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Existing approaches to automatic parallelization produce good results in specific domains. Yet, it is unclear
how to integrate their individual strengths to match the demands and opportunities of complex software.
This lack of integration has both practical reasons, as integrating those largely differing approaches into one
compiler would impose an engineering hell, as well as theoretical reasons, as no joint cost model exists that
would drive the choice between parallelization methods.

By reducing the problem of generating parallel code from a program dependence graph to integer linear pro-
gramming, generalized task parallelization integrates central aspects of existing parallelization approaches
into a single unified framework. Implemented on top of LLVM, the framework seamlessly integrates enabling
technologies such as speculation, privatization, and the realization of reductions.

Evaluating our implementation on various C programs from different domains, we demonstrate the effec-
tiveness and generality of generalized task parallelization. On a quad-core machine with hyperthreading we
achieve speedups of up to 4.6x.
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1. INTRODUCTION

To exploit the power of modern multicore architectures on legacy software, one has
to make it run in parallel. As manually parallelizing software is expensive and error-
prone, automatic parallelization has always been a central research goal.

The past decades have produced several concepts and parallelization approaches.
Each one is tailored to exploit parallelism found in specific program patterns: Given
a suitable reduction analysis, any DOALL-style loop parallelizer can enable parallel
execution of each of the three loops in Figure 1(a). Loops that carry dependencies
do not qualify for DOALL-style parallelization. They can be dealt with by employing
DOACROSS-style loop parallelization or Decoupled Software Pipelining, for instance.
The manually tail-call optimized version of quicksort in Figure 1(c), is an example for
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8:2

void kernel_bicg(double A[NX][NY],
double s[NY], double q[NX],
double p[NY], double r[NX]) {
for (inti = 0; i < NY;i++)
s[i] = 0;
for (int i =0; i < NX;i++){
qli]l = 0;
for (int j =0; j <NY;j++) {
s[j1 =slj1 +rli]l = AL 1;
. qlil =qlil + AL T = plj ];

(a)

K. Streit et al.

void fft_twiddle(int i, int i1, COMPLEX xin,
COMPLEX xout, COMPLEX *W,
int nW, int nWdn, int r, int m) {
if (i ==i1 —1){
fft_twiddle_gen1(in + i,out + i,W,r,m,nW,
nWdn * i,nWdn * m);
} else {
inti2 = (1 +1i1) / 2;
fft_twiddle(i,i2,in,out,W,nW,nWdn,r,m);
fft_twiddle(i2,il,in,out,W,nW,nWdn,r,m);
bl

(b)

void seqquick(ELM * low, ELM = high) {
ELM xp;
while (high — low >= 1) {
p = seqpart(low, high);
seqquick(low, p);
low=p+ 1;

1}

(c)

Fig. 1. Different parallelizable functions: BiCG (a) kernel implementation (taken from the Polybench 3.2
suite); and fft (b) and Quicksort (c) implementations (adapted from the cilksort and fft programs of the Cilk
example application suite).

such a loop. Recursive tasks, as shown in Figure 1(b), can be parallelized by classical
fork-join-style task parallelism. Whether all these approaches can do so in a profitable
way is a different question.

All these approaches work well for the form of parallelism they have been developed
for; however, they are also restricted to these patterns. We are not aware of a single
approach that would parallelize all of these three code examples, not even to speak
of handling code, which embodies complex combinations of loops and recursion across
several functions. Indeed, an integration of these parallelization approaches poses
tremendous practical challenges, as the underlying models and assumptions are vastly
different. But even if we could build a compiler that provides them all, we still would
lack a joint cost model that is powerful enough to drive the choice between different
kinds of parallelism.

An integrated approach, however, would be worthwhile to combine the strengths
of the present approaches for parallelization. The need for integration becomes even
more obvious when speculation, privatization, and reduction are taken into account—
three techniques that have been identified frequently as being among the most im-
portant techniques for enabling parallelism. Enabling parallelism naturally increases
the range of possibilities for a parallelizer to choose from. However, it is not automati-
cally implied that such parallelism can be exploited in a profitable way. Each of those
techniques introduces—potentially significant—overhead when applied. This overhead
needs to be compensated for by an equally high reduction of execution time.

As a detailed example, reconsider BiCG in Figure 1(a). Here, depending on the chosen
form of parallel execution, we have different opportunities to realize a reduction. Ignor-
ing the possibility of performing complex iteration-space transformations, an automatic
parallelizer is left with the decision of which loop to parallelize. When parallelizing the
outer loop of the loop nest, the reduction induced dependence via the array s needs to
be broken and handled specially in the parallel code. This can be done by privatizing
the whole array s, or, for instance, by using atomic operations (or unordered atomic
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sections) instead. An alternative would be to parallelize the innermost loop only. In
that case only one array cell needs to be privatized in order to fix the broken reduc-
tion dependence via the array g. Making a qualified decision on the way to parallelize
the code and fix the broken reduction dependencies, or even to speculate on statically
unanalyzable dependencies requires one to take multiple factors into account, some of
which are not known at compile time: user input, execution platform, available number
of cores. All this calls for a deep integration of parallelization approaches on a sound
theoretical base, implemented on a stable and powerful platform for compile-time and
runtime analysis.

In this article, we introduce the concept and implementation of generalized task par-
allelism—a single unified framework for automated parallelization. After presenting a
brief overview of our parallelization system in Section 2, our contributions, as detailed
in the remainder of this article, are as follows:

(1) We present a uniform program representation based on the Program Dependence
Graph (PDG) (Section 3). Relevant properties like profiling information, reduction,
privatizability, and speculation opportunities are broken down to the dependence
level and correspondingly represented in the PDG.

(2) Based on this representation, we reduce the problem of parallelization to linear
optimization to find local parallelization candidates (Section 4). The formulation
is independent of any special form of parallelism, and integrates central aspects
of existing approaches without reimplementing them. Optimization is driven by a
cost model derived from static profile estimates and runtime profiling information.
Implementations of this approach do not rely on special code features. Loop struc-
tures, for instance, are completely transparent: Existing loops can be fully (i.e.,
DOALL-style) or partially (in case of carried dependencies) parallelized, while still
allowing for loop-independent task parallelism.

(3) We show how to effectively generate specialized parallel code from the found gen-
eralized parallelism. Together with an adaptive runtime system, that can contin-
uously reassess parallelization decisions, our parallelizer Sambamba is able to
match the performance of specialized parallelization approaches (Section 5).

(4) We evaluate the presented approach (Section 6) on a set of programs from various
benchmark suites, showing that generalized task parallelism
(a) subsumes and integrates different and independent forms of parallelism;

(b) discovers parallelization opportunities similar to those found by experts; and
(¢) produces efficient parallel code for a broad range of applications.

After relating to existing work (Section 7) and discussing technical limitations and
future work in Section 8, we conclude in Section 9.

2. SYSTEM OVERVIEW

The goal of our parallelizer, Sambamba, is to find for each function of an application
a set of parallelization opportunities from which at runtime the combination is chosen
that best fits the execution environment. Parallelization opportunities are found in the
form of arbitrary, possibly nested, regions of code amenable for parallel execution.

Sambamba consists of two parts: a compile-time component, performing most of
the time-consuming program analyses, transformations, and scheduling offline; and
a runtime component, building on statically gathered information and continuously
collected runtime profiles to perform online adaptive optimizations.

Figure 2 gives an overview of the workflow of Sambamba. The application, in the
form of its compiled LLVM bitcode, is read as input. This enables Sambamba to deal
with programs written in different languages; no syntactic information is required.
The resulting control flow graph of each individual function is then preprocessed and
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Fig. 2. Overview of the Sambamba parallelization system.

a PDG constructed. Also, reduction and privatization opportunities are identified and
reflected correspondingly in the PDG. A scheduler based on Integer Linear Program-
ming (ILP)! is used to find a set of parallelization candidates per function; it takes
into account statically estimated and, if available, dynamically gathered profiling data
and generates an optimal schedule with respect to the execution cost model, expressed
in its constraints. The found candidates are called local paralleization candidates and
reflect parallelization opportunities that are statically deemed beneficial; the decision
if a local candidate will be instantiated is left to the runtime system. Note that the
set of candidates may contain, but is in no way limited to, parallel loops. It may well
be that the scheduler decides to execute arbitrary regions of code in parallel to each
other. The cost model explicitly reflects the cost of exploiting reduction or privatization
candidates. It is up to the scheduler to decide if and where such opportunities are
worthwhile to realize with respect to its optimization function.

At runtime, the statically found parallelization candidates are evaluated, considering
the actual execution environment; one parallel version of each function is generated
for the best combination of its local parallelization candidates. To decide on the quality
of a combination, a modified version of the scheduler cost function is used. Using a
just-in-time compiler, this parallel version is compiled and patched into the running
application. A dynamic dispatch mechanism is installed to decide, upon calls to the
function, whether execution should proceed with the parallel or the sequential version.
The application is continuously monitored by an efficient, sampling based profiler. The
empirically gathered execution time of individual call sites allow Sambamba to react
to changing runtime conditions.

Sambamba works in a fully automatic way and is used like a regular C/C++ compiler.
Additionally, speculation hints can be given by the programmer to guide parallelization.
Nevertheless, Sambamba in no way relies on the existence of such hints, nor on their
correctness.

Note that the focus of the work described in this article is on the static compo-
nent of Sambamba. Nevertheless, knowledge of the capabilities of the runtime system
are important to understand some of the design decisions in that part. Therefore,
Section 5 will give a very short overview of the dynamic capabilities of Sambamba,
while Sections 3 and 4 will explain the static parts of Sambamba in detail.

1We use the IBM Cplex ILP solver in our current implementation. This choice is, nevertheless, not important
for our approach and the solver can easily be replaced by another implementation.
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Fig. 3. The simplified PDG of seqquick: data dependencies are depicted by dashed arrows, control depen-
dencies by solid arrows. Light solid lines depict parent relationship. Note how loops are represented in the
PDG.

3. PROGRAM REPRESENTATION

Sambamba works solely on PDGs [Ferrante et al. 1987]. At compile time a PDG is
constructed for each function. Such a PDG is kept during compilation and, if parallelism
has been found, also during application runtime. The following sections explain in detail
what the Sambamba PDG looks like and what form of extended information is stored
in it.

3.1. Program Dependence Graph (PDG)

As stated by Sarkar [1991], the PDG is a perfect representation to express and ana-
lyze parallelism: It abstracts from overly restrictive implementation-dictated execution
order and unveils all available parallelism by ordering instructions solely based on ac-
tual dependencies. The difficulty is to find the right granularity of parallel execution,
as the parallelism reflected by the PDG is too fine grained, in general. Computation
nodes need to be grouped to form coarser parallel tasks, costly enough to outweigh the
overhead of packing and spawning.

In Sambamba, individual PDG nodes represent basic blocks of instructions. Before
computing the PDG, basic blocks are split to isolate instructions of interest and increase
the freedom to schedule them independently. Such instructions are, for example, ac-
cesses to reduction and induction variables as well as function calls.?

Sambamba computes data dependencies by an interprocedural, context-sensitive
points-to analysis based on the Data Structure Analysis (DSA) [Lattner et al. 2007]
and an array access analysis (which is beyond the scope of this article) to disambiguate
array accesses in loops. Furthermore, Sambamba allows for, but does not rely on, user
annotations to give hints to the dependence analysis. Currently, such hints are useful
in the presence of recursive functions, for which DSA severely overapproximates by
unifying all possible effects of a strongly connected component in the call graph.

As an example, the PDG of the seqquick function is shown in Figure 3. The PDG
contains nodes (V) partitioned into sets of three different types:

—Regular nodes (R), depicted as boxes, represent simple instructions or basic blocks.

—Decision nodes (D), depicted as diamonds, represent basic blocks with more than
one successor in the control flow graph. In the LLVM context these are basic blocks
terminated by conditional branches, switches, or possibly exception throwing calls
(invokes).

2Note that the restriction to the basic block level is not a limitation of the approach but instead a mere
technical one.
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Fig. 4. Two different forms of reduction: (a) Syntactic form according to Allen and Kennedy; and (b) a
general, flow-based form.

—Finally, group nodes (G), depicted as ovals, group possibly multiple nodes (called
its children) sharing the same control condition. Each group node—except for the
unique root node—is directly control dependent on exactly one decision node in the
PDG.

Each group node represents a control condition, which is the conjunction of all con-
ditions of decision nodes on the path from the designated PDG root node to the corre-
sponding group. Once this condition is fulfilled, all its child nodes are to be scheduled
for execution. Only the data dependencies between the subgraphs reachable from the
group node’s children restrict parallel execution. Within one group node, no complex
control flow has to be taken into account: a property that makes the group nodes
particularly interesting in the context of synchronous task parallelization.

The purpose of the scheduler as described in Section 4 is to find for each group
node in the PDG a schedule of its children, representing the whole subgraph reachable
from that node. Note that in this way it is possible, even natural, to generate nested
parallelism. It is up to the runtime component of Sambamba to decide at which group
nodes, and consequently also at which nesting levels, to make use of the parallelization
opportunities provided by the static scheduler.

3.2. Generalized Reduction

A reduction in our sense is mostly understood as the accumulation of a value using
an associative and commutative reduction operator. Together with privatization (see
Section 3.3) reduction realization has been identified as one of the most important par-
allelization enabling techniques [Rauchwerger and Padua 1995; Johnson et al. 2012].
However, usually a reduction is more or less recognized syntactically, as illustrated in
Figure 4(a). A loop consisting of such a successfully recognized reduction can then be
transformed into a DOALL-style parallel loop. Usual validity criteria require the form
x = x @ exp with x not being used elsewhere in the same loop; and x not appearing
in the term exp. @ is almost always required to be an associative and commutative
operator [Rauchwerger and Padua 1995; Kennedy and Allen 2002; Midkiff 2012].

In Sambamba we neither rely on any syntactical properties of the program nor do
we restrict ourselves to specific kinds of parallelism. Instead we generalize reduc-
tions based on the following general form of a so-called reduction chain, as shown in
Figure 4(b).
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A value x is a reduction value in region R if it enters the region via an input node of
x (x;, in the example). Examples for input nodes are load instructions or loop-carried
¢ nodes, in case R represents a loop. The value is combined with arbitrarily many
expressions (exp; - - - exp,) using the same number of operators (&1 - - - ®,). It leaves the
dynamic instance of R through a corresponding output node (x,,;); for example, a store,
a loop carried ¢ node, or any node used outside of R. A chain can split up and end
in multiple output nodes; this, for example, happens naturally in loops with continue
statements between different accesses to the reduction value. Furthermore, a chain
can branch and join in ¢ nodes, provided x flows into each of the operators exactly once.
No intermediate value of a chain is allowed to be used outside of R or outside of a valid
reduction chain within R. Multiple independent chains on the same reduction value
can exist in the same region.

A reduction chain is called varying in its containing region R if the reduction location
(i.e., the x in the syntactic form x = x®exp) can change during execution of one dynamic
instance of R. The range in which the reduction location potentially varies is called the
chain’s variance.

Consider the BiCG implementation in Figure 1(a). The reduction in the s[j] = s[j] +
... statement is represented by a varying chain in its containing i-loop as this statement
accesses different locations (s[0]...s[NY — 1]) in every iteration of the i loop. The
qlil = qli]l + ... statement in contrast is represented by a nonvarying chain in the
J loop.

Once all reduction chains for a reduction location x have been identified for a region
R, all dependencies between different dynamic instances of these reduction chains can
be relaxed, provided corresponding fix-up code is added before and after the region R.

A special case of such relaxation is the removal of the loop-carried flow dependence if
R corresponds to a loop. The accesses to x in R that induced the corresponding depen-
dence are marked in the PDG and the scheduler is allowed to break those dependencies.
If it does so, we call the involved reduction chains realized and introduce fix-up code
for those chains during final code generation, that is, at runtime.

In this work we employ the following, universally applicable scheme. For every real-
ized reduction chain we modify the code as follows: To fix nonvarying realized reduction
chains as well as varying ones whose variance can be evaluated before entering the
corresponding region, Sambamba uses privatization. For varying chains with an un-
known variance, it uses atomic operations without the need for privatization but at the
cost of the atomic operations.

3.3. Privatization

Another very important parallelization enabling technique is privatization [Tu and
Padua 1994; Vandierendonck et al. 2010]: Within a PDG subgraph R rooted in node n,
a memory location x is privatizable iff the following conditions are met:

—on every control-flow path entering R and ending in a possible read access [ € R,
there is at least one definitive write access s € R to x, and

—on every control-flow path from any possible write access s € R to any possible read
I" ¢ R, there is another definitive write to x on that path.

Our definition of privatizability is neither surprising nor new. But, as with reductions,
we do not resolve dependencies induced by privatizable accesses prior to scheduling.
Instead we annotate PDG nodes n that represent a reachable subgraph R with memory
locations x to which all accesses in R are privatizable. Dependencies that enter or leave
a dynamic instance of R and are induced by accesses to x are then allowed to be broken
by the scheduler.
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Thread 1 Thread 2

Stage 1 p =seqpart(...)

low = p+1

S while(....)

seqquick(...)

Fig. 5. Possible schedule for the group node labeled ¢rue of the PDG in Figure 3. This schedule represents
partial parallel execution of the loop in seqquick of Figure 1(a).

3.4. Speculation

Speculation is an important technique that enables automatic parallelization. Unfor-
tunately, existing techniques come at a high price in terms of runtime overhead, which
needs to be reflected in the decisions of an automatic parallelizer. The problem with
speculation is that its overhead inherently depends on the misspeculation rate, which
in turn depends on runtime features: the number of threads/tasks running in parallel
as well as the structure of the input.

Up to now, Sambamba does not provide a reasonably profitable speculation system.
Therefore the best we can currently do is to penalize the violation of a reduction edge
proportionally to the probability that it will manifest at runtime: A dependence edge
that the scheduler is allowed to speculatively ignore has a source and a target poten-
tially accessing the same memory location. The speculation is successful if at runtime
the source or target statement is not executed at all. The static scheduler accounts for
speculation overhead for all dependencies marked as speculatively ignorable, that the
scheduler decides to break. It amounts to a value that grows linearly in the size of the
commonly accessed values multiplied by the relative execution frequency of the source
and target statements, respectively.

In our evaluation in Section 6 we do not rely on speculation.

4. STATIC SCHEDULING

We formulate an integer linear program to compute a local schedule for each individual
group node in the PDG. The intuition behind the following ILP formulation is to map
the children I, = {g[i] | i € {1...n4}} of a group node g onto a two-dimensional grid.
One dimension in this grid corresponds to time and is subdivided into stages (S,) of
execution; the other axis corresponds to placement and is subdivided into threads (T}).
|T,|, the maximum number of parallel threads that the generated schedule will use,
is a constant parameter to the ILP scheduler. Nodes will possibly execute in parallel
at runtime iff they are placed in different threads of the same stage. The optimization
goal of each ILP is to minimize the latency for its corresponding PDG group node.

Figure 5 shows a possible result of solving the ILP corresponding to the PDG group
node labeled true in Figure 3. Stage 2 is a parallel stage in this schedule, spawning
off the recursive call to seqquick while proceeding with the next iteration of the loop,
which is represented by its PDG node labeled with the while statement in thread 1 of
stage 2. A schedule representing a parallel loop is called a reentrant schedule. This
example also shows how the scheduler transparently parallelizes loops without any
special treatment. A schedule for a DOALL loop, for instance, would in its simplest
form contain one stage with two threads of which one contains the loop body and the
other the computation of the induction variable (if present).

As described in Section 3, dependencies between subgraphs can potentially be relaxed
by making use of privatization, reduction, or speculation opportunities. Such relaxation
allows the scheduler to execute the source and target of a dependence in parallel to each
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other, provided, corresponding fix-up code is added. The potential overhead introduced
by such countermeasures is encoded in the ILP cost function.

4.1. Prerequisites

In favor of a shorter notation, we assume g € G;r e R;d € D; i, j € {1...|L]|} in the
following discussion. Before constructing an ILP for each group g of a PDG, we compute
estimates of accumulated execution costs for each PDG node as follows:

—The size ||r| of a regular node r is computed by traversing the contained instructions
(remember that a regular node in our case represents a basic block), and accumulat-
ing their individual cost. For this purpose we statically estimate the cost of arithmetic
instructions; the cost of memory instructions is taken into account by assessing the
size of written, read, or copied data if statically possible. Costs of call instructions
(call sites) are taken from dynamic call site profiles of earlier runs of the application,
if such profiles are available, or estimated: If the called function is statically known,
the call graph is traversed and the cost of transitively called functions accumulated.
If the call is indirect, that is, the called function is not statically known, we assume
high cost for the call. This is in favor of parallelization and leaves it to the runtime
code generation to use call site execution time profiling to find out if the assumption
was beneficial or not.

—I||d|l, the execution cost of a decision node d, is defined as Y ,(|d[i]|| * freq(d;)) +
|d|, where freq(d;) is the frequency of d selecting child node d[:] for execution, and
|d| is the nonaccumulated size of d (which is computed in a similar way to the
cost of regular nodes). Frequencies are statically estimated or read from profiling
information persisted during earlier runs of the application. Sambamba’s runtime
system is able to collect such branch profiles (see Section 5.3).

—Illgll, the size of a group node g, is defined as ), ||g[i]|l,.

4.2, ILP Formulation

For each group node g of the PDG, a directed acyclic graph DAG, := (I, A,) describes
the data dependencies and possible conflicts between the children of g. Its nodes are
the children of g (i.e., I); A, is the set of edges.

An edge (i — j)g € Ag has the meaning of its source g[i] depending on or conflicting
with its target g[j] in g. It has associated communication cost |i — j),|, being an
estimate of data to be communicated if g[i] and g[j] execute in different stages. An
edge is called fulfilled by a schedule if according to the schedule its target is executed
before its source.

Yy € Ag is the set of edges requiring speculation support in the source and target
thread of the dependence if the scheduler breaks it; Q, € A; and ¥, C A, are the
reduction and privatization ignorable edges, respectively. Note that Y, Qg, and ¥, are
not necessarily disjoint. One edge might require multiple fix-up mechanisms in order
to be breakable.

To reduce the number of constraints, we precompute the set of transitive edges ®, <
Ag, thus (I, A, \ ©,) is the transitive reduction of DAG,. We call A, := Ag\ (Y,UQ,UW,)
the set of unbreakable dependencies.

For the sake of brevity, we assume that s € {1...|S,|} and ¢ € {1...|Tg|}. Table I
introduces the variables used in the ILP formulation. Note that the number of variables
is quadratic in I, since |Sg| < || and |T,| is a constant.

Figure 6 shows the final ILP formulation. The used objective function minimizes
the critical path execution time (}, y;[s]) while penalizing the use of multiple stages
and threads, as well as interthread communication. Additionally, broken dependencies
marked as resolvable by privatization, reduction, and speculation are punished. Each
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Table |. Variables used in the ILP for a Group Node g

vglsl e N ;= critical path length of stage s
pglsl € B :=  1liff stage s is nonempty
ogls,tl e N :=  gize of thread t in stage s
pgls,tl € B ;= liff thread t in stage s is filled
ogli,s, t] e N :=  gsize of g[i] in stage s, thread t
xgli,s,tle B = 1iffgli] is placed in stage s, thread t
pargli,jle B = 1iffgli] and g[j] execute in parallel
Minimize
3 (’yg[s] + @gls] * SInitOvhd + > ((pg [s, 1] * TInitOvhd)) + ComCost, + RelaxP,
s t  where

Comtoty = 5> S5 (e (bt i)« L 250

(i=j)g€dg 5t

RelaxPg := Z (parg [, 9] * (Spech [i,7] + RedPyli, j] + PrivPy [Z,j]))

(1—7) g €ETgUQ UV,

SInitOvhd and TInitOvhd are ILP constant estimates of stage and thread initialization overhead
respectively.

subject to the following constraints

Constr. 1 (Unique Placement) Constr. 6 (Thread Filling)
Vi: ZZXg[i, Svt] =1 VsVit: ny[i787 t} S wy[‘S’t]*lIg‘
s t [
Constr. 2 (Dependence Order 1) Constr. 7 (Stage Filling)
V(i —j)g € Ag\ Og: SD; j * |Tg| —TD; ; >0 Vs: Zgog[s,t} < pgls] * | Tg|
t
Constr. 3 (Dependence Order 2) Constr. 8 (Thread Size)
V(i — j)g € Ag\ Og: SD; j *|Ty| + TD; ; > 0 VsVt ogls,t] = ogli,s, 1]
Constr. 4 (Size Placement Connection) Constr. 9 (Critical Path)
ViVsVt: ogli,s, t] = xgli, s, t] = ||g[d]|] VsVt: ~yg(s] > og[s,t]
Constr. 5 (Parallel) Constr. 10 (Speculation Order)

V(i — j)g € Ag: paryli, j] = [Tg| > abs(TD;,;) — |Tg| abs(SD;,j) V(i — j)g € Yg: STD; ; >0
where

SD%J ::ZZ<S* <X9[i787t]7xg[j7svt])> and TD’L,] :Zz(t* (Xg[LS?t]*Xg[jv‘&t]))
s t s t
and STD;; =3 %" <(s # Tyl + 1) + (xolis 5,8 = Xqli s t]))
s t
Fig. 6. Objective function and constraints used in the ILP formulation for group node g.

used stage is modeled to introduce overhead (SInitOvhd), which is motivated by the
setup cost of synchronization mechanisms at runtime. Each used thread causes runtime
overhead (TInitOvhd) due to the cost of setting up and spawning parallel tasks.
ComCost accounts for introduced interthread and interstage communication by
adding the statically estimated communication cost ||i — j)gll per boundary cross-
ing dependence. This estimate is solely based on the communication volume (i.e., the
static size of the communicated data) in the current implementation. A dependence
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(i - J)g € Ag is considered boundary crossing if, and only if, x.[i, s, t] and x,[J, s, ¢]
differ in the current solution of the ILP.

The speculation penalty cannot model the actual overhead of speculation statically:
the main cause for overhead is frequent rollbacks and reexecutions, which are in-
herently input dependent. Instead, the speculation penalty is approximated by an
ILP-constant overhead SpecP,[i, j1 per speculatively ignored dependence crossing a
thread boundary. It is computed based on the execution frequencies of the PDG nodes
causing the conflict represented by the dependence. RelaxP accounts for this by adding
SpecP,i, j] for each speculatively ignored edge ¢ — j); € V.

Reduction RedP,l[i, j]1 and privatization PrivP,[i, j] penalties are treated similarly
to the speculation penalties. But the individual penalty per broken dependence differs:
In the case of privatization, the penalty grows linearly with the size of the value to
privatize. Similarly, the reduction penalty grows linearly with the size of the reduction
variable. In the case of a varying chain, this size is multiplied by the chain’s variance.

The constraints of the ILP can be partitioned into two groups: The first group is
formed by the Constraints 1, 2, 3, and 10, which are used to model legality constraints
to preserve the semantics of the program:

—Constraint 1 ensures that each node is scheduled exactly once. It guarantees unique
placement of nodes.

—Constraints 2 and 3 ensure for each unbreakable dependence (i — j)g, which is not
marked transitive, that execution of g[j] precedes execution of g[i]. This means that
gljl is executed in an earlier stage than g[i], or in the same stage and thread. Note
that SD; ; denotes the stage distance between the placement of g[i] and g[j]. The
constraints ensure that SD; ; is non negative, and if it is zero, then also TD; ; (the
thread distance) must be zero.

—Constraint 10 ensures that for each speculatively ignorable dependence (i — j)4, g1
is executed in an earlier stage than gl[i], or in the same stage, but possibly different
thread with a lower number. The fact that there still are restrictions on speculatively
ignored dependencies is due to the conflict detection and recovery mechanism of
the runtime system. It allows for conflict detection only between different threads
of the same stage. Thus, g[j] is not allowed to be placed in a later stage than gli].
The requirement that g[j] needs to be in a thread with a lower number t than g[i] is
necessary to guarantee a noncyclic commit order between the threads.

The second group is formed by the Constraints 5-9, which model execution cost and
are used in the objective function:
—Constraint 5 defines the par,[i, j] variables that are used in the cost function to
penalize dependencies broken using speculation, privatization, or reduction.
—Constraints 6 and 7 define the ¢g[s, t] and ¢,[s] variables to reflect if a thread or
stage is filled, i.e., contains at least one node.
—Constraint 8 models the size og[s, ¢] of a thread as the sum of sizes of contained nodes.
—Constraint 9 models the critical path length y,[s] of a stage as the size of the largest
contained thread: it is pulled down as it is used in the objective function, but guar-
anteed to stay larger than the size of any contained thread.

The remaining Constraint 4 connects both groups of constraints by relating the
Boolean variables x,[i, s, t] to the corresponding size variables o,li, s, t]. Further, it
defines the size of node g[i] as being the ILP constant |g[Z]].

Note that no further constraints are required for reduction and privatization re-
solvable edges. A dependence that is resolvable by privatization or reduction, can, in
terms of legality, simply be ignored. It only needs to be reflected correspondingly in the
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cost of the resulting schedule. This is taken account for in the RelaxP definition of the
cost function. The number of constraints is quadratic in the number of child nodes per
group.

Further, remember that Constraint 1 guarantees that each node is uniquely placed,
that is, not duplicated among parallel threads. It is possible to relax this restriction for
nodes that are safe to clone: Every node that is guaranteed not to execute any observable
side effect (program termination, system calls or memory writes) can be duplicated.
However, such relaxation severely increases the complexity of other constraints whose
formulation relies on every node to be placed exactly once.

The ILP solver can be initialized with the sequential schedule: x.[i, s, ] is set to 1
for s = 0 and ¢ = 0, 0 otherwise. Providing an initial solution effectively speeds up the
optimization process in practice.

4.3. A Note on Intercore Communication

Recent successful work on parallelizing irregular applications [Raman et al. 2008;
Campanoni et al. 2012] has shown that, depending on the form of parallelism, inter-
core communication latency is a limiting factor for successful parallelization. Helix
[Campanoni et al. 2012, 2014], for instance, is able to achieve impressive speedups
on irregular applications without even relying on speculation. The approach, how-
ever, strongly relies on efficient intercore communication, as loop-carried dependencies
have to be communicated between every pair of succeeding loop iterations, which are
executed on different cores in a round-robin fashion. By clever scheduling, the commu-
nication latency can be hidden to some degree but the scalability of the approach by
design is limited by the communication latency.

The influence of intercore communication on the successful parallelization using
Sambamba is limited in several ways. Note that intercore communication only hap-
pens when spawning a parallel task and only from the spawning to the spawned task.
This communication is minimized in the ILP formulation by including the ComCost in
the optimization function. Furthermore, task blocking (see Section 5.2) greatly reduces
the amount of necessary communication by executing multiple successive instances
of a task, for example, loop iterations, on the same core. Recomputable values, like,
for instance, induction variables, are communicated only once per block instead of
once per task instance. Values that are needed by multiple task instances, for exam-
ple, loop-invariant live-in values, are communicated once per block at most. For the
remaining, strictly necessary communication, a work-stealing task scheduler® in the
spirit of cilk is employed by the Sambamba runtime to effectively make use of the cache
hierarchy and minimize necessary intercore communication; in particular, for nested
parallelism.

4.4. Scheduling Time

As solving integer linear programs is NP-hard in general, our scheduling approach
often takes a considerable amount of computation time. Remember that the described
ILP is solved for each group of equally control-dependent nodes and its complexity
grows quadratically in the number of nodes (or linearly in the number of dependence
edges) in such a group. This consequently means that the complexity of parallelizing
an application in Sambamba is dominated by its maximum number of equally control-
dependent nodes, which does—like the average size of a basic block—not necessarily
correlate with the program size. The latter only linearly influences the complexity.
Furthermore, although an increasing number of dependence edges does indeed in-
crease the number of constraints, this does not mean that the solving time dramatically

3The Sambamba runtime system relies on the dynamic scheduler of Intel TBB.
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Table II. Characteristics of the Programs used to Evaluate Sambamba. They cover a broad range of domains
and parallelization schemes. Some of them require privatization or reduction recognition and handling

Enabling Applied
Techniques Scheme
E
= g
g| &
r < & &
. ~ Q Q Q «
Benchmark Suite SLOC Nnaxjavg Erax/ave A ~ | — =
alignment BOTS 612 93/9.86 128/9.27 v v v
cilksort* Cilk 387 22/8.58 23/7.19 v v
fft Cilk 3168 63/8.92 161/10.93 v v v v
blackscholes Parsec 393 24/7.38 30/6.87 v
BiCG Polybench 1586 31/9.15 37/9.50 v v
gesummy Polybench 1582 24/7.88 31/8.08 v v

increases. This is due to the fact that an increasing number of dependencies leaves less
freedom to the scheduler. IBM Cplex, the scheduler we use, is able to dramatically
reduce the size of the ILP before actually solving the corresponding LP.

In practice we found that for the majority of instances (>80%) an optimal solution
is found in less than 10s. To counter much longer execution times we implemented
several means to limit their influence.

As can be seen in Table II, the most complex of the benchmarks is ff¢. Its highest
number of dependencies per group is 161 dependence edges after transitive reduction
(324 edges before). Running the ILP until the optimum is proved, takes 4290s. However,
the optimal solution is found after 15s, a solution within a 10% range of the optimal
solution after 20s.

In all our benchmarks, the solution could not be significantly improved after 3min,
so we assume that after a timeout of 3min the best solution found so far is close enough
to the optimum and interrupt the solver. This timeout is configurable.

Additionally, the generated schedules of each function are written to disk for reuse
on the same machine. This greatly reduces compilation time during frequent recom-
pilations on a developer machine—changed dependencies (and consequently, PDGs) of
the application lead to rescheduling of affected functions only. Optionally, the schedules
can also be cached in a shared schedule cloud. During idle periods the cloud server can
always take partial (i.e., feasible but not optimal) solutions and improve them toward
an optimal one.

Note that the techniques described in this section are of purely practical relevance
and are not critical to the approach in general.

5. RUNTIME SUPPORT

The form of parallelism found by the static parts of Sambamba is of general nature. To
be as profitable as possible, however, the finally generated code can be specialized to
exploit features of the program that support efficient parallel execution. Such features
include a statically known or at least loop-invariant iteration range, or the recursion
scheme of parallelization candidates, for example. Loop blocking and adaptive dispatch,
which we shortly describe in this section, are two important techniques to exploit them.
Note that we deliberately keep their description short as we want to focus on the
static parts of Sambamba in this article. Nevertheless, it is important to know of their
existence to understand how the results in Section 6 are achieved.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 8, Publication date: April 2015.



8:14 K. Streit et al.

5.1. Adaptive Dispatch

In the current implementation, Sambamba keeps one parallel version of each function
in addition to the sequential version. By monitoring the execution of the program,
Sambamba chooses which of the functions to dispatch. The dispatch criteria are based
on the current system load (load), the utilization of the dynamic task queues (i.e., the
number of tasks in flight, #if) or the nesting depth of parallel tasks (¢nd). The latter
one is of particular importance when recursive functions (like in the fft example in
Figure 1(b)) are parallelized. A naive approach might excessively spawn parallel tasks
at each recursion level, even though the work usually decreases and it is not profitable
from a certain depth on. When parallelizing such a code manually, this issue is usually
solved by introducing a parallelization threshold—a specialization of the source code
that is not necessary using an adaptive runtime system such as Sambamba’s.

The Sambamba runtime system switches to the sequential version of a function in
case any of the following conditions is fulfilled:

—the system is already more than 90% utilized (load),

—more tasks than two times the number of cores available in the system are waiting
for execution in the global task queue (¢if), or

—the nesting level of parallel execution is higher than logs(#Cores) + 1 (ind).

5.2. Dynamic Blocking

Another important feature of the Sambamba runtime system aims at increasing the
size of the parallel task. The overhead of enqueuing parallel tasks easily outweighs
the actual work to be done in the tasks. This often occurs for parallelized loops do-
ing little work, like, for example, in the BiCG example in Figure 1(a). The reentrant
parallel section for such a loop contains exactly one reentrant task representing the
iteration part of the loop, and thus contains the loop-carried dependencies. One or sev-
eral nonreentrant tasks in the same section represent parallel work to be spawned in
each iteration. If these tasks only contain a small amount of code, like loading a value
from an array and performing a reduction operation, then the overhead of handling
the parallel tasks nullifies the benefit of parallel execution.

Dynamic blocking increases the task size by dynamically aggregating a number of
parallel tasks, before enqueuing it as one batch task. This saves most of the cost of
scheduling tasks doing negligible work. Reduction additionally profits from another
benefit, independent of the used fix-up approach: For privatization, the private copy
only needs to be determined once per batch task; for atomic operations, we only need
to update the shared location once.

In contrast to other techniques like recursive range splitting, dynamic blocking is
more general because it does not need to know the iteration range of the loop be-
fore it is entered. The downside is that the thread that collects the tasks before
spawning them in a batch may become the bottleneck. Therefore, if the loop iteration
range is loop invariant, that is, known before entering the loop, the Sambamba run-
time system produces code that immediately distributes loop execution equally among
available threads, which basically corresponds to a one-level (i.e., nonrecursive) range
splitting.

5.3. Runtime Profiling

The static scheduler of Sambamba decides for parallel execution if in doubt and re-
lies on the runtime system to take runtime information into account to drop unprof-
itable candidates. Consequently, the runtime system needs to collect relevant profiling
information.
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In particular, the Sambamba runtime system collects two kinds of profiles:

—Call-site execution times, which is basically a context-sensitive form of average
method execution time.

—Branch profiles, used to estimate the execution cost of decision nodes and to derive
loop trip counts.

In order to minimize the introduced runtime overhead, profiling is only enabled
for relevant code parts: Only call sites contained in statically determined candidate
regions of parallel execution are profiled. Branch profiles are only collected for functions
containing at least one parallelization candidate.

Furthermore, not every single invocation of a target function needs to be profiled. If
enough samples are already available and profiling information is stable, the likelihood
to learn something fundamentally new is low and profiling is disabled with a higher
probability. Edler von Koch and Franke [2014] have shown that profiles, in particular
data dependence and control flow related ones, stabilize quickly.

6. EXPERIMENTAL EVALUATION

For a detailed evaluation of the effectiveness and generality of Sambamba, we chose
six programs from different domains and different benchmark suites. Characteristics
of the chosen programs are given in Table II. The table lists for each program its source
benchmark suite (Suite), the number of source lines of code (excluding empty lines and
comments, SLOC), the maximum and average number of equally control-dependent
nodes (Nmax/avg) and dependence edges (Eqx/ang), as well as the necessary enabling
techniques and the applicable parallelization schemes.

We classify parallelization candidates into three schemes as applied by existing
parallelization approaches:

(1) Loop (full) basically corresponds to DOALL-style parallelism in which loops with-
out any loop-carried dependencies (except for those induced by induction variable
computation) are parallelized.

(2) Loop (partial) corresponds to loops with loop-carried dependencies of which at least
parts can be parallelized. Different parallelization approaches exist that can deal
with such loops. Examples are DOACROSS, DSWP, or Helix.

(3) Task represents loop-independent parallelism as can be expressed, for instance, in
the Cilk or Cilk++ languages. This form of parallelism is also known as fork-join
parallelism.

Again, note that Sambamba does not explicitly exploit the mentioned forms of par-
allelism. Also it does not implement or include a specialized approach for any specific
pattern of parallelism. The parallelization scheme of Sambamba is solely based on
dependencies and does not take any particular program structure into account. The re-
sulting parallel code produced by Sambamba nevertheless may have been produced by
more specialized approaches falling into the previously mentioned categories. The pur-
pose of this classification is to show that Sambamba, by abstracting from the program
structure, implicitly exploits such well-known patterns of parallelism.

The programs have been chosen as representatives for their particular style of par-
allelism as reflected in their originating benchmark suite. Later in this section we will
additionally show the results of Sambamba applied to all programs from the PolyBench
benchmark suite as well as most applications of the Cilk example suite.

For each of the detailed evaluation subjects we compare Sambamba against an
approach that ships with or is usually evaluated on this benchmark. We evaluate
four different configurations of Sambamba: with runtime dispatch enabled, with loop
blocking enabled, both runtime techniques enabled, and none of them enabled. Note
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that the latter configuration still makes use of runtime profiling information to choose
from different parallelization possibilities and form one parallel version per function.
We are assessing the following hypotheses in this evaluation:

(1) Sambamba identifies and leverages different forms of parallelism,;
(2) Sambamba effectively makes use of privatization and reduction recognition; and
(3) Sambamba creates efficient parallelized code over a broad range of applications.

The experiments were performed on a Intel Core i7 920 quad-core CPU with 2.67GHz,
8MB cache, and Hyperthreading. The LLVM-based approaches (Sambamba and Polly)
as well as the sequential baseline were compiled with clang 3.4.2; other approaches, in
particular the OpenMP versions, with gcc 4.9.1 (pre-release).

Note that, as mentioned earlier, Sambamba makes use of statically estimated as
well as dynamically collected profiling information. It does so during static scheduling
of parallelization candidates (see Section 4.1), as well as at runtime, when selecting
between different candidates or combinations thereof. For our evaluation, we did not
take runtime profiling information into account during static scheduling, which is solely
based on static estimates. The candidate selection at runtime, however, averages the
profiles collected during the current and earlier runs of the binary and takes them into
account. It is therefore able to use profiling information on actual inputs.

Of course, runtime profiling itself imposes overheads that need to be minimized to
keep profits high. Different schemes can be thought of to do so, including statistical
profiling (see Section 5.3). As we do not evaluate the runtime system of Sambamba,
we assume the availability of runtime profiles for free. To simulate this, we enable
runtime profiling during the first benchmark run. The collected information is taken
into account in all future runs.

Polybench/C 3.2 by Pouchet [2012] contains mathematical, loop-based programs,
which are amenable to polyhedral loop optimizations. We compare the performance
against Polly, the polyhedral optimizer of the LLVM compiler framework. Note that
the form of parallelism exploited by typical polyhedral optimizers is significantly dif-
ferent from what Sambamba does: Big improvements in terms of execution time are
achieved by optimizing for cache locality, a goal that Sambamba does not currently
share. Nevertheless, we consider the benchmarks chosen from this domain important
as they show highly nested loops with very small bodies, which do not justify the
overhead of spawning parallel tasks for every instance.

The programs taken from the Cilk [Blumofe et al. 1995] example suite are compared
against optimized execution in Cilk. For the sequential reference we compiled the so-
called serial elision* of those programs using the clang compiler, in order to avoid any
overhead induced by the Cilk runtime system. The BOTS suite of Duran et al. [2009]
contains one sequential and several manually parallelized program versions containing
OpenMP annotations. The best performing OpenMP variant is used as reference in
all cases. Parsec [Bienia et al. 2008] contains handcrafted versions of each program,
parallelized using OpenMP, Intel TBB, and native POSIX threads. Again, we compare
against the best of those versions.

Figure 7 shows the result of the evaluation. All numbers are normalized against an
optimized sequential program version compiled with clang.

In the evaluated programs, Sambamba detects all the program locations that were
parallelized by the domain experts. Also, Sambamba decreases the runtime substan-
tially in all cases. We checked that the reported speedups are significant with a confi-
dence of 99% according to the Speedup-Test [Touati et al. 2013]. This shows both the
generality and effectiveness of our approach.

4Deleting Cilk language constructions (spawn, sync, . . .).
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Fig. 7. Evaluation of generalized task parallelism (Sambamba) on six programs from different domains,
containing different styles of parallelism. The x axis shows the number of threads, the y axis compares
speedup over sequential execution. Parallelization in OpenMP, Cilk, and Intel TBB is done manually by
experts; Polly and Sambamba parallelize automatically.

In the BiCG (7c) and gesummuv (7d) programs from the PolyBench suite, Sambamba
outperforms Polly, the specialized tool for those kinds of programs. We see that blocking
significantly improves the performance of Sambamba. Dispatch has no benefit, but also
does not introduce any overhead.

In the case of BiCG Polly there are mainly two problems:

—Polly works on basic block level and is unable to split blocks on demand. Both state-
ments of the innermost loop (see Figure 1(a)) share the same basic block, which
consequently induces loop-carried dependencies over both containing loops.

—Polly is unable to deal with reductions and therefore misses an important opportunity
of parallelization.

The slowdown of Polly in this benchmark comes from the fact that it not only misses

the profitable parallelism, but also parallelizes the loop initializing the s array to 0,
which is not profitable.
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Concerning gesummu, Polly finds the right location to parallelize but the generated
code based on OpenMP is unable to profitably exploit the parallelism. The speedup
would be higher, if Polly would additionally vectorize the generated code, which it does
not in this particular case.

In alignment (7a) and blackscholes (7b), the efficiency of the Sambamba-parallelized
versions fall behind the handcrafted versions using OpenMP or TBB. This is caused by
two factors: First, the Open MP and TBB programs are compiled with gcc, which creates
more efficient code in these cases. Second, the Sambamba runtime system introduces
overhead for allocating heap space for the parallel tasks, and for privatization and
reduction locations. This overhead is significantly higher than that of the reference
systems.

We see that alignment profits from neither blocking nor runtime dispatch. Indeed,
blocking harms performance. This is caused by the parallelized loop not having enough
iterations to reach the chosen block size. Blocking thus effectively sequentializes ex-
ecution. If the choice to enable blocking is left to the Sambamba runtime system, it
therefore disables it as it observes that the iteration count is too low for blocking to be
profitable. Sambamba performance on blackscholes in contrast heavily benefits from
blocking.

The alignment program is especially interesting, because parallelizing the main loop
in the pairalign function requires privatizing 15 variables at different loop nesting
levels. This is encoded in the OpenMP annotations; if one of them is missed by the
developer, the executable might produce incorrect results. Sambamba determines them
automatically and produces corresponding code without human guidance.

The fft (7f) and cilksort* (7e) programs implement fast Fourier transform and a stan-
dard mergesort. Note that the version of cilksort contained in the Cilksuite performs a
switch from mergesort to quicksort at a hard coded array size boundary. Cilk and Sam-
bamba (without runtime dispatch) both profit from this boundary when automatically
parallelizing as it effectively causes execution to switch from parallel to sequential once
the problem size drops below a given size. As for regular targets of a parallelizer such
help cannot be expected; we removed this boundary for our benchmarks (hence the * in
cilksort*). Sambamba makes placing such somewhat artificial boundaries superfluous.

As mentioned earlier, Sambamba can make use of dependence annotations given
by the programmer. Like essentially all applications of the Cilk example suite, fft and
cilksort mainly consist of recursive functions. As described in Section 3.1, Sambamba
profits from user-provided annotations in such cases and we manually annotated rele-
vant parts. The idea is similar to that of Vandierendonck et al. [2010]: hints are only
used to improve dependence information while parallelization stays fully automatic.

Both cilksort* and fft do not profit from blocking as the dominating parallelism does
not stem from parallel loops. fft does not profit from runtime dispatch. This is mainly
due to a highly specialized and hand-optimized implementation that switches over to
specialized implementations to solve smaller subproblems: Specialized implementa-
tions that are not parallelized. This corresponds, just like in the original version of
cilksort, to an implicit switch from parallel to sequential execution.

cilksort*, however, greatly benefits from runtime dispatching. Indeed only with
runtime dispatching is it able to achieve any speedup. In that case it constantly
outperforms Cilk.

Note that a significant slowdown can be observed for Sambamba without dispatch-
ing, even with only one thread. This is because the overhead of creating and scheduling
parallel tasks is introduced at every recursion depth and for every problem size. For
the smaller problem sizes this overhead outweighs the actual productive work. Addi-
tionally, task stealing will hurt data locality, leading to the observed slowdowns for
multithreaded execution.
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Fig. 8. Evaluation of generalized task parallelism (Sambamba) on the Polybench 3.2 (a) and Cilksuite (b)
with eight threads on a quad core with Hyperthreading.

Sambamba with runtime dispatch is able to fully match the parallelization decisions
of the manually crafted implementations; the execution time, with runtime dispatch,
is comparable to execution with Cilk for both benchmarks.

Apart from the detailed benchmark evaluation shown in Figure 7 we evaluated
Sambamba on the whole Polybench/C 3.2 Suite [Pouchet 2012], as well as most of the
applications from the suite of Cilk [Blumofe et al. 1995] example applications. The
results are shown in Figures 8(a) and 8(b),? respectively.

The experiments have been conducted on the same machine as the previous experi-
ments. Speedups are relative to an optimized binary produced by clang and sequential
execution in the Sambamba framework. The latter is to demonstrate the speedup
obtained by parallelization alone and ignores overhead introduced by just-in-time com-
piled execution, for instance. Another reason for differences in the numbers is the
potential lack of interprocedural optimization of parallelized functions, which are not
performed in order to maintain the freedom to exchange functions at runtime. If, for
instance, a parallelized function is inlined at compile time, exchanging this function at
runtime is without effect.

In the case of Polybench, the reported speedups are obtained using the timing mea-
surement facilities of the benchmark suite, running on the large input set. In particular,
the speedup refers to the main computational kernel of each benchmark and not the
whole application.

As explained earlier, for the cilk applications the serial elision is computed, annotated
with dependence hints, and automatically parallelized. We dropped four applications
(ck, game, queens, and kalah) for which the serial elision was not easily computable
due to the use of Cilk inlets. Furthermore, we left out hello as it is a trivial hello
world program, and nfib as it is basically the same as fib. For each of the remain-
ing applications we measured the overall program speedup as not all applications
come with their own measurement of relevant program parts. While it seems to be
the most appropriate way to us to treat all benchmarks of the suite in the same way,

5Earlier results similar to those shown in Figure 8(b) have been reported in our own earlier work [Streit
et al. 2013].
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measuring whole program speedup results in lower speedups than one might wish
to see on a quad-core machine. In most cases this is caused by large parts of the
application being inherently sequential: for instance, allocating and filling large ar-
rays to sort an finally verifying result correctness. For cilksort, matmul, and spacemul
the difference is quite large: While their measured kernels have been accelerated
by factors of 4.32, 3.63, and 3.26, respectively, the overall speedup is significantly
lower.

Note that we report three numbers for ff¢ that all represent the same program but run
on different inputs,® each covering a different characteristical execution path through
the application.

Overall, the measurements confirm our hypotheses:

(1) Sambamba subsumes different parallelization approaches by effectively detecting
and leveraging different forms of parallelism.

(2) Parallelization enabling techniques like privatization and reduction recognition
are used where applicable.

(3) The runtime is comparable to state-of-the-art parallelization tools, but no developer
guidance is needed.

7. RELATED WORK
7.1. Reduction

The usual definitions of reduction, for example that of Midkiff [2012], are based more or
less on the syntactic form of a reduction statement and miss important opportunities.
The extended reduction statements of Rauchwerger and Padua [1995] share properties
with ours, but have no notion of varying reduction locations. Dynamic approaches
like Privateer by Johnson et al. [2012] or the LRPD-test by Rauchwerger and Padua
[1995] try to avoid reliance on statically analyzable reductions of a particular syntactic
form. These approaches optimistically assume promising accesses to be reductions and
parallelize the containing loops at the cost of having to perform runtime checks to
validate the decisions made.

The approach of reduction recognition described in this article is not as restrictive
as the usual definitions based on syntactic features. Nevertheless, it is by definition a
static approach and consequently not able to detect all possible reductions.

7.2. Static Parallelization

Burke et al. [1989] describe the exploitation of nested fork-join parallelism while taking
into account the possibility of privatization. The approach does not trade parallelism for
overhead and parallelizes everything it can. The motivation of the approach described
in this article is similar to ours and we are certainly inspired by the work of Burke
et al.

In a similar fashion, Sarkar [1991] presents a heuristic-based approach to statically
parallelize task trees computed from the program dependence graph of FORTRAN
functions. This enforced tree structure, motivated by the requirement to generate a
parallel FORTRAN program with structured parallelism, limits the flexibility of the
approach. Linear programming based scheduling of hierarchical task graphs for em-
bedded systems by Cordes et al. [2010] shares this limitation and further imposes
restrictions on the shape of the generated parallel code regions.

Rugina and Rinard [1999] propose a simple method to automatically parallelize
divide-and-conquer algorithms by spanning parallel sections around call sites that
are assumed to be spawned off for parallel work by introducing Cilk spawn and sync

6£f inputs: “10,000,000”, “33,554,432” and “-c”.
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primitives. This approach is very limited and unable to abstract from the implemented
control flow.

Decoupled Software Pipelining (DSWP) aims at parallelizing sequential loops by
forming patterns of pipelined execution [Rangan et al. 2004]. Loops are decomposed
into pipeline stages, possibly executing in parallel to each other. Each stage commu-
nicates produced values to the threads executing later stages as needed. DSWP has
been extended by automatically performing the thread extraction [Ottoni et al. 2005],
by allowing one to distribute a single pipeline stage to different threads [Raman et al.
2008], by allowing one to speculatively parallelize [Vachharajani et al. 2007], and by
enabling cross-invocation parallelism among different loop instances [Huang et al.
2013] for loops of a specific shape. Huang et al. [2010] generalize the idea of Raman
et al. [2008] and enable the parallelization of individual DSWP stages by manually ap-
plying a secondary loop parallelization scheme. The work clearly shows that different
parallelization schemes can be profitably combined. However, the question on how to
automatically select and prioritize different approaches is considered to be a challeng-
ing open research question by the authors. While modern implementations of DSWP,
like Parcae [Raman et al. 2012] for instance, avoid it, the earlier approaches rely on spe-
cialized hardware for interthread communication and recovery from mis-speculation.
Sambamba instead runs on commodity systems.

Vandierendonck et al. [2010] describes Paralax, a semiautomatic approach of par-
allelization in a DSWP-like fashion. The approach relies on DSA for its dependence
analysis, and suffers from the same imprecisions as we do. To address this concern,
Vandierendonck et al. [2010] motivates a set of user annotations.

Zhong et al. [2008] describe an approach of automatic speculative DOALL paral-
lelization of loops relying on hardware transactional memory, hardware-based low-cost
thread spawning, and low-latency intercore communication. Mehrara et al. [2009] im-
plement a software transactional memory system to get rid of these hardware require-
ments. The described STM is specialized and limited to automatic DOALL paralleliza-
tion of loops. Kim et al. [2012] apply speculative DOALL parallelization to distribute
the computation performed by a loop to a cluster of machines.

In Helix [Campanoni et al. 2012], loop iterations are automatically distributed in a
round-robin fashion to different threads. The latency of necessary intercore commu-
nication is hidden by exploiting the SMT capabilities of modern multicore processors.
While the performance results are impressive, the authors show in their own follow-
up work [Campanoni et al. 2014] that the approach does not scale to more than four
cores and propose hardware support to overcome this limitation. Both approaches are
limited to parallel execution of a single loop at a time.

7.3. Runtime Parallelization

Kulkarni et al. [2007] require the programmer to use the graph data structures and
iterators provided by their Galois system in order to make dependencies between graph
nodes explicit. In return, these explicitly stated dependencies enable dynamic parallel
execution of graph-based algorithms without the need for conservative assumptions.
Out of order Java by Jenista et al. [2011] and improved by Eom et al. [2012] provide
a task extension to the Java language allowing the programmer to mark regions of
the code to be considered for parallel execution. The compiler generates lightweight
runtime checks, enabling efficient prevalidation of potential conflicts at runtime before
spawning a parallel task. Both approaches rely on the programmer to rethink and
rewrite the subject application. Chen and Olukotun [2003] implemented a runtime
system for Java applications that dynamically monitors dependencies between loop
iterations. To find promising parallelizable loops, the approach relies on a hardware
profiler. DeVuyst et al. [2011] and Hertzberg and Olukotun [2011] followed a similar
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idea. By employing runtime binary translation, their approaches do not rely on the
availability of the application source code. Johnson et al. [2007] makes heavy use of
thread level speculation supporting hardware to empirically optimize an application
after a profiling run preceding the actual execution. All these approaches rely on special
hardware in contrast to the work presented in this article.

The Parcae system by Raman et al. [2012] provides a flexible parallel execution
environment and promises to allow for holistic optimization of a parallel program
instead of mere parameter tuning as, for example, done by Karcher and Pankratius
[2011] in the context of parallelization. Parcae relies on extensions to the operating
system to orchestrate the parallel execution of different applications.

8. LIMITATIONS AND FUTURE WORK

While we are convinced that the described approach is an important step towards uni-
fying several important parallelization approaches, we are not there yet. Our imple-
mentation of Generalized Task Parallelism has several limitations, mostly of technical
nature. Nevertheless, these limitations keep our implementation from parallelizing
code that it could handle in principle.

In this section we will give a nonexhaustive list of the most relevant limitations and
a short hint on how we plan to address them in the future. The purpose is to make
clear, that we are aware of technical limitations, which should not be understood as
limitations of the general approach.

Flow Insensitivity. The fact that the data-structure analysis we use [Lattner et al.
2007] is flow-insensitive causes imprecision when trying to identify memory re-
gions as disjoint. This behavior can of course be avoided by employing a flow-
sensitive analysis. The problem is that flow- and context-sensitive analyses usu-
ally do not scale very well. We plan to address this issue by using a staged approach
as proposed by Hardekopf and Lin [2011], or a client-driven one as, for example,
that of Guyer and Lin [2005].

Dependence Analysis. With the goal of parallelizing general-purpose applications we
chose to use DSA, which is a points-to analysis that is particularly well suited for
irregular data structures. However, this analysis has two major weak spots rele-
vant in our situation: It is not able to precisely deal with regular data structures
like arrays, and it greatly overapproximates the effects of recursive functions.

We are currently working on a new approach combining and extending ideas
of the range analysis by Rugina and Rinard [1999], and the runtime parametric
memory access analysis of Rus et al. [2003].

Apart from general scalability and stability improvements of the implementation, we
plan to further extend the approach to make use of runtime information and dynamic
adaptation.

9. CONCLUSION

In this article, we presented Sambamba, an approach to naturally unify different forms
of loop parallelization as well as fork-join-style task parallelization, reduction, privati-
zation, and speculation. We express the freedom to choose from all these alternatives
in an integer linear programming approach to PDG scheduling that considers all par-
allelization opportunities at once and find the optimal trade-off with respect to a given
cost function.

Facing the diversity and complexity of modern processors, memory systems, runtime
environments, and application inputs, no static approach will ever be able to predict
the profitability of a particular parallel code version. Therefore, the described approach
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relies on an adaptive runtime system to continuously recombine and reassess paral-
lelization decisions and to adapt to changing requirements.

We validated experimentally that Sambamba detects and exploits parallelism in a
variety of programs from many different benchmark suites exhibiting different kinds
of parallelism. We consistently achieve speedups at the same level or better than state-
of-the-art parallelizing tools, or manual parallelization.
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