
Sambamba : A Runtime System
for Online Adaptive Parallelization

Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian Hack

Saarland University, Saarbrücken, Germany
{streit,hammacher,zeller,hack}@cs.uni-saarland.de

Abstract. How can we exploit a microprocessor as efficiently as possi-
ble? The “classic” approach is static optimization at compile-time, op-
timizing a program for all possible uses. Further optimization can only
be achieved by anticipating the actual usage profile: If we know, for in-
stance, that two computations will be independent, we can run them in
parallel. In the Sambamba project, we replace anticipation by adapta-
tion. Our runtime system provides the infrastructure for implementing
runtime adaptive and speculative transformations. We demonstrate our
framework in the context of adaptive parallelization. We show the fully
automatic parallelization of a small irregular C program in combination
with our adaptive runtime system. The result is a parallel execution
which adapts to the availability of idle system resources. In our exam-
ple, this enables a 1.92 fold speedup on two cores while still preventing
oversubscription of the system.

Keywords: program transformation, just-in-time compilation, adapta-
tion, optimistic optimization, automatic parallelization.

1 Introduction

A central challenge of multi-core architectures is how to leverage their computing
power for programs that were not built with parallelism in mind—that is, the
vast majority of programs as we know them. Recent years have seen considerable
efforts in automatic parallelization, mostly relying on static program analysis to
identify sections amenable for parallel execution (often restricted to small code
parts, such as nested loops). There also have been speculative approaches that
execute certain code parts (identified by static analyses) in parallel and repair
semantics-violating effects, if any.

While these efforts have shown impressive advances, we believe that they will
face important scalability issues. The larger a program becomes, the harder it
gets to precisely identify dependences between code parts statically, resulting in
conservative approximations producing non-parallel and overly general code. The
problem is that the actual environment and usage profile cannot be sufficiently
anticipated [2]. Of course, one could resort to dynamic runtime techniques to de-
termine dependences, but the initial overhead of dynamic analysis so far would
not be offset by later performance gains. All of this changes, though, as soon
as one moves the analysis and code generation from compile-time to runtime.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 240–243, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Runtime System for Online Adaptive Parallelization 241

Rather than analyzing and compiling a program just once for all anticipated runs,
we can now reanalyze and recompile programs in specific contexts, as set by the
input and the environment. Interestingly, it is the additional power of multi-core
architectures that makes such a continuous adaptation possible: While one core
runs the (still sequential) programs, the other cores can be used for monitoring,
learning, optimization, and speculation. Moving from anticipation to adaptation
enables a number of software optimizations that are only possible in such dy-
namic settings. First and foremost comes adaptive parallelization—that is, the
execution of the program in parallel depending on the current environment.

2 The Sambamba Framework

Fig. 1. Sambamba execution steps

The Sambamba1 project aims to pro-
vide a reusable and extendable framework
for online adaptive program optimization
with a special focus on parallelization.
With Sambamba, one will be able to in-
troduce run-time adaptive parallelization
to existing large-scale applications simply
by recompiling; no annotation or other hu-
man input is required. Indeed, we aim to
make parallelization an optimization as
transparent and ubiquitous as, say, con-
stant propagation or loop unrolling.

Sambamba is based on the LLVM com-
piler framework and consists of a static
(compiler) part and a runtime system. The framework is organized in a com-
pletely modular way and can easily be extended. Modules consist of two parts:
Compile-time parts handle costly analyses such as inter-procedural points-to and
shape analysis as used by our parallelization module. These results are fed into
the runtime parts—analyses conducted at runtime which adapt the program to
runtime conditions and program inputs. Obviously, it is crucial for the runtime
analyses to be as lightweight as possible.

The flow of execution in the Sambamba framework is depicted in Figure 1:
[A] We use static whole-program analyses to examine the program for poten-

tial optimizations and propose a first set of parallelization and specializa-
tion candidates that are deemed beneficial. For long-running programs it
might be a viable alternative to also run these analyses at runtime.

[P] The runtime system provides means for speculatively parallelizing parts of
the program based on the initial static analysis and calibration information.

[X] We detect conflicts caused by speculative executions violating the pro-
gram’s sequential semantics and recover using a software transactional
memory system [1] which we adapted to our special needs.

1 Sambamba is Swahili for parallel, simultaneously or side by side.



242 K. Streit et al.

[C] We gather information about the execution profile and misspeculations to
calibrate future automatic optimization steps.

[S] Based on the calibration results, Sambamba supports generating different
function variants that are specialized for specific environmental parame-
ters and input profiles. These can then again be individually parallelized in
the next step.

3 Adaptive Parallelization

3.1 Data Dependence Analysis

The main obstacle for parallel execution of program parts is data dependences
over the heap. Parallel computation cannot start before all input data has been
computed. In large irregular programs, the interprocedural data flow is hard to
determine statically, so all known analyses only provide overapproximations.

In order to get a sound over-approximation of the existing data dependences,
we use a state of the art context-sensitive alias analysis called Data Structure
Analysis [3]. This information allows us to statically prove the absence of certain
dependences.

3.2 Parallel CFG Construction

Given a regular control flow graph in SSA form, Sambamba creates the so-called
parallel control flow graph (ParCFG). Unnecessary structural dependences defin-
ing an execution order are removed and replaced by real dependences caused by
possible side effects.

We formulated the graph partitioning related problem as integer linear pro-
gram (ILP). The solution of this ILP is then used to introduce so-called parallel
sections (ParSecs). Each ParSec defines at least one fork point πs and exactly
one join point πe for later parallel execution. Side-effect-free instructions might
be duplicated in this step in order to facilitate parallelization.

We do not put special emphasis on loop parallelization and deal with general
control flow instead. Very strong approaches of loop parallelization have been
proposed and implemented during the last 30 years. Enriching some of these
methods, like for example polyhedral loop optimization, with speculation is one
of our ongoing projects.

3.3 Scheduling and Parallel Execution

In this step, Sambamba generates executable code from the ParCFG. This task
includes the creation of an execution plan for concurrently executed parts as well
as the generation of LLVM bitcode, which is translated into machine code by a
just-in-time compiler.

In this demonstration, we only partition a region into parallel tasks if we could
prove the absence of data dependences between them. Thus, the execution order
of these tasks is not relevant. This will change as soon as we allow to speculate



A Runtime System for Online Adaptive Parallelization 243

on the absence of dependences. Then it may be beneficial to delay the execution
of a task T until all tasks that T might depend on complete.

The assignment of tasks to processors is done dynamically by using a global
thread pool initialized during load time of the program.

4 State of the Project

The demonstrated tool is a working prototype. Not every planned feature is fully
implemented yet. Especially the features of the runtime-system are implemented
on demand as we work on the modules for automatic parallelization.

At the time of writing, the following module independent parts are examples
of implemented features:

• Method versioning and a general method dispatch mechanism
• A software transactional memory system supporting speculative execution
• Integration of the LLVM just-in-time compiler.

Concerning automatic parallelization, the demonstrated implementation is able
to statically find sound candidates for parallelization. It identifies and rates data
dependences which could not be statically proven to exist (may dependences)
but prevent further parallelization. Execution adapts to the available system
resources by dispatching between the sequential and a sound parallel version of
parallelized methods.

For further details and news on the Sambamba framework please refer to the
project webpage: http://www.sambamba.org/.

Acknowledgments. The work presented in this paper was performed in the con-
text of the Software-Cluster project EMERGENT (www.software-cluster.org). It
was funded by the German Federal Ministry of Education and Research (BMBF)
under grant no. “01IC10S01”. The authors assume responsibility for the content.

References

1. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming (PPoPP 2008), p. 237.
ACM Press, New York (2008)

2. Hammacher, C., Streit, K., Hack, S., Zeller, A.: Profiling Java programs for par-
allelism. In: Proceedings of the 2009 ICSE Workshop on Multicore Software Engi-
neering, pp. 49–55. IEEE Computer Society (2009)

3. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis with
heap cloning practical for the real world. In: Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2007),
pp. 278–289. ACM, New York (2007)


	Sambamba: A Runtime System
for Online Adaptive Parallelization
	Introduction
	The Sambamba Framework
	Adaptive Parallelization
	Data Dependence Analysis
	Parallel CFG Construction
	Scheduling and Parallel Execution

	State of the Project
	References





