanathan, Grama, and Jagannathan 2007b), where in
addition to precedence relationships dataflow properties are used (like “x
must be non-null”). This allows for more expressivity, but the precedence
relationships still do not take data flow into account. A bit in the same direc-
tion, Kagdi, Collard, and Maletic presented an approach where sequencing
data are combined with syntactic context to increase patterns’ expressiveness
(Kagdi, Collard, and Maletic 2007a).

Gabel and Su (2010) presented OCD, a tool using dynamic analysis to infer
patterns of method calls and violations of those patterns. The patterns are

8The authors investigated all 64 violations reported for the ninth case study subject, so we do
not know the true positive rate for the top 15 violations

3.6. RELATED WORK 71

based on templates provided by the user and instantiated by mapping place-
holders in the templates to method calls from the execution trace. This tool
is similar in spirit to JADET with the biggest difference being using dynamic,
instead of static, analysis.

Weimer and Necula (2005) mine pairs of matching events (like calls to
open() and close()) from traces, but they require the second of the events to
occur at least once in exception-handling code. Their idea is that “if the policy
is important to the programmer, language-level error handling will be used
at least once to enforce it.” These specifications are then fed to a program
verification tool for the purposes of defect detection. Thummalapenta and
Xie (2009b) presented a tool called CAR-Miner, which is similar in spirit in
that it focuses on exception-handling code.

Chang, Podgurski, and Yang (2007) presented an approach for discovering
neglected conditions. They build system dependence graphs and use frequent
subgraph mining to find frequently occurring graph minors that become
patterns, focusing on patterns that contain a control point (branch predicate
of a conditional statement). Violations of patterns are reported to the user
for investigation.

Thummalapenta and Xie (2009a) describe Alattin: an approach for finding
neglected conditions by comparing the code with sample code obtained using
a code search engine. The main advantage of Alattin, and one that could
theoretically be integrated into our approach, is that it recognizes so-called
“infrequent patterns”. One major drawback (which is true for all approaches
that use code-search engines) is that the user cannot control the quality of
code that is used for learning, because she does not have influence on the
code that is being returned by code-search engines.

Yang et al. (2006) presented Perracotta: a tool that mines temporal rules
of program behavior fitting into templates (such as alternation) provided by
the user. Perracotta is based on dynamic analysis and the templates just
contain function calls—data flow is not taken into account. This means that
unrelated functions can become part of one pattern just because they occur
often together. The rules found can later be fed to a verifier to check if a
program conforms to them.

Acharya, Xie, and Xu (2006) presented an approach for mining specifica-
tions (in the form of FSAs) for functions. Their idea is that the user provides
general “robustness property” (e.g., “check before use”) as a FSA, and this is
then instantiated by a model checker analyzing a given program that uses a
given function. The resulting specification shows how to use a single func-
tion in a way that avoids potential problems (e.g., the specification may state
that after calling malloc() one should first check if the return value is not
NULL and only then use it). Later, a program can be checked for confor-

72 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

mance with these specifications by using a model checker, and “robustness
violations” found will be reported to the user.

Liu, Ye, and Richardson (2006) developed LtRules, an Eclipse plug-in that
can extract usage rules from C programs. LtRules requires the user to pro-
vide a set of functions he is interested in, and applies them to a set of six
templates, thus creating rule candidates, and uses a model checker to find
rule candidates that are followed by the given set of C programs. Rules
confirmed in this way are reported to the user.

Le Goues and Weimer (2009) proposed a technique for making specifica-
tion mining approaches more accurate. Their idea is to assign trustworthi-
ness to code fragments (depending on things like author rank, code churn, or
code readability), and thus influence the set of specifications that are gener-
ated. They show that this technique helps in finding more real specifications
and filtering false ones.

Olender and Osterweil (1992) introduced Cesar, a system that allows the
user to provide sequencing constraints (as regular expressions) for an ab-
stract type, and checks the program for conformance with those constraints.

Hovemeyer and Pugh (2004) presented FindBugs, a tool for finding bugs
in Java programs. The idea behind FindBugs is that there is a database of “bug
patterns” (e.g., “Null Pointer Dereference”), and if the program contains an
instance of such a pattern (e.g., a null value might be dereferenced at some
point), the corresponding place in the program code gets reported to the user
as potentially buggy. One very important difference between FindBugs and
JADET is that FindBugs is limited to a priori specified bug patterns, whereas
JADET infers specification from the program to be checked, and can thus
detect bugs that are program-, project-, or library-specific.

Livshits and Zimmermann (2005) presented DynaMine: a tool that uses
software repositories to find highly-correlated method calls. These form pat-
terns that are later checked using dynamic analysis.

3.7 Summary
This chapter makes the following contributions:

• We have introduced the notion of a sequential constraints abstrac-
tion. This allows us to abstract a method from a program into a set
of sequential constraints that show how objects are being used in that
method.

• We have shown how we can apply formal concept analysis to efficiently
find patterns of object usage (frequently occurring sets of sequential

3.7. SUMMARY 73

constraints). Our analysis scales very well: It takes less than half a
minute for a large project like Vuze (345 K SLOC, 35�363 methods in
5532 classes).

• We have shown how we can quickly find violations of patterns. Our
analysis takes less than half a minute for a large project like Vuze. Vi-
olations of patterns consisting of sequential constraints have the benefit
that they show what is missing, thus helping the programmer fix the
code, if it turns out to be defective.

• We have implemented all the techniques above in a tool called JADET
and evaluated it on six open-source projects. JADET found defects or
code smells in all of those projects. In total, investigating top 10 vi-
olations for all the projects resulted in finding 5 defects and 23 code
smells—for a true positive rate of 47%.

• We have shown that—by using lightweight static analysis—we are able
to reuse all the techniques shown above to scale our approach to handle
thousands of projects and thus be able to perform cross-project analysis.
Early results indicate that cross-project analysis can find subtle defects
that are not detectable using single-project analysis.

To learn more about our work on finding patterns and anomalies, and on
related topics, see:

http://www.st.cs.uni-saarland.de/models/

http://www.st.cs.uni-saarland.de/models/

74 CHAPTER 3. PATTERNS AND ANOMALIES IN OBJECT USAGE

Chapter 4

Operational Preconditions

4.1 Introduction
In the preceding chapter we have shown how we can mine patterns and
anomalies in object usage. If we take a closer look at some of the patterns
found, we will discover that they are akin to specifications, but have a much
more limited expressivity than real, formal specifications. In Section 3.2.2 we
have given a few examples on how sequential constraints abstraction could
be made more expressive, but there is only so much that can be improved.
However, the sequential constraints abstraction was simple enough to allow
us to gently introduce the concept of patterns and anomalies, and show how
can these be found fully automatically. In this chapter, we will build on this
knowledge and show how we can use a much better and much more expres-
sive abstraction while using the same mechanism for finding patterns and
anomalies as before.

4.2 Operational Preconditions
4.2.1 The Concept of Operational Preconditions
When calling a method, the caller must ensure that the function’s precondi-
tion is satisfied—the condition that has to be met before its execution. An
example of a precondition might be “The parameter passed to the sqrt()
method must be non-negative”. This simple precondition is not only easy to
understand and easy to check, but it also has a very important property: It
is easy to implement. By this we mean that it is easy for the programmer to
write code that satisfies the precondition. This is not always true.

76 CHAPTER 4. OPERATIONAL PRECONDITIONS

/**
* Internal helper method that completes the building of
* a node type’s structural property descriptor list.
*
* @param propertyList list beginning with the AST node class
* followed by accumulated structural property descriptors
* @return unmodifiable list of structural property descriptors
* (element type: <code>StructuralPropertyDescriptor</code>)
*/
static List reapPropertyList(List propertyList) {

propertyList.remove(0); // remove nodeClass
// compact
ArrayList a = new ArrayList(propertyList.size());
a.addAll(propertyList);
return Collections.unmodifiableList(a);

}

Figure 4.1: The reapPropertyList() method from AspectJ.

Consider the reapPropertyList() method shown in Figure 4.1. This
method comes from AspectJ; we show its body and the accompanying com-
ment. What is the precondition of this method, or—more precisely—what is
the precondition for the parameter propertyList of this method? If we only
look at its source code, we can state it like this:

@requires propertyList.size() >= 1

This is a JML1 specification of reapPropertyList() stating that propertyList
must have at least one element. From a strictly formal point of view this is
a complete precondition: reapPropertyList() will work correctly if given a
list with at least one element. However, this is not how the list should look
like, as the JavaDoc comment accompanying the method proves. Let us take
the comment into account and write a new precondition:

@requires propertyList.size() >= 1
@requires propertyList.get(0) instanceof Class
@requires \forall int i; 0 < i && i < propertyList.size();

propertyList.get(i) instanceof StructuralPropertyDescriptor

It might seem like we are done, but unfortunately this is not the case. The
comment misses one important point: there is a relationship between the

1http://www.eecs.ucf.edu/~leavens/JML/index.shtml

4.2. OPERATIONAL PRECONDITIONS 77

first element of the list and all the others that must hold for the list to be
properly constructed. The reapPropertyList() method does not check for
this relationship, and the comment does not mention it, because the designers
assume that the list will be constructed using helper methods provided by
AspectJ, and not directly. Let us rewrite our precondition to capture this
relationship:

@requires propertyList.size() >= 1
@requires propertyList.get(0) instanceof Class
@requires \forall int i; 0 < i && i < propertyList.size();

propertyList.get(i) instanceof StructuralPropertyDescriptor
&& ((StructuralPropertyDescriptor)propertyList.get(i)).

getNodeClass() == propertyList.get(0)

This precondition is not difficult to understand, but it lacks the property that
the sqrt() precondition given above has: it is not easy to implement. Creating
a list and inserting a Class object into it is nothing too complicated, but
what about creating structural property descriptors having an appropriate
node class? We probably need to take a look at the implementation of the
StructuralPropertyDescriptor class and find an appropriate constructor or
an appropriate setter method to do the job.

So, while the precondition above answers the “What is the state that
propertyList must be in?” question, it does not answer the “How to achieve
this?” question. For the programmer, the answer to the latter is more im-
portant than the answer to the former. We will call traditional “what” pre-
conditions axiomatic preconditions and the “how” preconditions operational
preconditions. In the case of the reapPropertyList()method, its operational
precondition can be informally stated as follows:

Create an empty list. Call the createPropertyList() method,
passing the list to this method as the second parameter. Call the
addProperty method as many times as needed, passing the list to
this method as the second parameter. Call reapPropertyList()
passing the list as the first parameter.

This operational precondition helps the programmer see what needs to be
done in order to pass the correct parameter to reapPropertyList(), and it
also provides him with information on related methods.

4.2.2 Operational Preconditions as Temporal Logic Formulas
Traditional, axiomatic preconditions are usually expressed using some for-
malism, such as logic formulas. This is because natural language has two

78 CHAPTER 4. OPERATIONAL PRECONDITIONS

important disadvantages: First, it can be ambiguous; second, it does not lend
itself to automatic verification, whereby a program can be checked against
preconditions, and places, where these are violated, can be reported to the
user. Operational precondition expressed using natural language suffer from
the same problems. Therefore, we need to propose a formalism to use for ex-
pressing them. Axiomatic preconditions use propositional logic, which lends
itself well to describing state. However, it is unsuitable for operational precon-
ditions, where it is process, not state, that needs to be described. For this pur-
pose, temporal logics are best, because they allow for qualification in terms of
time (as in “call reapPropertyList() after calling createPropertyList()”).
In order to also incorporate possible branching (as in “call addProperty as
many times as needed”), we will use a branching-time logic—a variant of
Computation Tree Logic (CTL; Clarke and Emerson (1982)) called Fair Com-
putation Tree Logic (CTLF; Clarke, Emerson, and Sistla (1986))2.

Figure 4.2 contains a brief overview of CTLF and model checking; as can
be seen, CTLF formulas can only be evaluated as true or false for a given
model of a system we are interested in (the model being a Kripke struc-
ture). On the other hand, a Kripke structure must be over a set of atomic
propositions. These are used to label states and are used as propositions
in the CTLF formulas. Since we want to use formulas such as “always call
createPropertyList() passing the list as the second parameter”, our atomic
propositions will be events (see definition 2.1). Using CTLF with events as
atomic propositions, we can represent the operational precondition for the
only parameter of reapPropertyList() as follows:

AG ArrayList.<init> @ (0) ∧
AG (ArrayList.<init> @ (0)�

AF ASTNode.createPropertyList @ (2)) ∧
AG (ASTNode.createPropertyList @ (2)�

AF ASTNode.reapPropertyList @ (1)) ∧
AG (ASTNode.addProperty @ (2)�

AF ASTNode.reapPropertyList @ (1))

The operational precondition is here a conjunction of subformulas. The first
subformula states that the list needs to be created. The second subformula
states that the list needs to be passed to createPropertyList() as the second
parameter after being created. The third subformula states that the list needs
to be passed as the first parameter to reapPropertyList() after it is passed as
the second parameter to createPropertyList(). The last subformula states
that the list needs to be passed as the first parameter to reapPropertyList()
after it is passed as the second parameter to addProperty() (this makes sure

2See Section 4.3.2 for a discussion on why we use CTLF and not CTL

4.2. OPERATIONAL PRECONDITIONS 79

Temporal logic model checking (Clarke, Emerson, and Sistla 1986) is, in general,
a technique for verifying that a given system satisfies the specification given as a
temporal logic formula. We use Kripke structures as the model of the system, and
CTLF (Fair Computation Tree Logic; Clarke, Emerson, and Sistla (1986)) as the
language for representing specifications.
Let AP be a set of atomic propositions. A Kripke structure over AP is a tuple
M = (S� I� R� L), where S is a finite set of states, I ⊆ S is the set of initial states,
R ⊆ S × S is a left-totala transition relation, and L : S → 2AP is a labeling function.
Atomic propositions are used to describe the state the system is in, and the Kripke
structure represents transitions between the states of the system. Because R is a
left-total relation, all the behaviors of the system are infinite.
CTLF is a temporal logic used to predicate over the behaviors represented by the
Kripke structure. It is defined over the same set AP of atomic propositions that the
Kripke structure uses:

1. true and false are CTLF formulas
2. Every atomic proposition � ∈ AP is a CTLF formula
3. If �1 and �2 are CTLF formulas, then so are ¬�1, �1 ∨ �2, �1 ∧ �2, �1 � �2, and

�1 ⇔ �2.
4. If �1 and �2 are CTLF formulas, then so are AX �1, EX �1, AF �1, EF �1, AG �1,

EG �1, A[�1U�2], E[�1U�2].
A means “for all fair paths”, and E means “there exists a fair path”. X stands for
“next”, F stands for “finally”, G stands for “globally”, and U stands for “until”. A path
is fair if a certain (arbitrary, but fixed) predicate holds infinitely often along it.
The intuitive meaning of some CTLF formulas is as follows: AX �1 means that “for
each state �0 ∈ I , for all (A) fair paths starting in �0, �1 holds in the next (X) state”.
EF �1 means that “for each state �0 ∈ I , there exists (E) a fair path, where �1 holds
somewhere along (F) this path”. AG �1 means that “for each state �0 ∈ I , for all (A)
fair paths starting in �0, �1 holds in all states along (G) the path”. A[�1U�2] means that
“for each state �0 ∈ I , for all (A) fair paths starting in �0, �1 holds until (U) �2 holds”
(i.e., �2 must hold somewhere along the path, and until then, �1 must always hold).
An atomic proposition � holds in a given state iff this state is labeled with �.
Model checking a given CTLF formula � against a given Kripke structure M =
(S� I� R� L) is equivalent to asking if � holds for each �0 ∈ I . If it does, � is said to be
true for M ; if it does not, � is said to be false for M .

a∀�1 ∈ S � ∃�2 ∈ S � (�1� �2) ∈ R

Figure 4.2: CTLF and model checking in a nutshell.

80 CHAPTER 4. OPERATIONAL PRECONDITIONS

that each call to addProperty() [optional, as there is no formula that would
enforce its presence] comes before the call to reapPropertyList()).

An attentive reader will notice that the operational precondition shown
above just states what is a must-have; it does not state what is a must-not-
have (such as “do not call createPropertyList() more than once”). This
is actually consistent with our definition of an operational precondition as
answering the “How to achieve this?” question—only giving the information
about what must be done. It is possible to extend the definition to make
operational preconditions include must-not-have’s as well, but we will leave
this task as a possible extension of our work. The definition we have given,
however, allows us to fully automatically mine operational preconditions and
discover their violations in a program by following a procedure similar to the
one described in the previous chapter—making operational preconditions
a much more expressive cousin of sequential constraints abstraction. The
remainder of this chapter will show how this can be done and what can be
thereby achieved.

4.3 Mining Operational Preconditions
Operational preconditions of a parameter � of method � can be discovered
manually by investigating sample code snippets containing a call to � and
looking at how � is prepared. For example, to find the operational precondi-
tion for the propertyList parameter of the reapPropertyList() method we
can investigate callers of reapPropertyList(). It turns out that most of them
have the following structure:

List propertyList = new ArrayList();
createPropertyList(..., propertyList);
addProperty(..., propertyList); // possibly multiple times
... = reapPropertyList(propertyList);

From this structure we can easily deduce the operational precondition pre-
sented in the preceding section. This structure can be automatically dis-
covered and formalized by mining object usage models. Let us consider
the sample method shown in Figure 4.3. The object usage model of list
looks as shown in Figure 4.4. If we now investigate object usage models
of all objets of type List that get passed as the propertyList parameter to
reapPropertyList() and find out that they all look similar, we will be able
to deduce that they represent the operational precondition of that parameter
of that method. The principle at work here is the same that we have used in
the preceding chapter, when we have described the sequential constraints ab-
straction. Thus, to be able to reuse the technique from that chapter, we need

4.3. MINING OPERATIONAL PRECONDITIONS 81

public List getPropertyList (Set properties) {
List list = new ArrayList ();
createPropertyList (this.cl, list);
Iterator iter = properties.iterator ();
while (iter.hasNext ()) {

Property p = (Property) iter.next ();
addProperty (p, list);

}
reapPropertyList (list);
if (list.size () == 1)

Debug.log ("Empty property list");
return list;

}

Figure 4.3: Sample source code containing a call to reapPropertyList().

to find an abstraction of an object usage model that satisfies the following
conditions:

1. An object usage model is abstracted into a set of “properties” character-
istic to it. This will make automatic pattern and anomaly detection via
formal concept analysis possible (see Section 3.3.1).

2. An operational precondition can be represented as a set of “properties”,
and vice versa. This will make the patterns found by formal concept
analysis represent operational preconditions.

Recall that an operational precondition is formally represented as a CTLF

formula. To fulfill the second condition above we need to be able to repre-
sent a CTLF formula as a set of “properties”. We have decided to limit our
operational preconditions to be conjunctions of formulas. Thus, we choose
our properties to be CTLF formulas. This fulfills the second condition: an
operational precondition can be represented as a set of CTLF formulas (being
interpreted as their conjunction), and a set of CTLF formulas represents an
operational precondition (their conjunction is still a CTLF formula, so it is a
potential operational precondition).

To fulfill the first condition above, we now need to be able to abstract an
object usage model into a set of CTLF formulas. Generally, our idea is as
follows: First, transform an object usage model into a Kripke structure (see
Figure 4.2). Second, abstract a Kripke structure into a set of CTLF formulas.
Let us now look into those two steps in detail.

82 CHAPTER 4. OPERATIONAL PRECONDITIONS

ArrayList.<init> @ (0)

ASTNode.createPropertyList @ (2)

ASTNode.addProperty @ (2)

ASTNode.reapPropertyList @ (1)

List.size @ (0)

Figure 4.4: OUM for the list created by the method from Figure 4.3.

4.3.1 Creating Kripke Structures
Object usage models provide a representation of the way a single object is
being passed to various methods, and we want to discover operational precon-
ditions for each parameter of each method separately. To be able to do this,
we must transform each object usage model into a set of Kripke structures,
each focusing on a specific combination of a method and its parameter—a
specific target event � (see definition 2.1) in the object usage model. There
are two problems to be solved here:

1. We need to transform transitions from the object usage model into
states in the Kripke structure, and have transitions in the Kripke struc-
ture reflect the way transitions in the object usage model can follow
one another.

2. Since we want to discover preconditions, we are only interested in what
happens before �. Thus, we must prune the object usage model by
removing some states and transitions.

Jonsson, Khan, and Parrow faced a problem almost identical to the first
problem above. Let us assume (for clarity) that we call transitions in object
usage models “edges” and states in object usage models “nodes”, and use the
names “transition” and “state” only in relation to Kripke structures. Basically,
Jonsson, Khan, and Parrow’s idea is that each edge �1

�−� �2 is transformed

4.3. MINING OPERATIONAL PRECONDITIONS 83

into a separate state in the Kripke structure, and the transition relation is
built in such a way that there is a transition between states corresponding to
�1

�1−� �2 and �3
�2−� �4 iff �2 = �3 (Jonsson, Khan, and Parrow 1990). Labels are

given as follows: State corresponding to the edge �1
�−� �2 gets labeled with

�. Also, additional initial and “sink” states (both unlabeled) are introduced.3
The second problem can be solved with the help of the “sink” state that—

in the procedure of Jonsson, Khan, and Parrow—denotes the “final” state and
transitions to it are created only from states corresponding to �1

�1−� �2 where
�2 is terminal (i.e., it has no outgoing edges). In our case, where we are only
interested in what happens before the target event �, we can modify Jonsson,
Khan, and Parrow’s procedure in the following way: Transitions to the “sink”
state are created only from states corresponding to �1

�1−� �2 where �1 is an
edge labeled with the target event �. Now the only thing that needs to be
done is to remove from the Kripke structure all states, from which it is not
possible to reach the “sink” state.4 Of course transitions incidental to these
states need to be removed, too. This makes the Kripke structure describe the
way the object is used under the assumption that the event � always finally
happens (we will take a closer look at this statement in the next section). This
in turn allows us in the end to discover operational preconditions of �.

Let us now give a precise definition of how to create a Kripke structure
given an object usage model and an event of interest (i.e., the combination of
a method and its parameter, for which we want to mine operational precon-
ditions).

Definition 4.1 (Kripke structure induced by an OUM and an event). Let
oum = (Q� Σ� T� �0� F � Exc) be an object usage model (see definition 2.2) and
� be an event (see definition 2.1). Let S be a finite set of states defined as
follows:

S = {� σ−� � � : � � ∈ T(�� σ)} ∪ {��� ��}

Let I be a set of initial states defined as I = {��}. Let R ⊆ S ×S be a transition
relation defined as follows:

R = {(� σ−� � �� � � σ �
−� � ��) : � σ−� � � ∈ S and � � σ �

−� � �� ∈ S}
∪ {(��� �0

σ−� �) : �0
σ−� � ∈ S}

∪ {(� �−� � �� ��) : � �−� � � ∈ S}
∪ {(�� � ��)}

3The “sink” state is needed to make sure that the transition relation is left-total.
4It can be easily shown that if the “sink” state is not reachable, then the state corresponding

to the target event is also not reachable, and vice versa.

84 CHAPTER 4. OPERATIONAL PRECONDITIONS

Let AP be the set of all events occurring in oum:

AP = {σ : ∃ �� � � � � � ∈ T(�� σ)}

Let L : S � 2AP be a labeling function defined as follows:

L(�) =
�

{σ} iff � = � σ−� � �

∅ iff � = �� or � = ��

Let R� ⊆ S × S be a transitive closure of {(�� ��) : � = �� or (�� ��) ∈ R}.
The Kripke structure induced by the OUM oum and the event � is a tuple
ks(oum� �) = (S�� I �� R�� L�) where S� ⊆ S� I � ⊆ I� R� ⊆ R� and L� : S� � 2AP are
defined as follows:

S� = {� ∈ S : (�� ��) ∈ R�}
I � = I ∩ S�

R� = {(�� ��) ∈ R : (�� ��) ∈ R� and (��� ��) ∈ R�}
L� = L|S�

If S� = {��}, we call the Kripke structure empty.5

By following this definition, the Kripke structure induced by the object
usage model from Figure 4.4 and the event ASTNode.reapPropertyList @
(1) looks as shown Figure 4.5. The intuitive meaning of the state labeling is
“what is the event that has happened most recently?” This allows us to learn
CTLF formulas that describe the temporal relation between events the object
must go through before participating in the target event.

If we want to find an operational precondition of a specific event �, we
first generate all Kripke structures induced by all object usage models and
the event �, while discarding all empty Kripke structures (see definition 4.1).
Formally, the set of Kripke structures pertaining to the event � is defined as
follows:

Definition 4.2 (Set of Kripke structures pertaining to an event). Let � be an
event, and �1� � � � � �� be methods. Let Obj(��) be the set of abstract objects
used by �� (see definition 2.4), and let oum(�) be defined as an object usage
model of an abstract object �. The set of Kripke structures pertaining to the
event � is defined as pertaining_kss(�� {�1� � � � ��}) = {ks : ∃ �� � �1 ≤ � ≤
� and � ∈ Obj(��) and ks = ks(oum(�)� �) and ks is not empty}

5This may happen if the event � does not occur in the object usage model oum (i.e., no
transition in oum is labeled with �).

4.3. MINING OPERATIONAL PRECONDITIONS 85

{}

{ArrayList.<init> @ (0)}

{ASTNode.createPropertyList @ (2)}

{ASTNode.addProperty @ (2)}

{ASTNode.reapPropertyList @ (1)}

{}

Figure 4.5: Kripke structure induced by the object usage model from Figure 4.4 and
the event ASTNode.reapPropertyList @ (1).

4.3.2 From Kripke structures to CTLF formulas
Having created a Kripke structure, we can now try to abstract it into a set of
CTLF formulas. Our idea is to generate many plausible CTLF formulas and
model check them to discover those that are true. (See Figure 4.2 for a brief
overview of CTLF and model checking).

Generating CTLF formulas

If we want to generate CTLF formulas, then the most accurate approach
would be to generate all possible CTLF formulas up to a certain depth.6 Un-
fortunately, this is infeasible due to a combinatorial explosion in the number
of formulas. Even assuming that there are only four atomic propositions (as
is the case in Figure 4.5), and limiting ourselves to only a minimal, complete
set of CTLF operators (say, the existential normal form with only true, ∧,
¬, EX, EU, and EG operators), the number of CTLF formulas increases very

6The depth of a CTLF formula is the depth of its abstract syntax tree.

86 CHAPTER 4. OPERATIONAL PRECONDITIONS

rapidly: There are 5 formulas of depth 0, 65 formulas of depth 1, almost
10�000 formulas of depth 2, and over 200�000�000 formulas of depth 3. While
many of those are equivalent, the number of formulas still remains too large.

Therefore, we have decided to limit ourselves to only a set of CTLF for-
mulas that can be generated from predefined templates. These templates
can be easily adapted to the needs of the user. We did not investigate in
detail the problem of choosing best templates; this is left as an extension of
this work. Instead, we settled on a simple set of templates that would allow
for expressing two things: the fact that an event may/must occur, and the
fact that an event may/must occur after another event. Our set of templates
around atomic propositions (��) is as follows:
AF �1 : The object must eventually participate in the event denoted by �1. For

example, AF createPropertyList @ (2) means that the object must
eventually be passed as the second parameter to createPropertyList().

EF �1 : It must be possible for the object to participate in the event denoted
by �1. For example, EF addProperty @ (2) means that it is possible
that the object is passed as the second parameter to addProperty().

AG (�1 � AX AF �2) : Whenever the object participates in the event denoted
by �1, it must at some later point participate in the event denoted by �2.
For example, AG (lock @ (1)� AX AF unlock @ (1)) means that after
being passed as the first parameter to lock(), an object must eventually
be passed as the first parameter to unlock().

AG (�1 � EX EF �2) : Whenever the object participates in the event denoted
by �1, it must be possible for the object to at some later point participate
in the event denoted by �2. For example, AG (ArrayList.<init> @ (0)
� EX EF addProperty @ (2)) means that after creating an array list
there exists a path through the program such that the list is eventually
passed as the second parameter to addProperty().

We use AX AF and EX EF instead of AF and EF, respectively, because we
want to avoid tautologies such as AG (�1 � AF �1) and AG (�1 � EF �1). The
fact that these are tautologies means that just using AF and EF does not really
allow for expressing the fact that a certain event can happen more than once
(which is possible when AX AF and EX EF are used instead).

Let us now give a formal definition of the set of CTLF formulas that are
generated from a given Kripke structure:
Definition 4.3 (CTLF formulas induced by a Kripke structure). Let ks =
(S� I� R� L) be a Kripke structure. Let Σ be the set of events from ks defined
as follows:

Σ = {σ : ∃ � ∈ S � σ ∈ L(�)}

4.3. MINING OPERATIONAL PRECONDITIONS 87

The set of CTLF formulas induced by the Kripke structure ks is defined as
follows:

ctlf_fs(ks) = {AF σ : σ ∈ Σ}
∪ {EF σ : σ ∈ Σ}
∪ {AG (σ1 � AX AF σ2) : σ1� σ2 ∈ Σ}
∪ {AG (σ1 � EX EF σ2) : σ1� σ2 ∈ Σ}

Before we move further, let us make a slight digression here. The tem-
plates we have proposed effectively reduce the set of generated CTLF formu-
las. Very long methods, though, can still result in large object usage models
and hence tens of thousands of CTLF formulas. Therefore, in practice, we
limit ourselves to using only those atomic propositions, that occur more often
than a specified minimum number of times (see the description of minimum
support in Section 4.3.3). This drastically reduces the number of formulas
while not influencing our final results. We have not included this optimization
in the definition above because it works only if the templates do not contain
any negations. This is the case for the set proposed by us, but—in general—is
not required.

Model checking CTLF formulas

Having created a Kripke structure and generated a set of CTLF formulas,
we now must discover which CTLF formulas are true, and which ones are
false. We do this using model checking. Model checking CTLF is particularly
easy: We use the algorithm by Clarke, Emerson, and Sistla (1986). It treats
a CTLF formula as a tree (with subformulas as subtrees), and then travels
up the tree and model checks each subformula in each state of the Kripke
structure. In the end, if the whole formula holds for all initial states of the
Kripke structure, it is marked as being true.

This algorithm not only has polynomial complexity, it also facilitates reuse
of the results obtained earlier. Some of the subformulas occur in more than
one formula, and in that case they do not need to be reevaluated. These
are very important properties, that allow us to achieve a very good run-time
performance, and thus scalability to real-life programs.

One important point is that we use CTLF instead of the better-known CTL.
The problem we have with CTLF is that all loops within the Kripke structure
under consideration are interpreted as potentially infinite. However, when
we consider source code, we assume that most loops are finite: Consider the
source code shown in Figure 4.3 and the formula AF reapPropertyList @ (1).
Depending on the iterator implementation, the while-loop could be finite or

88 CHAPTER 4. OPERATIONAL PRECONDITIONS

infinite, and the formula could be true or false, but our intuition tells us that
the formula is true, because we implicitly assume that the loop will end after
a finite number of iterations. CTLF allows us to solve this problem by intro-
ducing the notion of fairness: only paths that are “fair” are taken into account.
As stated in Figure 4.2, a path is fair if a certain (arbitrary, but fixed) predicate
holds infinitely often along it. We use the predicate meaning “being in the
sink state” and require it to hold infinitely often along a path for the path to
be considered fair. As a result, every fair path through a Kripke structure
contains only a finite number of states other than the sink state, and thus
contains a finite number of iterations of each loop (of course apart from the
cycle in the sink state) and this is exactly what we want.

We can now formally define what an event-induced operational precondi-
tion abstraction of an object usage model is:
Definition 4.4 (Event-induced operational precondition abstraction). Let �
be an event. Let oum = (Q� Σ� T� �0� F � Exc) an an object usage model (see
definition 2.2), ks = ks(oum� �) be the Kripke structure induced by oum and
� (see definition 4.1), and Φ = ctlf_fs(ks) be the set of CTLF formulas induced
by ks. �-induced operational precondition abstraction of oum is defined as
opa(oum� �) = {φ : φ ∈ Φ and ks |= φ}.

Let us illustrate the definition of an event-induced operational precondi-
tion abstraction using an example. Consider the object usage model of a
Stack object shown in Figure 4.6. The “Stack.push @ (0)”-induced oper-
ational precondition abstraction of that model is the following set of CTLF

formulas:

AF Stack.<init> @ (0)
AF Stack.push @ (0)
EF Stack.<init> @ (0)
EF Stack.push @ (0)
AG (Stack.<init> @ (0)� AX AF Stack.push @ (0))
AG (Stack.<init> @ (0)� EX EF Stack.push @ (0))
AG (Stack.push @ (0)� EX EF Stack.push @ (0))

We can now demonstrate that operational precondition abstraction is more
expressive than sequential constraints abstraction. Consider another object
usage model of a Stack object, shown in Figure 4.7. Its “Stack.push @ (0)”-
induced operational precondition abstraction of that model is the following
set of CTLF formulas:7

7We again assume here that all events from the object usage model will actually be used to
generate CTLF formulas.

4.3. MINING OPERATIONAL PRECONDITIONS 89

Stack.<init> @ (0)

Stack.push @ (0)

Vector.elements @ (0)

Figure 4.6: OUM for a Stack object.

Stack.<init> @ (0)

Stack.push @ (0)

Stack.push @ (0)

Stack.elements @ (0)

Figure 4.7: Hypothetical OUM for a Stack object with different operational pre-
condition abstraction, but the same sequential constraints abstraction as the OUM
shown in Figure 4.6.

90 CHAPTER 4. OPERATIONAL PRECONDITIONS

AF Stack.<init> @ (0)
AF Stack.push @ (0)
EF Stack.<init> @ (0)
EF Stack.push @ (0)
AG (Stack.<init> @ (0)� AX AF Stack.push @ (0))
AG (Stack.<init> @ (0)� EX EF Stack.push @ (0))

This operational precondition abstraction and the one shown earlier differ—
the last CTLF formula from the latter does not appear in the former. How-
ever, sequential constraints abstractions of these two object usage models are
identical (see Section 3.2.1), which means that the operational precondition
abstraction caught a difference between a loop and several consecutive calls,
while the sequential constraints abstraction was not able to do this.

4.3.3 Mining Operational Preconditions and their Violations
Now that we are able to abstract each object usage model into an (event-
induced) operational precondition abstraction, we can apply a slightly modi-
fied version of the techniques presented in Sections 3.3.1 and 3.4.1 to mine
operational preconditions and their violations. In these sections, we have
shown how we can find patterns and their violations based on methods’ se-
quential constraints abstractions. For mining operational preconditions, we
have to take into account an important difference between the two abstrac-
tions: sequential constraints abstraction was unfocused (i.e., we simply looked
for characteristics of methods), while operational precondition abstraction
focuses on one target event at a time (this is the event we want to discover
operational preconditions of). This means that we must modify the afore-
mentioned techniques in the following ways:

• There is no longer just one cross table representing sequential con-
straints occurring in methods. The operational precondition abstrac-
tion of each object usage model depends on the choice of the target
event, and thus for each event, for which we want to mine operational
preconditions, we have to create a separate cross table.

• Conceptual objects in the cross table cannot be methods anymore. This
is because a pattern now is an operational preconditions—which is a de-
scription on how an object needs to prepared before being used in a

4.3. MINING OPERATIONAL PRECONDITIONS 91

certain event. Likewise, violations of operational preconditions are ob-
jects that are prepared incorrectly. So we must use objects as conceptual
objects.

• Conceptual properties are not sequential constraints, but CTLF formu-
las. This is a straightforward and obvious modification.

If we apply the aforementioned modifications, we will have to change the
definitions of the pattern (see definition 3.4)—this one becomes an operational
precondition, violation (see definition 3.5), and confidence (see definition 3.6).
The new definitions are:

Definition 4.5 (Operational precondition, support, size, closed operational
precondition). Let � be an event, and �1� � � � � �� be methods. Let oums(��)
be the set of object usage models stemming from �� , defined as oums(�) =
{oum(�) : � ∈ Obj(�)}. P is an operational precondition of � supported by �
object usage models iff |{oum : ∃ � � 1 ≤ � ≤ � and oum ∈ oums(��) and P ⊆
opa(oum� �)}| = �. � is called the support of P. |P| is called the size of P. P is
a closed operational precondition iff for all P� ⊃ P we have |{oum : ∃ � � 1 ≤
� ≤ � and oum ∈ oums(��) and P� ⊆ opa(oum� �)}| < �.

We will normally use the term “operational precondition” to mean “closed
operational precondition”, and all exceptions will be explicitly stated. Just as
with sequential constraints abstraction, the number and size of patterns that
will be discovered can be influenced by adjusting the minimum size and
minimum support (see Section 3.3.2). We set the minimum support to the
same value as before: 20. However, the minimum size we use for mining
operational preconditions is 3 instead of 1. The reason for this is that every
single event � has an operational precondition of size 2, consisting of the for-
mulas AF � and EF �. These are trivial and not interesting, so we do not want
them mined. When it comes to filtering, when creating sequential constraints
abstraction we have ignored all events related to one of the following classes:
StringBuffer, String, and StringBuilder (see Section 3.3.2). Now, we do not
filter any events, but we do not look for operational preconditions of events
that are calls to methods from these classes.

Definition 4.6 (Violation, deviation, deviation level). Let � be an event, oum be
an object usage model, and P be an operational precondition. Let opa(oum� �)
be oum’s operational precondition abstraction (see definition 4.4). oum vi-
olates P iff P ∩ opa(oum� �) �= ∅, and there exists � ∈ P such that � �∈
opa(oum� �). D(P� oum� �) = P opa(oum� �) is the deviation of the violation.
|D(P� oum� �)| is the deviation level of the violation.

92 CHAPTER 4. OPERATIONAL PRECONDITIONS

Definition 4.7 (Confidence). Let � be an event, �1� � � � � �� be methods, and
P be an operational precondition supported by � object usage models. Let
oums(��) be the set of object usage models stemming from �� , defined as
oums(�) = {oum(�) : � ∈ Obj(�)}. Let oum be an object usage model that
violates P and D(P� oum� �) be the deviation of the violation. Let �� = |{oum� :
∃ � � 1 ≤ � ≤ � and oum ∈ oums(��) and D(P� oum�� �) = D(P� oum� �)}| be
the number of object usage models that violate the same operational pre-
condition in the same way. �/(� + ��) is the confidence of the deviation
D(P� oum� �).

After mining violations of operational preconditions they are ranked ex-
actly as described in Section 3.4.2. One difference introduced by needs of
operational preconditions abstraction to this scheme is a different value used
as the normalization factor when calculating conviction. Since we will at the
same time report violations of all operational preconditions found, we need
our ranking scheme to take into account the fact that we have multiple cross
tables with different sizes. Therefore, for each violation we use the number of
times the target event of the operational precondition occurs in the program
being analyzed as the normalization factor.

4.4 Operational Preconditions: A Case Study
We have implemented finding operational preconditions and their violations
in a tool called Tikanga8. First, we used Tikanga to mine operational pre-
conditions from projects listed in Table 2.1. Table 4.1 lists all the projects
and the results obtained for them: number of events, for which operational
preconditions were found (“Events with OPs”), total number of operational
preconditions found (“Total OPs”), and the time (wall clock time, averaged
over ten consecutive runs) that was needed to perform the analysis on a
2�53 GHz Intel Core 2 Duo machine with 4 GB of RAM.

As we can see, mining operational preconditions takes more time that
mining patterns consisting of sequential constraints, but the difference is not
that large considering that model-checking is time-consuming. The number
of operational preconditions found varies from project to project, but not as
much as in the case of sequential constraints, and the number of patterns
consisting of sequential constraints found for a project is not correlated with
the number of operational preconditions found (for example, there are 2887
patterns found in Vuze, but only 1034 operational preconditions; on the other
hand, there are 56 patterns found in Act-Rbot, but as many as 225 operational
preconditions).

8“Tikanga” is the Mãori word for “correct procedure”.

4.4. OPERATIONAL PRECONDITIONS: A CASE STUDY 93

Table 4.1: Operational preconditions found in the case study subjects.
Program Events with OPs Total OPs Time (mm:ss)
Vuze 3.1.1.0 265 1�034 0:58
AspectJ 1.5.3 372 1�162 0:59
Apache Tomcat 6.0.18 154 442 0:29
ArgoUML 0.26 182 369 0:26
Columba 1.4 97 185 0:16
Act-Rbot 0.8.2 96 225 0:17

AF Label.<init> @ (0) (4.1)
EF Label.<init> @ (0) (4.2)
AF Label.place @ (0) (4.3)
EF Label.place @ (0) (4.4)

EF CodeStream.goto_ (Label) @ 1 (4.5)
AG (Label.<init> @ (0)� EX EF CodeStream.goto_ @ (1)) (4.6)

AG (Label.<init> @ (0)� AX AF Label.place @ (0)) (4.7)
AG (Label.<init> @ (0)� EX EF Label.place @ (0)) (4.8)

AG (CodeStream.goto_ @ (1)� AX AF Label.place @ (0)) (4.9)
AG (CodeStream.goto_ @ (1)� EX EF Label.place @ (0)) (4.10)

Figure 4.8: Operational precondition for the target object of a call to
Label.place(). See Section 4.4 for a discussion.

As an example of an operational precondition, consider the one shown in
Figure 4.8 for the target object of a call to Label.place(). This operational
precondition has been extracted from AspectJ. The code that this operational
precondition stems from is responsible for generating bytecode instructions,
among them goto statements, which jump unconditionally to a specific label.
The operational precondition contains the following rules:

1. A label is always created by calling its constructor before being placed
(which is not that obvious, as there may also be a factory method to be
used instead) (4.1, 4.2)

2. A label is always placed (which is obvious, as this operation is the target
of the operational precondition) (4.3, 4.4)

3. A label can be used as the target of a goto statement (4.5)

94 CHAPTER 4. OPERATIONAL PRECONDITIONS

Table 4.2: Violations found in the case study subjects.
Program Violations Time (mm:ss)
Vuze 3.1.1.0 224 0:58
AspectJ 1.5.3 169 0:59
Apache Tomcat 6.0.18 14 0:28
ArgoUML 0.26 51 0:25
Columba 1.4 22 0:16
Act-Rbot 0.8.2 15 0:16

4. After a label has been created, it can be used as the target of a goto
statement (4.6)

5. After a label is created, it is always placed (4.7, 4.8)

6. After a label is used as the target of a goto statement, it is always placed
(4.9, 4.10)

Note that AspectJ apparently may produce labels that are not referenced by
a goto statement; we do not see this as a problem.

4.5 Operational Preconditions’ Violations: Exper-
iments

In the next experiment, we run Tikanga again on all the projects shown
in Table 2.1, this time for the purpose of finding violations of operational
preconditions. Summary of the results can be found in Table 4.2. For each
project we report on the total number of violations found and on the time (wall
clock time, averaged over ten consecutive runs) that was needed to perform
the analysis on a 2�53 GHz Intel Core 2 Duo machine with 4 GB of RAM.
As we can see, there is a large difference between the number of violations
found in different projects, even for projects that are of similar size (like
Apache Tomcat and ArgoUML, cf. Table 2.1). Ideally we would investigate
every single violation found in each project and classify it to find out how
many of those are true positives (more on that below). While for Apache
Tomcat and Act-Rbot it is entirely possible to investigate all the violations,
for Vuze 3.1.1.0 the number of violations found is large enough to make this
a time-consuming and mundane task. However, since in total the number
of violations is not as large as it was the case for the sequential constraints
abstraction, we have decided to investigate 25% top-ranked violations for each

4.5. OPERATIONAL PRECONDITIONS’ VIOLATIONS: EXPERIMENTS 95

Table 4.3: Classification results for top 25% violations in each project. “CSs” stands
for the number of code smells. “FPs” stands for the number of false positives.

Program Classified Defects CSs FPs Effectiveness
Vuze 3.1.1.0 56 0 11 45 19%

AspectJ 1.5.3 42 9 13 20 52%

Apache Tomcat 6.0.18 3 0 2 1 66%

ArgoUML 0.26 12 1 6 5 58%

Columba 1.4 5 1 4 0 100%

Act-Rbot 0.8.2 3 1 0 2 33%

Overall 121 12 36 73 39%

project. We classified all the violations into the same three categories as
before: defects, code smells, and false positives (see Section 3.4.3. The results
of this classification can be found in Table 4.3. For each project we report on
the number of violations that were classified9, the number of defects, code
smells (CSs), false positives (FPs), and the effectiveness (i.e., the percentage
of violations that were defects or code smells). We also report on the overall
effectiveness.

We can see that, in general, even though we have investigated roughly
the same absolute number of violations as in the top 10% violations found for
sequential constraints abstraction, the results obtained by Tikanga are much
better than the results obtained by JADET (Section 3.4.3), and the number of
defects found went up from 5 to 12 (see Table 3.4). Let us take a look at some
of the violations we have classified.

Out of nine violations classified as defects in AspectJ, one is severe enough
to cause a compiler crash (previously reported as bug #218�167). It is a
simple typo resulting in a violation of an operational precondition of the
Iterator.next()method. The skeleton of the defective code is shown in Fig-
ure 4.9. Iterator it2 violates the operational precondition, because hasNext()
is not being called before next() is called. This defect could not possibly be
found using a sequential constraints abstraction, because the method, where
the defect occurs, uses multiple iterators, and the correct usages overshadow
the incorrect usage.

Two of the violations classified as defects in AspectJ occur in code that
uses progress monitors incorrectly. Documentation of the IProgressMonitor

9This is sometimes more than exactly 25%. The reason for this is that some violations have
the same ranking (i.e., the same conviction value), so we had to include all such equally-ranked
violations.

96 CHAPTER 4. OPERATIONAL PRECONDITIONS

for (Iterator it = c1.iterator();it.hasNext();) {
E e1 = (E) it.next();
...
for (Iterator it2 = c2.iterator();it.hasNext();) {

E e2 = (E) it2.next();
...

}
...

}

Figure 4.9: One of the defects found by Tikanga in AspectJ. In this method an inner
loop checks the iterator of the outer loop.

interface states that one has to call beginTask() before calling worked() and
done() on the monitor, and in these two violations this is not the case. This
rule was mined as an operational precondition of both the worked() and
done() method, and that is why Tikanga found these defects.

Five of the violations classified as defects in AspectJ are located in methods
that violate the contract of the method they override. All take a progress mon-
itor instance as one of the parameters; in all cases, the overridden method
says this instance may be null. One of the operational preconditions of
the method IProgressMonitor.done() states that the monitor should be the
return value from the factory method Policy.monitorFor(). It turns out
that this very method handles null by returning an instance of the class
NullProgressMonitor. This solves the problem of the monitor being null.
Since the defective methods do not have this call and do not check explicitly
for null, they throw a NullPointerException if they are called with null as
the progress monitor.

Figure 4.10 shows a skeleton of the remaining defect found in AspectJ
(previously reported as bug #165�631). The loop in this code processes only
the first element returned by the iterator, even though it should process all
of them. As a result of this omission, in some cases AspectJ performs an
error-free compilation of type-incorrect code.

Figure 4.11 shows the skeleton of the defect found by Tikanga in Ar-
goUML. The problem with this code is that it just processes the first depen-
dency from the list of dependencies. This method is used when assigning a
component to a diagram. If this component is already connected to multi-
ple other components in that diagram (via specialization/generalization), only
one connection is going to get added instead of all of them. This defect was
detected by Tikanga, because the Iterator object that is being implicitly used
here violates an operational precondition of the hasNext() method.

4.5. OPERATIONAL PRECONDITIONS’ VIOLATIONS: EXPERIMENTS 97

private boolean verifyNoInheritedAlternateParameterization (...) {
...
Iterator iter = ...;
while (iter.hasNext ()) {

... = iter.next ();

...
return verifyNoInheritedAlternateParameterization (...);

}
return true;

}

Figure 4.10: One of the defects found by Tikanga in AspectJ. The loop body is
executed at most once.

public void addNodeRelatedEdges(Object node) {
...
if (Model.getFacade().isAModelElement(node)) {

List dependencies = ...;
dependencies.addAll (...);
for (Object dependency : dependencies) {

if (canAddEdge(dependency)) {
addEdge(dependency);

}
return;

}
}

}

Figure 4.11: The defect found by Tikanga in ArgoUML. This code misses depen-
dencies while adding edges related to a node.

public Link getStrongestLink() {
Link strongestLink = null;
for (Link link : links) {

strongestLink = (strongestLink.getActivation() >
link.getActivation() ? link : strongestLink);

}
return strongestLink;

}

Figure 4.12: The defect found by Tikanga in Act-Rbot. The loop will terminate
during the first iteration with the NullPointerException being thrown.

98 CHAPTER 4. OPERATIONAL PRECONDITIONS

SimpleName name = ...;
...
recordNodes (name, ...);
...
name.setSourceRange (..., ...);

Figure 4.13: Example of a code smell in AspectJ. For preventive reasons,
setSourceRange() should be called before recordNodes().

The defect found by Tikanga in Columba is the same as the one found
by JADET (see Figure 3.17). Figure 4.12 shows the defect found in Act-Rbot;
it is identical to the defect found by JADET (Figure 3.19), but it occurs in a
different method.

As an example of a code smell, consider the one found in AspectJ (shown
in Figure 4.13). This code creates an object of type SimpleName, puts it in
some data structure (using recordNodes()) and then modifies the object
by calling setSourceRange() on it. This order of calls (recordNodes() be-
fore setSourceRange()) is very uncommon in AspectJ, and for a reason:
recordNodes() puts the object into a hashtable, and for this it needs the
object’s hashcode. Currently, implementation of SimpleName uses the default
implementation of the hashCode()method, but if developers of AspectJ decide
at some point to implement the method themselves (which would be recom-
mended for classes representing AST nodes, such as SimpleName), they will
most probably use object’s fields’ values to create the hashcode, and source
range of a simple name is stored in such fields. This would lead to a difficult-
to-discover bug in the code shown. Setting up the object before acting on it
is a much safer—and therefore preferred—option.

Sensitivity Analysis

Just as with sequential constraints abstraction, we would like to see how sensi-
tive our results are to small changes to parameters such as minimum support
or the number of violations investigated. Therefore, we have investigated the
influence of small changes to minimum support, minimum confidence, and
the number of classified violations on the effectiveness of Tikanga on AspectJ.
While manipulating one parameter, we kept all others at their default values.
Results of these investigations can be found in Figures 4.14, 4.15, and 4.16,
respectively.

We can see that effectiveness is fairly insensitive to small changes to min-
imum support, minimum confidence, and the number of top violations inves-
tigated. Overall, Tikanga is much more stable in this respect than JADET.

4.5. OPERATIONAL PRECONDITIONS’ VIOLATIONS: EXPERIMENTS 99

0%

10%

20%

30%

40%

50%

60%

15 16 17 18 19 20 21 22 23 24 25

Ef
fe

ct
iv

en
es

s

Minimum support

Figure 4.14: Influence of minimum support on the effectiveness of Tikanga for AspectJ
(other parameters fixed at their default values).

0%

10%

20%

30%

40%

50%

60%

0.85 0.87 0.89 0.91 0.93 0.95

Ef
fe

ct
iv

en
es

s

Minimum confidence

Figure 4.15: Influence of minimum confidence on the effectiveness of Tikanga for
AspectJ (other parameters fixed at their default values).

100 CHAPTER 4. OPERATIONAL PRECONDITIONS

0%

10%

20%

30%

40%

50%

60%

5% 15% 25% 35% 45%

Ef
fe

ct
iv

en
es

s

Top % of violations invesitgated

Figure 4.16: Influence of the number of violations classified on the effectiveness of
Tikanga for AspectJ (other parameters fixed at their default values).

However, one important thing worth taking a closer look at is that effective-
ness is fairly insensitive to small changes to the number of top violations
investigated. This is quite unexpected, and shows that the ranking does not
perform here as well as with JADET. On the other hand, this further illus-
trates Tikanga’s advantage over JADET: Even with an underperforming rank-
ing system, Tikanga is still much better. There is also an interesting artifact
here: Effectiveness rises to a certain point, indicating that most interesting
violations are not at the top, but near it.

4.6 Related Work
To the best of our knowledge, the present work is the first to take an oper-
ational view at preconditions, and the first to learn temporal logic specifica-
tions directly from program code, instead of requiring them to be provided
by the user. However, learning CTL formulas from Kripke structures has
been done before by Chan (2000). Chan introduced the concept of so-called
temporal-logic queries, which are similar to our templates, but restricted to
only one placeholder. This work was extended later to queries with multiple
placeholders (Gurfinkel, Devereux, and Chechik 2002; Gurfinkel, Chechik,
and Devereux 2003). Temporal logic queries with multiple placeholders are
very close to our templates, but the technique of solving them is not directly
applicable in our setting: Solutions to queries are the strongest possible for-

4.7. SUMMARY 101

mulas, whereas we need all possible formulas in order to be able to look for
frequently occurring ones later on.

When it comes to learning from existing code in general, or to automatic
defect detection, all the related work has been mentioned in the preceding
chapter and we refer the reader to Section 3.6 for details.

4.7 Summary
This chapter makes the following contributions:

• We have introduced the concept of operational preconditions. While
traditional preconditions specify what the state must be for a method
call to be successful, operational preconditions specify how to achieve
that state. This directly helps the programmer wishing to know how to
correctly call a method.

• We have proposed using temporal logic (CTLF) for specifying opera-
tional preconditions.

• We have shown how we can combine model checking with formal con-
cept analysis to automatically mine operational preconditions from pro-
grams. Our analysis scales very well: It takes less than one minute for
a large project like Vuze (345 K SLOC, 35�363 methods in 5532 classes).
This is the first time that real formal specifications in the form of tem-
poral logic formulas are fully automatically mined from a program.

• We have shown how we can quickly find violations of operational pre-
conditions. Our analysis takes less than one minute for a large project
like Vuze. Violations of operational preconditions have the benefit that
they show which CTLF formulas are not satisfied, thus helping the pro-
grammer fix the code, if it turns out to be defective.

• We have implemented all the techniques above in a tool called Tikanga
and evaluated it on six open-source projects. Tikanga found defects
or code smells in all of those projects. In total, investigating top 25%
violations for all the projects resulted in finding 12 defects and 36 code
smells—for a true positive rate of 39%.

To learn more about our work on operational preconditions and related
topics, see:

http://www.st.cs.uni-saarland.de/models/

http://www.st.cs.uni-saarland.de/models/

102 CHAPTER 4. OPERATIONAL PRECONDITIONS

Chapter 5

Conclusions and Future
Work

In modern object-oriented programs, most complexity stems not from within
the methods, but from method compositions. To correctly use those meth-
ods, the programmer needs to know how how are they supposed to be com-
bined to achieve the required effect. This information should come from a
documentation, or—even better—from documentation combined with formal
specification, but these are often outdated, incomplete, ambiguous or simply
missing. This is true especially when it comes to formal specifications, which
are notoriously difficult to get right. To cope with these problems, program-
mers frequently resort to consulting code examples, but these can be de-
fective, and the programmer—not knowing the API—is not in a position to
decide if an example is correct or not. This dissertation makes the following
contributions aimed at helping to solve this problem:

• We have introduced the notion of object usage models, and shown how
we can mine them from programs using static analysis. Object usage
models show how objects are being used from the perspective of the
programmer, and are thus not limited to a fixed abstraction level—on
the contrary, even objects of the same class can be modeled from differ-
ent perspectives, if they were so used by the programmer. Our analysis
scales to large programs: Analyzing Vuze (the largest program we used
in our experiments, 345 K SLOC, 35�363 methods in 5532 classes) takes
slightly more than three minutes.

• We have introduced the notion of sequential constraints abstraction
and shown how it can be applied to find patterns and anomalies of

104 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

object usage. We have created a tool, JADET, that is able to find object
usage patterns and their violations, each in less than half a minute for
a large program like Vuze. JADET managed to discover 5 defects and
23 code smells in top 10 violations for six programs we used as case
study subjects.

• We have shown how—by using lightweight static analysis—we can make
the concepts used in JADET scale to handle thousands of projects at
a time. Early results indicate that cross-project analysis can find sub-
tle defects that are not detectable using single-project analysis. Our
checkmycode.org Web site allows programmers to upload their code
and have it checked against more than 6000 C projects from the Gen-
too Linux distribution.

• We have introduced the concept of operational preconditions. While
traditional preconditions specify what the state must be for a method
call to be successful, operational preconditions specify how to achieve
that state. This directly helps the programmer wishing to know how to
correctly call a method. We have implemented a tool called Tikanga that
can find such operational preconditions (as temporal logic [CTLF] for-
mulas), and their violations, fully automatically by analyzing a program—
in less than one minute for a large program like Vuze. Tikanga man-
aged to discover 12 defects and 36 code smells in top 25% violations for
six programs we used as case study subjects. This is the first time that
real formal specifications in the form of temporal logic formulas were
fully automatically mined from a program.

However, there is still a lot that can be done to extend the ideas presented
by this dissertation. Some of the topics that seem particularly worthy of
investigation are:

Improved abstraction. The sequential constraints abstraction presented in
Chapter 3 is effective, but quite limited. It would be interesting to see
if extending it (e.g., in ways described in Section 3.2.2) would bring
effectiveness improvements, or is it too limited, and we should use much
more complicated abstractions, such as the one presented in Chapter 4.

Negative examples. Patterns and operational preconditions contain only “pos-
itive” information: this is what should be done, this is how the param-
eter should be prepared. However, having negative information (this
is what you should not do, etc.) is valuable, too. Adding such negative
information seems to be quite a challenge, but—if successful—could
bring significant improvements.

checkmycode.org

105

Early programmer support. Patterns and operational preconditions mined
from projects need not be used just for the purpose of finding viola-
tions. Integrating them into the programming environment, in order
to warn the user about potential problems, could be an effective means
for preventing defects, instead of detecting them after they have been
introduced. Operational preconditions in particular could become part
of the documentation, just as preconditions are typically explicitly enu-
merated.

Better CTLF templates. We have presented a rather simple set of CTLF tem-
plates used to construct operational preconditions, and yet obtained
promising result. It would be interesting to see which templates are
most effective in providing clear and useful operational preconditions,
and in their defect detection ability.

Cross-project mining of operational preconditions. Our cross-project a-
nomaly detection approach described in Section 3.5 builds on the se-
quential constraints abstraction. This was an obvious first choice, but it
seems that mining operational preconditions from multiple projects at
a time has a much greater potential.

To learn more about the work presented in this dissertation, as well as
related topics, see:

http://www.st.cs.uni-saarland.de/models/

http://www.st.cs.uni-saarland.de/models/

References

Acharya, Mithun, Tao Xie, Jian Pei, and Jun Xu. 2007. Mining API patterns
as partial orders from source code: From usage scenarios to specifica-
tions. In ESEC-FSE 2007: Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT sym-
posium on The foundations of software engineering, 25–34. New York,
NY: ACM.

Acharya, Mithun, Tao Xie, and Jun Xu. 2006. Mining interface specifications
for generating checkable robustness properties. In ISSRE 2006: Proceed-
ings of the 17th International Symposium on Software Reliability Engi-
neering, 311–320. Los Alamitos, CA: IEEE Computer Society.

Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami. 1993. Mining asso-
ciation rules between sets of items in large databases. In SIGMOD 1993:
Proceedings of the 1993 ACM SIGMOD international conference on Man-
agement of data, 207–216. New York, NY: ACM.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. 1988. Compilers: Principles,
techniques, and tools. Reading, MA: Addison-Wesley Publishing Company.

Allan, Chris, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. 2005. Adding trace matching with free
variables to AspectJ. In OOPSLA 2005: Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, 345–364. New York, NY: ACM.

Alur, Rajeev, Pavol Černý, P. Madhusudan, and Wonhong Nam. 2005. Synthe-
sis of interface specifications for Java classes. In POPL 2005: Proceedings
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, 98–109. New York, NY: ACM.

107

108 REFERENCES

Ammons, Glenn, Rastislav Bodík, and James R. Larus. 2002. Mining specifi-
cations. In POPL 2002: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 4–16. New York,
NY: ACM.

Bierhoff, Kevin, and Jonathan Aldrich. 2005. Lightweight object specification
with typestates. In ESEC/FSE-13: Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, 217–226.
New York, NY: ACM.

Bodden, Eric, Patrick Lam, and Laurie Hendren. 2008. Finding program-
ming errors earlier by evaluating runtime monitors ahead-of-time. In FSE
2008: Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, 36–47. New York, NY: ACM.

Brin, Sergey, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. 1997.
Dynamic itemset counting and implication rules for market basket data.
In SIGMOD 1997: Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, 255–264. New York, NY: ACM.

Chakrabarti, Arindam, Luca de Alfaro, Thomas A. Henzinger, Marcin Jur-
dzinski, and Freddy Y. C. Mang. 2002. Interface compatibility checking for
software modules. In CAV 2002: Proceedings of the 14th International
Conference on Computer Aided Verification, Lecture Notes in Computer
Science 2404, 428–441. Berlin: Springer-Verlag.

Chan, William. 2000. Temporal-logic queries. In CAV 2000: Proceedings of the
12th International Conference on Computer Aided Verification, Lecture
Notes in Computer Science 1855, 450–463. Berlin: Springer-Verlag.

Chang, Ray-Yaung, Andy Podgurski, and Jiong Yang. 2007. Finding what’s not
there: A new approach to revealing neglected conditions in software. In IS-
STA 2007: Proceedings of the 2007 international symposium on Software
testing and analysis, 163–173. New York, NY: ACM.

Clarke, E. M., E. A. Emerson, and A. P. Sistla. 1986. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems 8, no. 2 (April):
244–263.

Clarke, Edmund M., and E. Allen Emerson. 1982. Design and synthesis of
synchronization skeletons using branching time temporal logic. In LOP
1982: Proceedings of the Workshop on Logics of Programs, Lecture Notes
in Computer Science 131, 52–71. Berlin: Springer-Verlag.

REFERENCES 109

Cook, Jonathan E., and Alexander L. Wolf. 1995. Automating process discov-
ery through event-data analysis. In ICSE 1995: Proceedings of the 17th
international conference on Software engineering, 73–82. New York, NY:
ACM.

———. 1998. Discovering models of software processes from event-based
data. ACM Transactions on Software Engineering and Methodology 7,
no. 3 (July): 215–249.

Dallmeier, Valentin, Christian Lindig, Andrzej Wasylkowski, and Andreas
Zeller. 2006. Mining object behavior with ADABU. In WODA 2006: Pro-
ceedings of the 2006 international workshop on Dynamic systems anal-
ysis, 17–24. New York, NY: ACM.

Das, Manuvir, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive pro-
gram verification in polynomial time. In PLDI 2002: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation, 57–68. New York, NY: ACM.

de Alfaro, Luca, and Thomas A. Henzinger. 2001. Interface automata.
In ESEC/FSE-9: Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering, 109–120. New York, NY: ACM.

DeLine, Robert, and Manuel Fähndrich. 2001. Enforcing high-level protocols
in low-level software. In PLDI 2001: Proceedings of the ACM SIGPLAN
2001 conference on Programming language design and implementation,
59–69. New York, NY: ACM.

———. 2004. Typestates for objects. In ECOOP 2004: Proceedings of the 18th
European conference on object-oriented programming, Lecture Notes in
Computer Science 3086, 465–490. Berlin: Springer-Verlag.

Dunn, Robert H. 1984. Software defect removal. New York: McGraw-Hill.

Dwyer, Matthew B., Alex Kinneer, and Sebastian Elbaum. 2007. Adaptive on-
line program analysis. In ICSE 2007; Proceedings of the 29th international
conference on Software Engineering, 220–229. Los Alamitos, CA: IEEE
Computer Society.

Dwyer, Matthew B., and Rahul Purandare. 2007. Residual dynamic typestate
analysis: exploiting static analysis results to reformulate and reduce the
cost of dynamic analysis. In ASE 2007: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering,
124–133. New York, NY: ACM.

110 REFERENCES

Eisenbarth, Thomas, Rainer Koschke, and Gunther Vogel. 2002. Static trace
extraction. In WCRE 2002: Proceedings of the Ninth Working Confer-
ence on Reverse Engineering, 128–137. Los Alamitos, CA: IEEE Computer
Society.

———. 2005. Static object trace extraction for programs with pointers. Journal
of Systems and Software 77, no. 3 (September): 263–284.

Engler, Dawson, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. 2001. Bugs as deviant behavior: A general approach to inferring
errors in systems code. In SOSP 2001: Proceedings of the 18th ACM Sym-
posium on Operating Systems Principles, 57–72. New York, NY: ACM.

Fink, Stephen J., Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. 2008. Effective typestate verification in the presence of aliasing. ACM
Transactions on Software Engineering and Methodology 17, no. 2 (April):
1–34.

Fink, Stephen, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.
2006. Effective typestate verification in the presence of aliasing. In ISSTA
2006: Proceedings of the 2006 international symposium on Software test-
ing and analysis, 133–144. New York, NY: ACM.

Fowler, Martin. 1999. Refactoring. Improving the design of existing code.
N.p.: Addison-Wesley.

Gabel, Mark, and Zhendong Su. 2008. Javert: Fully automatic mining of gen-
eral temporal properties from dynamic traces. In SIGSOFT 2008/FSE-16:
Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, 339–349. New York, NY: ACM.

———. 2010. Online inference and enforcement of temporal properties.
In ICSE 2010: Proceedings of the 32nd International Conference on Soft-
ware Engineering, 15–24. New York, NY: ACM.

Ganter, Bernhard, and Rudolf Wille. 1999. Formal concept analysis: Mathe-
matical foundations. Berlin: Springer-Verlag.

Ghezzi, Carlo, Andrea Mocci, and Mattia Monga. 2007. Efficient recovery of al-
gebraic specifications for stateful components. In IWPSE ’07: Proceedings
of the ninth international workshop on Principles of software evolution,
98–105. New York, NY: ACM.

Götzmann, Daniel Norbert. 2007. Formale Begriffsanalyse in Java: Entwurf
und Implementierung effizienter Algorithmen. Master’s thesis, Saarland

REFERENCES 111

University. Publication and software available from http://code.google.com/
p/colibri-java/ (accessed 6 April 2010).

Gruska, Natalie. 2009. Language-independent sequential constraint mining.
Master’s thesis, Saarland University.

Gruska, Natalie, Andrzej Wasylkowski, and Andreas Zeller. 2010. Learning
from 6,000 projects: Lightweight cross-project anomaly detection. In IS-
STA 2010: Proceedings of the nineteenth international symposium on
Software testing and analysis. (At the time of writing this has not been
published yet).

Guo, Philip J., Jeff H. Perkins, Stephen McCamant, and Michael D. Ernst.
2006. Dynamic inference of abstract types. In ISSTA 2006: Proceedings
of the 2006 international symposium on Software testing and analysis,
255–265. New York, NY: ACM.

Gurfinkel, Arie, Marsha Chechik, and Benet Devereux. 2003. Temporal logic
query checking: A tool for model exploration. IEEE Transactions on Soft-
ware Engineering 29, no. 10 (October): 898–914.

Gurfinkel, Arie, Benet Devereux, and Marsha Chechik. 2002. Model explo-
ration with temporal logic query checking. In FSE 2002: Proceedings of the
10th ACM SIGSOFT symposium on Foundations of software engineering,
139–148. New York, NY: ACM.

Henkel, Johannes, and Amer Diwan. 2003. Discovering algebraic specifica-
tions from Java classes. In ECOOP 2003: Proceedings of the 17th Euro-
pean conference on object-oriented programming, Lecture Notes in Com-
puter Science 2743, 431-456. Berlin: Springer-Verlag.

Henzinger, Thomas A., Ranjit Jhala, and Rupak Majumdar. 2005. Permissive
interfaces. In ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, 31–40. New
York, NY: ACM.

Holmes, Reid, and Gail C. Murphy. 2005. Using structural context to rec-
ommend source code examples. In ICSE 2005: Proceedings of the 27th
international conference on Software engineering, 117–125. New York,
NY: ACM.

Hovemeyer, David, and William Pugh. 2004. Finding bugs is easy. In OOP-
SLA 2004: Companion to the 19th annual ACM SIGPLAN conference

http://code.google.com/p/colibri-java/
http://code.google.com/p/colibri-java/

112 REFERENCES

on Object-oriented programming systems, languages, and applications,
132–136. New York, NY: ACM.

JavaTM 2 Platform Standard Edition 5.0 API specification. http://java.sun.com/
j2se/1.5.0/docs/api/ (accessed 2 October 2008).

Jonsson, Bengt, Ahmed Hussain Khan, and Joachim Parrow. 1990. Imple-
menting a model checking algorithm by adapting existing automated tools.
In AVMFSS 1990: Proceedings of the International Workshop on Auto-
matic Verification Methods for Finite State Systems, Lecture Notes in
Computer Science 407, 179–188. Berlin: Springer-Verlag.

Kagdi, Huzefa, Michael L. Collard, and Jonathan I. Maletic. 2007a. An ap-
proach to mining call-usage patterns with syntactic context. In ASE 2007:
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, 457–460. New York, NY: ACM.

———. 2007b. Comparing approaches to mining source code for call-usage
patterns. In MSR 2007: Proceedings of the Fourth International Workshop
on Mining Software Repositories, 20. Los Alamitos, CA: IEEE Computer
Society.

Le Goues, Claire, and Westley Weimer. 2009. Specification mining with few
false positives. In TACAS 2009: Proceedings of the 15th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems: Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, Lecture Notes in Computer Science
5505, 292–306. Berlin: Springer-Verlag.

Lee, Edward A., and Yuhong Xiong. 2001. System-level types for component-
based design. In EMSOFT 2001: Proceedings of the First International
Workshop on Embedded Software, Lecture Notes in Computer Science
2211, 237–253. Berlin: Springer-Verlag.

Li, Zhenmin, and Yuanyuan Zhou. 2005. PR-Miner: Automatically extract-
ing implicit programming rules and detecting violations in large software
code. In ESEC/FSE-13: Proceedings of the 10th European software en-
gineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, 306–315. New York,
NY: ACM.

Lindholm, Tim, and Frank Yellin. 1999. The JavaTM virtual machine speci-
fication. 2nd ed. http://java.sun.com/docs/books/jvms/second_edition/html/
VMSpecTOC.doc.html (accessed 2 October 2008).

http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html

REFERENCES 113

Lindig, Christian. 2007. Mining patterns and violations using concept analysis.
Technical Report, Saarland University, Software Engineering Chair. Avali-
able from http://www.st.cs.uni-sb.de/publications/; the software is available
from http://code.google.com/p/colibri-ml/ (accessed 7 October 2008).

Liu, Chang, En Ye, and Debra J. Richardson. 2006. LtRules: An automated
software library usage rule extraction tool. In ICSE 2006: Proceedings of
the 28th international conference on Software engineering, 823–826. New
York, NY: ACM.

Livshits, Benjamin, and Thomas Zimmermann. 2005. DynaMine: Find-
ing common error patterns by mining software revision histories.
In ESEC/FSE-13: Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international sym-
posium on Foundations of software engineering, 296–305. New York, NY:
ACM.

Lo, David, and Siau-Cheng Khoo. 2006. SMArTIC: Towards building an ac-
curate, robust and scalable specification miner. In FSE 2006: Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, 265–275. New York, NY: ACM.

Lo, David, Shahar Maoz, and Siau-Cheng Khoo. 2007. Mining modal scenario-
based specifications from execution traces of reactive systems. In ASE 2007:
Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, 465–468. New York, NY: ACM.

Lorenzoli, Davide, Leonardo Mariani, and Mauro Pezzè. 2006. Inferring state-
based behavior models. In WODA 2006: Proceedings of the 2006 inter-
national workshop on Dynamic systems analysis, 25–32. New York, NY:
ACM.

———. 2008. Automatic generation of software behavioral models. In ICSE
2008: Proceedings of the 30th international conference on Software en-
gineering, 501–510. New York, NY: ACM.

Mandelin, David, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid
mining: Helping to navigate the API jungle. In PLDI 2005: Proceedings of
the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, 48–61. New York, NY: ACM.

Mariani, Leonardo, and Mauro Pezzè. 2005. Behavior capture and test: Au-
tomated analysis of component integration. In ICECCS 2005: Proceedings
of the 10th IEEE International Conference on Engineering of Complex
Computer Systems, 292–301. Washington, DC, USA: Los Alamitos, CA.

http://www.st.cs.uni-sb.de/publications/
http://code.google.com/p/colibri-ml/

114 REFERENCES

Marlowe, T. J., and B. G. Ryder. 1990. Properties of data flow frameworks:
A unified model. Acta Informatica 28, no. 2 (February): 121–163.

Naeem, Nomair A., and Ondřej Lhoták. 2008. Typestate-like analysis of
multiple interacting objects. In OOPSLA 2008: Proceedings of the 23rd
ACM SIGPLAN conference on Object-oriented programming systems lan-
guages and applications, 347–366. New York, NY: ACM.

Nguyen, Tung Thanh, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi,
and Tien N. Nguyen. 2009. Graph-based mining of multiple object usage
patterns. In ESEC/FSE 2009: Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, 383–392. New
York, NY: ACM.

Nierstrasz, Oscar. 1993. Regular types for active objects. In OOPSLA 1993:
Proceedings of the eighth annual conference on Object-oriented pro-
gramming systems, languages, and applications, 1–15. New York, NY:
ACM.

O’Callahan, Robert, and Daniel Jackson. 1997. Lackwit: A program under-
standing tool based on type inference. In ICSE 1997: Proceedings of the
19th international conference on Software engineering, 338–348. New
York, NY: ACM.

Olender, Kurt M., and Leon J. Osterweil. 1992. Interprocedural static analysis
of sequencing constraints. ACM Transactions on Software Engineering
and Methodology 1, no. 1 (January): 21–52.

Pradel, Michael, and Thomas R. Gross. 2009. Automatic generation of object
usage specifications from large method traces. In ASE 2009: Proceedings
of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, 371–382. Los Alamitos, CA: IEEE Computer Society.

Quante, Jochen, and Rainer Koschke. 2007. Dynamic protocol recovery.
In WCRE 2007: Proceedings of the 14th Working Conference on Reverse
Engineering, 219–228. Los Alamitos, CA: IEEE Computer Society.

Ramanathan, Murali Krishna, Ananth Grama, and Suresh Jagannathan. 2007a.
Path-sensitive inference of function precedence protocols. In ICSE 2007:
Proceedings of the 29th international conference on Software Engineer-
ing, 240–250. Los Alamitos, CA: IEEE Computer Society.

REFERENCES 115

———. 2007b. Static specification inference using predicate mining. In PLDI
2007: Proceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 123–134. New York, NY:
ACM.

Reiss, Steven P. 2005. Specifying and checking component usage. In AADE-
BUG 2005: Proceedings of the sixth international symposium on Auto-
mated analysis-driven debugging, 13–22. New York, NY: ACM.

Reiss, Steven P., and Manos Renieris. 2001. Encoding program executions.
In ICSE 2001: Proceedings of the 23rd International Conference on Soft-
ware Engineering, 221–230. Los Alamitos, CA: IEEE Computer Society.

Rountev, Atanas, and Beth Harkness Connell. 2005. Object naming analysis
for reverse-engineered sequence diagrams. In ICSE 2005: Proceedings of
the 27th international conference on Software engineering, 254–263. New
York, NY: ACM.

Rountev, Atanas, Olga Volgin, and Miriam Reddoch. 2005. Static control-flow
analysis for reverse engineering of UML sequence diagrams. In PASTE
2005: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering, 96–102. New York, NY:
ACM.

Sahavechaphan, Naiyana, and Kajal Claypool. 2006. XSnippet: Mining for
sample code. In OOPSLA 2006: Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 413–430. New York, NY: ACM.

Shoham, Sharon, Eran Yahav, Stephen J. Fink, and Marco Pistoia. 2008. Static
specification mining using automata-based abstractions. IEEE Transactions
on Software Engineering 34, no. 5 (September): 651–666.

Shoham, Sharon, Eran Yahav, Stephen Fink, and Marco Pistoia. 2007. Static
specification mining using automata-based abstractions. In ISSTA 2007: Pro-
ceedings of the 2007 international symposium on Software testing and
analysis, 174–184. New York, NY: ACM.

Strom, Robert E., and Shaula Yemini. 1986. Typestate: A programming lan-
guage concept for enhancing software reliability. IEEE Transactions on
Software Engineering 12, no. 1 (January): 157–171.

Systä, Tarja, Kai Koskimies, and Hausi Müller. 2001. Shimba—an environment
for reverse engineering Java software systems. Software—Practice and
Experience 31, no. 4 (April): 371–394.

116 REFERENCES

Thummalapenta, Suresh, and Tao Xie. 2007. PARSEWeb: A programmer as-
sistant for reusing open source code on the web. In ASE 2007: Proceedings
of the twenty-second IEEE/ACM international conference on Automated
software engineering, 204–213. New York, NY: ACM.

———. 2009a. Alattin: Mining alternative patterns for detecting neglected
conditions. In ASE 2009: Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, 283–294. Los Alamitos,
CA: IEEE Computer Society.

———. 2009b. Mining exception-handling rules as sequence association rules.
In ICSE 2009: Proceedings of the 31st International Conference on Soft-
ware Engineering, 496–506. Los Alamitos, CA: IEEE Computer Society.

Wasylkowski, Andrzej. 2007. Mining object usage models. In ICSE COM-
PANION 2007: Companion to the proceedings of the 29th International
Conference on Software Engineering, 93–94. Los Alamitos, CA: IEEE Com-
puter Society.

Wasylkowski, Andrzej, Andreas Zeller, and Christian Lindig. 2007. Detecting
object usage anomalies. In ESEC-FSE 2007: Proceedings of the the 6th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering,
35–44. New York, NY: ACM.

Weimer, Westley, and George C. Necula. 2005. Mining temporal specifications
for error detection. In TACAS 2005: Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems: Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2005, Lecture Notes in Computer Science
3440, 461–476. Berlin: Springer-Verlag.

Whaley, John, Michael C. Martin, and Monica S. Lam. 2002. Automatic extrac-
tion of object-oriented component interfaces. In ISSTA 2002: Proceedings
of the 2002 ACM SIGSOFT international symposium on Software testing
and analysis, 218–228. New York, NY: ACM.

Williams, Chadd C., and Jeffrey K. Hollingsworth. 2005. Recovering system
specific rules from software repositories. In MSR 2005: Proceedings of the
2005 international workshop on Mining software repositories, 1–5. New
York, NY: ACM.

Xie, Tao, and David Notkin. 2004a. Automatic extraction of object-oriented
observer abstractions from unit-test executions. In ICFEM 2004: Proceed-

REFERENCES 117

ings of the 6th international conference on formal engineering methods,
Lecture Notes in Computer Science 3308, 290-305. Berlin: Springer-Verlag.

———. 2004b. Automatic extraction of sliced object state machines for com-
ponent interfaces. In SAVCBS 2004: Proceedings of the 3rd workshop on
Specification and Verification of Component-Based Systems, 39–46.

Xie, Tao, and Jian Pei. 2006. MAPO: Mining API usages from open source
repositories. In MSR 2006: Proceedings of the 2006 international work-
shop on Mining software repositories, 54–57. New York, NY, USA: ACM.

Yang, Jinlin, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. 2006. Perracotta: Mining temporal API rules from imperfect traces.
In ICSE 2006: Proceedings of the 28th international conference on Soft-
ware engineering, 282–291. New York, NY: ACM.

Yellin, Daniel M., and Robert E. Strom. 1997. Protocol specifications and com-
ponent adaptors. ACM Transactions on Programming Languages and
Systems 19, no. 2 (March): 292–333.

Yuan, Hai, and Tao Xie. 2005. Automatic extraction of abstract-object-state
machines based on branch coverage. In RETR 2005: Proceedings of the
1st international workshop on Reverse Engineering to Requirements, 5–
11.

Zhong, Hao, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Min-
ing and recommending API usage patterns. In ECOOP 2009: Proc. 23rd
European conference on object-oriented programming, Lecture Notes in
Computer Science 5653, 318–343. Berlin: Springer-Verlag.

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Publications

	Mining Object Usage Models
	Motivation
	How Object Usage Models Are Created
	Minimizing Object Usage Models
	Examples of Object Usage Models
	Related Work
	Modeling Usage of Classes and Objects
	Inferring Models
	Validating Programs against Models

	Summary

	Patterns and Anomalies in Object Usage
	Introduction
	Finding an Appropriate Abstraction
	Sequential Constraints Abstraction
	Other Possibilities

	Detecting Whole-Program Patterns
	General Approach
	Fine-tuning the Approach
	Case Study

	Detecting Anomalous Methods
	Anomalies as Missing Functionality
	Ranking violations
	Experimental results

	Scaling Up to Many Projects
	Related Work
	Summary

	Operational Preconditions
	Introduction
	Operational Preconditions
	The Concept of Operational Preconditions
	Operational Preconditions as Temporal Logic Formulas

	Mining Operational Preconditions
	Creating Kripke Structures
	From Kripke structures to CTLF formulas
	Mining Operational Preconditions and their Violations

	Operational Preconditions: A Case Study
	Operational Preconditions' Violations: Experiments
	Related Work
	Summary

	Conclusions and Future Work
	References

