
Sambamba: Runtime Adaptive Parallel Execution

Kevin Streit Clemens Hammacher
Saarbrücken Graduate School of Computer Science

Saarland University
Saarbrücken, Germany

{streit|hammacher}@cs.uni-saarland.de

Andreas Zeller Sebastian Hack
Saarland University

Saarbrücken, Germany
{zeller|hack}@cs.uni-saarland.de

Abstract
How can we exploit a microprocessor as efficiently as possible?
The “classic” approach is static optimization at compile-time, con-
servatively optimizing a program while keeping all possible uses
in mind. Further optimization can only be achieved by anticipating
the actual usage profile: If we know, for instance, that two compu-
tations will be independent, we can run them in parallel. However,
brute force parallelization may slow down execution due to its large
overhead. But as this depends on runtime features, such as struc-
ture and size of input data, parallel execution needs to dynamically
adapt to the runtime situation at hand.

Our SAMBAMBA framework implements such a dynamic
adaptation for regular sequential C programs through adaptive dis-
patch between sequential and parallel function instances. In an
evaluation of 14 programs, we show that automatic parallelization
in combination with adaptive dispatch can lead to speed-ups of up
to 5.2 fold on a quad-core machine with hyperthreading. At this
point, we rely on programmer annotations but will get rid of this
requirement as the platform evolves to support efficient speculative
optimizations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers, Optimization,
Retargetable compilers, Run-time environments; D.1.3 [Program-
ming Techniques]: Concurrent Programming—Parallel program-
ming

General Terms Parallelization, Performance

Keywords automatic parallelization, just-in-time compilation

1. Introduction
To exploit the power of modern multi-core architectures, one needs
to compute in parallel — either by writing new parallel programs,
or by parallelizing existing (sequential) programs. Both these pose
grand challenges to research.

As an ongoing example, consider the hashList() function shown
in Listing 1. It computes a hash value for a linked list by recursively
combining the hash value of the first element with the hash of the
remainder of the list. Assuming that hashElem() and hashList()
have no side effects and do not interfere via accesses to the same

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ADAPT ’13 January 22, 2013, Berlin, Germany.
Copyright c© 2013 ACM 978-1-4503-2022-1/13/01. . . $15.00

long hashList(list *x) {
if (x == 0)

return 0;

return hashElem(x) +
31 * hashList(x->next);

}

Listing 1. Irregular recursive sample method written in C.

memory regions, the two calls to hashElem() and hashList() could
be run in parallel.

The problems in automatically parallelizing this seemingly sim-
ple function statically are manifold though: To start with, the static
code analysis of the compiler must be conservative. In order to par-
allelize this function the compiler has to statically prove that the
hashElem() function has no observable side effects, such as rais-
ing a signal. Furthermore the hashElem() function is not allowed to
write to global state or even to local state in the corresponding list
element if the list cannot be proven to be non-circular. The compiler
may not be able to determine if hashElem(), and thus hashList(),
fulfills these criteria.

What a compiler could do, however, is to speculatively paral-
lelize — that is, to execute the functions in parallel first, and to
revert to sequential execution in case of conflicts. Detecting such
conflicts and allowing for rollbacks induces overhead, however, and
the compiler is not able to decide when such overhead may pay
off; in particular for such a “small” function as hashList(). Due to
this overhead, invoking hashList() on a “short” list and with few
work to be done in hashElem() will best run sequentially, while on
a “long” list or with costly hashElem() computations, it may bet-
ter run in parallel. But where is the boundary between “short list”
and “long list”, between “few work” and “costly computation”? On
which system? For which load?

Maybe we should leave the answer to such questions to the
expert: With manual parallelization, the programmer provides hints
or instructions on when and where to parallelize. In algorithms like
parallel sorting, for example mergesort, we usually see code that
switches to sequential execution when the length of the array to sort
falls below a certain, constant, threshold. The assumption here is
that spawning parallel threads or even tasks will not pay off below
that threshold. But how can a programmer decide in the general
case what threshold is optimal? Again, on which system?

In hashList() it is even worse: We cannot easily get the length
of the linked list without traversing it. So how would an efficient
check, deciding on when to switch to sequential execution look
like?

When it comes to profitability of parallel execution, we have
further problems: The potential overhead inherently depends on

the specific usage profile, which is not known at compile-time,
and which may even vary during runtime. The resulting program
— whether compiled through a specialized parallelizing compiler
or produced manually by rewriting the code to run in parallel —
will thus most likely be specialized towards a specific context,
effectively breaking the promise of “write once, run anywhere”.

We believe that program code should remain independent of
the execution context; thus, parallelization should eventually be
left to the compiler and a runtime environment. However, the large
overhead of parallelization, which pays off only for specific inputs,
calls for a runtime adaptive approach of parallel execution.

In particular, we must:

1. Make programs adapt to their environment. In terms of par-
allelization, there is no “one size fits all” solution. Instead,
we must ensure that programs can choose between several in-
stances of compiled methods: sequential or parallel, specialized
or general, speculative or conservative, depending on the exe-
cution environment at hand.

2. Have programs constantly optimize themselves. The pro-
grammer should not be burdened with the choice of what and
when to parallelize. Instead, we anticipate that programs learn
during the execution which optimization strategies work best.
The program would thus choose whether to assume a “short” or
a “long” list, taking the current context into account.

3. Move parallelization related decisions to run time. For opti-
mizations such as the ones above, we need traditional compile-
time analyses, but conduct them at run time. This means that the
separation of “compile time” and “runtime” becomes blurred;
we would rather think of “constant recompilation” to fit the pro-
gram best to the current situation. For instance, the compiler
could produce specific optimized versions of hashList()— a se-
quential or speculatively parallel version if exceptions may be
raised, and a non-speculative, highly efficient parallel version if
it can decide that this is not the case.

It is clear that all these analyses and optimizations incur over-
head; so how can we reasonably expect the program to run faster?
While the program is not yet parallelized, we can make use of the
idle cores to monitor the running program and to decide if and how
to adapt. Once adaptation is done, and the input is stable, the extra
analyses are no longer needed and are thus “turned off”. In addition
to pure performance, one could also think of optimizing for energy
efficiency or memory consumption.

In this paper we apply an static fork-join parallelizer based on
program dependence graphs (PDGs), which is built into the Sam-
bamba framework [15], to find opportunities for parallelization. We
use runtime adaptive code generation to schedule the found candi-
dates based on execution time profiles collected at runtime. Finally
we explore the influence of four different mechanisms to dynami-
cally dispatch between the generated parallel and sequential code
versions. On a sample application containing the hashList() func-
tion of Listing 1, we achieve a maximum speedup of 5.2 fold as
compared to sequential execution on a quad-core machine with hy-
perthreading.

This paper proceeds as follows: In the next section we talk about
related work. In Section 3 we introduce the fork-join parallelization
facilities of Sambamba and explain how code is adaptively gener-
ated. In Section 4 we elaborate on different methods of dispatching
between sequential and parallel execution. In Section 5 we evaluate
our approach on 14 programs taken from the suite of cilk example
applications. Finally we conclude and describe our ongoing work
in Section 6.

2. Related Work
Automatic parallelization, even at runtime, is an active research
area and powerful approaches exist. However, most of the work
known to the authors has a severe limitation that we circumvent
in Sambamba: Only one version of each function is kept and op-
timized for the “general case”. Execution time and branch profiles
are either statically estimated or collected in special profiling runs
or at runtime. Once enough information has been collected to iden-
tify so called hot regions — mostly loops — those are parallelized
if appropriate. This is where purely static parallelization ends. Dy-
namic approaches keep monitoring the performance of parallelized
code. In case it is deemed unbeneficial in terms of execution time,
it is dropped and replaced by the sequential version for future exe-
cutions. The problem with all these approaches is that the “general
case”, for which the code is optimized, has to be identified in terms
of representative input data and execution environment. This is by
far no easy task, in particular if input and environment change dur-
ing execution. In this paper we show that the runtime overhead in-
duced by continuously monitoring the running application actually
pays off in several cases. The enabled continuous adaptation leads
to increased performance, as compared to brute force or one-way
parallelization.

Due to space limitations we stay very abstract here, but want to
mention one recent approach that seems very interesting: The Par-
cae system by Raman et al. [10] provides a flexible parallel execu-
tion environment and promises to allow for holistical optimization
of a parallel system instead of mere parameter tuning. The Parcae
system is able to dynamically choose between two modes of loop
parallelization: parallel stage decoupled software pipelining (PS-
DSWP) [11] and DOANY [17]. In the case of PS-DSWP it is also
able to dynamically tune the number of replicated parallel stages.
The results reported in the above mentioned work support our in-
tention that runtime adaptivity going beyond parameter tuning can
dramatically improve the performance of existing parallelization
schemes.

In contrast to Parcae, parallelization in Sambamba so far focuses
on non-loop parallelization. Most of the existing work on automatic
parallelization argues that the highest potential for parallel execu-
tion is hidden in loops, and they are certainly right. Nevertheless
it has been shown [2, 9] that the available parallelism exceeds the
execution of loops. We think that, in particular when leaving the
well analyzable class of applications from a mathematical domain,
parallelizing non-loop code becomes crucial.

3. Runtime Adaptive Parallelization
Our runtime adaptive fork-join parallelizer, ParA, is implemented
as a module to the Sambamba framework. It consists of two parts: a
compile-time component, performing possibly costly analyses and
program transformations offline; and a runtime component, build-
ing on statically gathered information and continuously collected
runtime profiles to perform online adaptive optimizations. Please
refer to the project website [14] for details on Sambamba.

3.1 ParA: Static Component
Each parallel version of a sequential program has to respect control
and data dependences in order to behave semantically equivalent.
This property makes the program dependence graph (PDG) [4] a
suitable representation for automatic parallelization. Its edges rep-
resent the control and data dependences of a function and efficient
algorithms exist to schedule executable code from PDGs [13].

The static component of ParA uses the PDG as its internal rep-
resentation to automatically find promising code locations, suitable
for parallel execution.

root

x == 0

g1 g2

return 0 %1 = hashElem(x) %2 = hashList(x->next) return %1 + 31 * %2

T F

Figure 1. The simplified PDG of hashList(): data dependences are
depicted by dashed arrows, control dependences by solid arrows.

Control dependence computation is conducted on the prepro-
cessed LLVM [7] intermediate representation of each function, fol-
lowing Sarkar [12]. In order to compute the data dependences, an
interprocedural and context-sensitive points-to analysis called data
structure analysis (DSA) [8] is used. Each PDG node is annotated
with a representation of its read and write effects to the abstract
memory cells as reported by the DSA. Observable side effects such
as system calls are modeled as read and/or write accesses to a spe-
cial cell representing non-memory effects (NME).

As an example, the PDG of the hashList() function is shown in
Figure 1. The PDG contains nodes of three different types:

• Regular nodes, depicted as boxes, represent simple instructions,
or, as in our case, basic blocks.

• Decision nodes, such as conditional branches, switches or pos-
sibly exception throwing calls (invokes), are depicted as dia-
monds.

• Finally, group nodes, depicted as ovals, contain possibly multi-
ple nodes sharing the same control conditions.

Each group node represents a control condition, which is the
conjunction of all conditions of decision nodes on the path from
the designated PDG root node to the corresponding group. Once
this condition is fulfilled, all its child nodes are to be scheduled
for execution. Only the data dependences between the subgraphs
reachable from a group node restrict parallel execution. Within one
group node, no complex control flow has to be taken into account; a
property that makes the group nodes particularly interesting in the
context of automated fork/join parallelization.

After computing the PDG, an ILP solver1 is used to compute
a parallel fork-join schedule for each group node in the PDG. The
constraints of the linear program are formed by the data depen-
dences between the subgraphs reachable from the group nodes, es-
timates of the execution times of called methods, branch profiles,
which implicitly includes loop trip counts, and possible paralleliza-
tion overhead.

The ILP formulation allows to speculate on the non-existence
of dependences and takes ignored dependences into account by
marking the parallel transactions containing the source and target
nodes of the dependence correspondingly. At runtime, these trans-
actions need protection by a speculation system, such as trans-
actional memory (TM) [6]. The Sambamba runtime system pro-
vides speculation protection in the form of software transactional
memory (STM) using an adapted version of TinySTM by Felber et
al. [3]. If speculation is necessary, additional overhead is incurred
and taken into account by the ILP. The optimization goal is to min-
imize the critical path execution time for each PDG group node.

1 IBM Cplex: http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/

Parallel Section 1

%1 = hashElem(x) %2 = hashList(x->next)

return %1 + 31 * %2

x==0?

return 0

T F

πs

πe

Figure 2. The simplified ParCFG of hashList(): The highlighted
parallel section is entered via the πs; parallel execution is synchro-
nized at the corresponding πe node.

Due to space limitations, we cannot go into details of the ILP for-
mulation. Instead we refer the reader to our upcoming publications.

The need for runtime adaptive parallelization becomes particu-
larly apparent if speculation is involved, as the possible overhead
is large, in case misspeculation occurs too often. Unfortunately
the probability of misspeculation is inherently input dependent and
cannot be anticipated statically.

The local schedules, being compiled from the solution of the
ILP per group node, are persisted as candidates for refinement and
adaptive combination at runtime.

3.2 ParA: Runtime Component
The runtime component of ParA first reads the parallelization can-
didates found at compile time. These candidates are analyzed for
possibly called methods which in turn are profiled for collecting
their execution time. Taking the gathered information into account,
the most promising local candidates for parallel execution are se-
lected and combined. Parallel code is scheduled for the best com-
bination. The result is a so called parallel control flow graph (Par-
CFG): a control flow graph annotated with fork and join points that
mark the entrances and exits of parallel sections. Fork nodes are
called πs (π-Start) and join nodes πe (π-End). The ParCFG result-
ing from the parallelization of hashList() is shown in Figure 2.

Since execution times might change depending on input, sys-
tem load or parallelization, we keep profiling enabled for relevant
methods. Upon a significant change in the execution time of pro-
filed functions, scheduling decisions are reassessed and possibly
revoked.

This is particularly important if speculation is involved: parallel
sections that contain the source and target nodes of a speculatively
ignored dependence are guarded by an extended STM system. One
crucial extension that has been implemented in Sambamba is the
incorporation of a commit order between speculative transactions.
This commit order guarantees progress and allows to speculate on
the non-existence of non-memory side effects, such as for example
calls to printf, from within a speculative transaction. If such a call is
encountered during execution, the corresponding transaction waits
until all its commit predecessors are done; afterwards it verifies
that no conflict occured so far and proceeds. In that situation,
commit orders guarantee that the transaction will definitely be able
to commit and no rollback can occur. It is thus safe to execute the
externally observable function call.

The current speculation system of Sambamba comes in the form
of an extended STM system. It was designed for very specific use
cases and is not suitable for large transactions and recursive parallel
execution. Although it works in that cases, the introduced overhead
can by far exceed the benefit. To bridge the gap of a missing ef-

ficient speculation system where STM is inappropriate, we imple-
mented a set of pragmas allowing to give hints on where to spec-
ulate and where not. These pragmas are only a temporary solution
that allow to initialize the system to the state that is reached, once
adaptive code generation has learned from frequent misspeculation.
Note that these pragmas only affect the speculation system; paral-
lelization stays fully automatic. No hints are given to the system
on where to parallelize and where not. In Section 6.1 we shortly
explain how we will supersede these speculation hints.

In the current implementation, we keep only one parallel version
of each function in addition to the sequential version. This version
is continuously adapted to the situation at hand.

Gathered runtime and profiling information is persisted by the
Sambamba runtime system and needs not be recollected from
scratch upon program termination and reexecution.

4. Runtime Adaptive Dispatch
In our earlier work [15] we showed how brute force parallelization
of different methods can interfere, depending on the input. This
interference can lead to dramatically decreased performance of the
subject application; an effect that is effectively neutralized by the
current implementation of ParA.

As described in the previous section, ParA keeps up to two ver-
sions for each method at runtime: the original, sequential version,
and the currently best suited parallel version. If both versions exist,
it is up to a dynamic dispatch mechanism to decide which version
to choose upon a call to the corresponding function.

Based on our inspections of manually and observation of au-
tomatically parallelized code, we came up with four different
lightweight dispatch schemes:

• none: No explicit dispatcher is used. The parallel version is
always chosen if it exists. This dispatch scheme corresponds
to brute force spawning of parallel tasks.

• tif: The dispatcher takes into account the number of tasks in
flight. This is, the number of tasks that have been scheduled
for parallel execution but not yet finished, i.e. the number of
tasks waiting for execution plus the number of tasks currently
executing. This dispatcher chooses the sequential version of the
function if the number of tasks in flight is greater than four times
the number of processors of the current system. Otherwise, the
parallel version is chosen.

• tnd: This dispatch scheme takes into account the nesting depth
of parallel tasks. It is particularly well suited for dispatching
recursive functions like for example mergesort or a recursive
implementation of the fibonacci function. Once the system is
fully loaded, there is no use in further spawning parallel tasks.
The sequential version of a function is chosen, if the task nest-
ing depth exceeds the logarithm of the number of processors,
the parallel version otherwise. Taking the logarithm base two
favors parallel over sequential execution. If more than the mini-
mum of two tasks are spawned at each nesting level, the system
might already be fully loaded at a lower depth.

• load: The load dispatcher chooses the version to execute based
on the current system load. If Sambamba detects that foreign
tasks executed on the same system utilize a large amount of
the available computing resources, no further parallel tasks are
spawned. This dispatcher effectively prevents from oversub-
scription of the overall system.

Note that parallel code scheduling, as described in Section 3,
is orthogonal to the adaptive dispatcher. If suitable, ParA provides
the parallel version of a function independent of the chosen dis-
patcher. In the current implementation, a dispatch mechanism has
to be selected when registering a new version of a function. In later

incarnations, it will be up to the adaptive runtime system to au-
tomatically choose the dispatch mechanism that best fits the reg-
istered method. Our results corroborate the necessity to dispatch
differently depending on the subject function in order to maximize
performance.

5. Evaluation
In order to evaluate the success of Sambamba, ParA and the dif-
ferent adaptive dispatch schemes, we utilize the example suite of
cilk [1]. It contains differently sized programs (55 to 3,265 LOC),
annotated with spawn and sync primitives. All of the programs
are recursive and as such particularly well suited for exploiting
fork/join style parallelism as done by Sambamba. Moreover, par-
allelism scales with the number of used cores, provided the input
size is big enough. In this section we evaluate parallel execution in
Sambamba on systems with 4 and 8 cores respectively.

Three of the used cilk programs (fft, magic and plu) exploit
parallel execution of (partial) loop iterations, which is not currently
done automatically by ParA. Dealing with loop-independent and
loop-centric parallelization in a unified manner is subject to our
ongoing research.

Since the goal of the Sambamba project is to avoid the man-
ual task of identifying parallel chunks and annotating them accord-
ingly, we created the serial elision of each benchmark by stripping
all cilk annotations. At this point, we had to drop 5 of the programs,
since they are using so called cilk inlets, including early aborts, for
which the serial elision cannot be created easily. The serial elision
is then processed by Sambamba as described in Section 3.

In this evaluation, we want to assess several hypotheses. First,
as we use the cilk example suite, we know that parallelism exists in
the subject programs. Thus, we will compare Sambamba’s runtime
to sequential execution, and to cilk’s parallel execution.

HYPOTHESIS 1. Sambamba is able to detect and ex-
ploit substantial parallelism from parallelizable ap-
plications.

Second, we argued in Section 4, that brute force parallelization
is often not the best option. Therefore, we implemented different
dynamic dispatch schemes to dynamically choose between parallel
or sequential execution of a specific function.

HYPOTHESIS 2. Dynamic adaptation can improve
the performance over brute force parallelization.

In order to confirm our hypotheses, we report speedups of the
cilk programs for different adaptation schemes in Figure 3. In ad-
dition to the 13 cilk programs, we also report the runtime of the
linked list hashing program from Listing 1. All runtimes are nor-
malized to the sequential execution of the serial elision compiled
with sambamba. This sequential execution time includes starting
up the virtual machine, reading the bitcode of the application, and
generating machine code using just-in-time compilation. We certi-
fied that this runtime matches that of the standard lli tool. All pro-
grams were compiled and executed on a quad-core machine with
an Intel i7 processor at 2.67GHz.

The figure shows the speedup using our different dispatch
schemes as described in Section 4. We do not report runtime for the
load dispatcher, since no other processes were running on the eval-
uation machine. Thus the runtime was equivalent to brute force par-
allelization for all programs. For the numbers marked “adaptive”,
the dynamic profiler was enabled possibly triggering regeneration
of parallel schedules at runtime.

The runtime we considered is the wall-clock time of the full
execution, including initializing the Sambamba runtime system,
just-in-time compiling the application code, and all setup done by

Figure 3. Runtime of programs from the cilk suite processed by Sambamba.

the application itself. Some of the programs do output their runtime
themselves, but this would only incorporate the main processing
work, e.g. sorting a big array in the case of cilksort. Of course the
runtime improvement of this reported time is even bigger than the
one we report, but we found it more reasonable to also include all
setup work.

In the following we investigate whether our hypotheses can be
confirmed to hold.

5.1 Hypothesis 1
It is clearly visible that for the majority of the programs, Sambamba
is able to generate significant speedups. For 11 out of the 14 pro-
grams, the runtime of the parallelized program decreased signifi-
cantly in comparison to sequential execution. For two programs,
we even got above 4-fold speedup on the 4-core machine.

In addition to the runtimes reported in Figure 3, we also com-
pared against a version processed and compiled by Cilk. As Cilk re-
quires an old version of GCC (2.95), which was not readily compi-
lable on a modern 64 bit machine, we conducted these experiments
in a 32 bit environment on an eight core server. The evaluation on
that machine showed that for 5 out of the 14 programs, Sambamba
got better runtimes than Cilk. The geometric mean of the speedup
achieved by sambamba over the 14 programs was still below that of
cilk (1.83x compared to 2.46x). Speedups have been measured as
compared to optimized sequential binaries generated with the clang
compiler.

To summarize, however, Sambamba is able to extract a great
amount of the existing parallelism.

5.2 Hypothesis 2
In four test cases (fib, heat, matmul and rectmul), adaptive dis-
patch improved runtime significantly over brute force paralleliza-
tion. Only in one case (ll-hash), brute force was indeed the best
option for the chosen input. This is because in ll-hash, the paral-
lel tasks are not in balance: one tasks computes the hash for one
element of the list, the other task recursively processes the whole
rest of the list. In this case, obviously tnd dispatch is not appropri-
ate because it stops parallel execution after several recursion steps.
Tif dispatch will also execute some iterations in parallel, but once
enough tasks are in flight, it stops spawning new threads, and this
decision is kept for all recursive calls. So for the ll-hash case, both
dispatch mechanisms will not provide scalable parallelism.

Apart from this exception, adaptation never degrades the overall
performance, but in several cases it reduces the overall runtime or
eliminates large overheads of brute-force parallelization.

6. Conclusion and Ongoing Work
Our Sambamba framework is still in an early stage. We are contin-
uously working to make it a general platform enabling research on
adaptive program optimization, in particular parallelization. The ef-
forts described in this paper have been a first step into the direction
of runtime adaptive parallelization. In particular our current imple-
mentation addresses all of the three goals mentioned in Section 1:

1. ParA is able to make the program execution adapt to the
environment by taking into account profiled execution times,
the number of tasks in flight or the system load.

2. Sambamba enables continuous adaptation of the running ap-
plication by reacting to changing prerequisites like execution
times, retriggering a new round of adaptation.

3. And Sambamba allows to move parallelization related deci-
sions to the runtime. ParA uses gathered runtime information
to dynamically schedule the code version deemed most appro-
priate for the situation at hand.

However the existing solutions leave room for improvement;
in our ongoing work, we use this running system as a platform to
develop and assess in-depth solutions to our goals. In the following
we mention two of our most recent projects that will extend the
range of Sambamba and the ParA module to incorporate more
applications.

6.1 Efficient Speculation Support
Our own early studies [5] have shown that a tremendous amount of
parallelization potential is hidden in general purpose applications.
So far, no approach of automated parallelization has been able to
sufficiently grasp that potential. Based on our studies and supported
by other researchers we think that speculation support is necessary
to successfully parallelize existing sequential applications.

Sambamba already includes such a speculation system in the
form of software transactional memory. As the use of such a sys-
tem incurs a non negligible overhead, it is only profitable in very
limited cases. Also, to guide explorative adaptive parallelization,

we need the speculation system to not only tell if and how often
misspeculation occurs, but also where and why.

Developing a runtime efficient speculation system that is able
to give precise feedback to our adaptation mechanisms is our next
goal.

6.2 Generalized Automatic Adaptation
The adaptation approaches described in this paper, in particular the
dispatch mechanisms in Section 4, only implicitly take into account
the dispatched function. Values of arguments, or used global vari-
ables, are not considered.

In their work on a dynamic Java optimization framework, Sug-
anuma et al. [16] have shown that continuous adaptation at runtime
explicitly taking into account values of parameters and global vari-
ables can lead to performance improvements as compared to non-
adaptive compilation. However they only apply adaptation based on
replacing variables in the code by constants and propagating these.
Method versions generated this way are dispatched by choosing a
version corresponding to current parameter and global variable val-
ues. We think that the positive effect of adaptation is even higher in
the context of such a heavy optimization as parallelization.

We are implementing a generalized adaptation and dispatch
mechanism that employs machine learning to learn which version
to choose, depending on values of parameters and global variables
and the call site. This approach will allow for multiple versions
of functions to exist and being chosen from automatically. The
versions can be independently and continuously optimized, taking
into account the dispatch criteria for the corresponding version.

7. Acknowledgments
The work presented in this paper was performed in the context
of the Software-Cluster project EMERGENT2. It was funded by
the German Federal Ministry of Education and Research (BMBF)
under grant no. “01IC10S01”. The authors assume responsibility
for the content.

References
[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.

Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system.
In Proceedings of the fifth ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPOPP ’95, pages 207–216,
New York, NY, USA, 1995. ACM.

[2] K.-F. Faxen, K. Popov, L. Albertsson, and S. Janson. Embla - data
dependence profiling for parallel programming. In International Con-
ference on Complex, Intelligent and Software Intensive Systems, CISIS
’08, pages 780–785, 2008.

[3] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed
Systems, 21:1793–1807, 2010.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang.
Syst., 9(3):319–349, July 1987.

[5] C. Hammacher, K. Streit, S. Hack, and A. Zeller. Profiling java
programs for parallelism. In Proceedings of the 2009 ICSE Workshop
on Multicore Software Engineering, IWMSE ’09, pages 49–55. IEEE
Computer Society, 2009.

[6] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In Proceedings of the 20th annual
international symposium on computer architecture, ISCA ’93, pages
289–300, New York, NY, USA, 1993. ACM.

[7] C. Lattner and V. Adve. LLVM: a compilation framework for life-
long program analysis and transformation. In Code Generation and

2 www.software-cluster.org

Optimization, 2004. CGO 2004. International Symposium on, pages
75–86, 2004.

[8] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In
Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’07, pages 278–289, New
York, NY, USA, 2007. ACM.

[9] J. Mak and A. Mycroft. Critical-path-guided interactive parallelisa-
tion. In Proceedings of the 2011 40th International Conference on
Parallel Processing Workshops, ICPPW ’11, pages 427–436. IEEE
Computer Society, 2011.

[10] A. Raman, A. Zaks, J. W. Lee, and D. I. August. Parcae: a system for
flexible parallel execution. In Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and Implementation,
PLDI ’12, pages 133–144, New York, NY, USA, 2012. ACM.

[11] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August.
Parallel-stage decoupled software pipelining. In Proceedings of the
6th annual IEEE/ACM international symposium on Code generation
and optimization, CGO ’08, pages 114–123, New York, NY, USA,
2008. ACM.

[12] V. Sarkar. Automatic partitioning of a program dependence graph into
parallel tasks. IBM J. Res. Dev., 35(5-6):779–804, Sept. 1991.

[13] B. Steensgaard. Sequentializing program dependence graphs for irre-
ducible programs. Technical report, Microsoft Research, Oct. 1993.

[14] K. Streit, C. Hammacher, A. Zeller, and S. Hack. Sambamba: Frame-
work for adaptive program optimization. http://www.sambamba.
org.

[15] K. Streit, C. Hammacher, A. Zeller, and S. Hack. Sambamba: A run-
time system for online adaptive parallelization. In M. O’Boyle, editor,
Compiler Construction, volume 7210 of Lecture Notes in Computer
Science, pages 240–243. Springer Berlin Heidelberg, 2012.

[16] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani.
A dynamic optimization framework for a java just-in-time compiler.
In Proceedings of the 16th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOP-
SLA ’01, pages 180–195, New York, NY, USA, 2001. ACM.

[17] M. Wolfe. Doany: Not just another parallel loop. In U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Com-
pilers for Parallel Computing, volume 757 of Lecture Notes in Com-
puter Science, pages 421–433. Springer Berlin Heidelberg, 1993.

