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Abstract—Mutation testing was developed to measure the
adequacy of a test suite by seeding artificial bugs (mutations)
into a program, and checking whether the test suite detects
them. An undetected mutation either indicates a insufficiency
in the test suite and provides means for improvement, or it
is an equivalent mutation that cannot be detected because it
does not change the program’s semantics. Impact metrics—
that quantify the difference between a run of the original and
the mutated version of a program—are one way to detect non-
equivalent mutants. In this paper we present a genetic algorithm
that aims to produce a set of mutations that have a high impact,
are not detected by the test suite, and at the same time are well
spread all over the code. We believe that such a set is useful for
improving a test suite, as a high impact of a mutation implies
it caused a grave damage, which is not detected by the test
suite, and that the mutation is likely to be non-equivalent.

First results are promising: The number of undetected
mutants in a set of evolved mutants increases from 20 to over
70 percent, the average impact of these undetected mutants
grows at the same time by a factor of 5.
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I. INTRODUCTION

In software development huge costs could be avoided by
improving the testing infrastructure that allows detecting
software defects earlier and more efficiently [5]. Before
being able to improve the testing infrastructure, one has
to know its deficiencies. Mutation testing aims at detecting
such deficiencies. To this end, artificial defects, mutations,
are inserted into the program by using a set of mutation
operators. A mutation that is not detected by the test suite
gives a hint on how the test suite can be improved. However,
there are also equivalent mutants, which are mutations that
do not change the program’s semantics, and thus, cannot be
detected. These equivalent mutants impose a major draw-
back as they dilute the results of mutation testing.

In our previous work, we developed impact metrics that
help to detect non-equivalent mutants [8, 10]. We believe
that a set of undetected mutants that contains as few equiv-
alent mutants as possible and is well spread over the code
is most beneficial for improving a test suite, as it highlights
deficiencies of the test suite throughout the program.

To this end, we apply a genetic algorithm that aims to
produce such a set of mutants, which fulfills the following
three requirements. The mutations should (1) have a high
impact, (2) not be detected by the test suite, (3) and be well
spread over the code.

In this paper we make the following contributions:

• We present a genetic algorithm that produces mutations
with high impact, that are not detected, and well spread
over the code.

• We provide an implementation of our approach and
evaluate it on a medium sized project.

The rest of the paper is structured as follows: First we
comment on the background of our work (Section II). Then
we explain the details of the genetic algorithm (Section III),
and shortly comment on the implementation (Section IV).
In Section V we present an evaluation of our approach on
a medium sized Java project. After this we comment on
the threats to validity (Section V-D) and the related work
(Section VI). We close with conclusions and consequences
(Section VII).

II. BACKGROUND

A. Impact of Mutations

In our previous work, we introduced JAVALANCHE, a
mutation testing framework developed with a focus on
automation and efficiency [8, 9]. For JAVALANCHE, we
introduced several impact measures to detect non-equivalent
mutants, such as invariant impact [8], impact on return
values, and coverage impact [10]. The impact measures
compare properties of an original (not mutated) run with
properties of a mutated run. The coverage impact for ex-
ample is defined as the number of methods that have a
difference in their line coverage—that is at least one line
in the method is executed with a different frequency in the
mutated run than in the original run. A high impact of a
mutation implies that it caused severe damage across the
program execution. Tests that fail to detect such mutations
might have a bad oracle quality, because they provide input
to trigger this behavior but do not check the results well
enough.

Previous experiments [10] have shown that among all
the measures the coverage impact performed best—non-
equivalent mutations were detected with a precision of 75%
and a recall of 56%. Therefore, our approach tries to produce
a set of mutations with a maximized coverage impact as
these mutations are more likely to be non-equivalent, and
thus, more useful for improving a test suite.
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Figure 1. A simplified overview of the genetic algorithm

III. GENETIC ALGORITHM

Genetic algorithms are a particular class of evolutionary
algorithms that use techniques inspired by evolutionary
biology such as inheritance, elitism, mutation, selection,
and crossover. They are based on a probabilistic, meta-
heuristic approach to search. In our approach, we use a
genetic algorithm in order to produce mutations with a
higher average impact which are nonetheless not detected
by a test suite.

To this end, a pool of mutated versions of the original
program is created (Section III-A), from which a start
population is chosen. Then for every mutant its fitness is
computed (Section III-B). The fittest mutants are chosen
for the elitism set (Section III-D), which gives the best
individuals unchanged to the next generation, while the other
part of the mutants is found via heuristic-based selection.
Some of the selected mutants then perform a crossover
(Section III-E) where they exchange certain properties. All
the selected and crossed individuals can undergo mutation
(Section III-F), where some of their properties are changed
randomly. The mutants of the elitism set and the mutated
mutants are combined into one set that forms the origin of
the next generation. The final output of the algorithm is
a set of mostly undetected mutations, with a high unique
impact (see Section III-B). Figure 1 gives an overview of
the algorithm, and the following sections describe the steps
in more detail.

A. Setup

Each mutant forms an individual of the genetic algorithm,
consisting of three genes: The location of the mutation
(meaning the class where it is applied), the mutation oper-
ator itself and an optional integer parameter (to determine

either the arithmetic operator or the constant to be used in
the mutation).

Before the algorithm itself starts, a pool of mutants
of the original program is generated (cf. Figure 2). To
achieve a sufficient number of mutants, two of the original
JAVALANCHE mutation operators, the “Replace numerical
constant” and the “Replace arithmetic operator” mutation
operators were expanded by introducing a parameter that can
take different values. From this pool, the start population of
the algorithm is drawn randomly.

Original Program Mutated Programs Extension of 
Constants and Operators

Randomly Drawn 
Pool of Mutants

Figure 2. Initialization of the mutant pool

B. Fitness Function

The fitness function is constructed with the aim of
reaching a maximum impact of those mutants that remain
undetected. At the same time it should focus on an equal
distribution of the mutations over the whole program to
avoid accumulation of mutations. Using the coverage impact
alone is not sufficient, as there might be parts in the program
where a high impact can be reached for many mutations,
whereas in other parts only a few mutations cause merely
slight changes at all.

Therefore, we define the unique impact, which offers at
the same time a way of taking into account the influence
of other mutations of the same generation, so that different
mutations that are causing (partly) the same changes in the
program execution have to share their impact. Mutations
that are detected shall not be allowed to reproduce, and
so, disregarding their unique impact, they are assigned zero
fitness.

The unique impact for each mutation of a generation can
be computed as follows: Collect the code coverage for all
individuals of the generation. Now, for every method that
was changed by at least one mutation, count the number of
mutations that change it. For a method m this value is given
by the function c(m). The unique impact i of a mutation M
is now:

i(M) =
∑
{ 1

c(m) | m is changed by M}.

The complete fitness function reads:

f(M) =

{
i(M) if M is not detected
0 if M is detected
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Figure 3. An example of mutants with impact on different methods

Figure 3 shows a small example of three mutants, where
each mutant changes some of the methods A, B, C, D and E.
When we compute the value mi for each method, we get:
c(A) = 2, c(B) = 1, c(C) = 1, c(D) = 2, c(E) = 3 .
The unique fitness for mutant 1 is 1

2 + 1 + 1
2 + 1

3 = 7
3 ≈

2.33, for mutant 2: 1
2 + 1

3 = 5
6 ≈ 0.83 and for mutant 3:

1
2 + 1 + 1

3 = 11
6 ≈ 1.83.

Obviously, mutant 1 has the highest unique fitness, as it
has impact on more methods than the other mutants and is
the only one to change method B, whereas mutant 2 is the
least fittest as it only affects two methods, which are both
already affected by other mutants.

C. Evolving the Next Generation

A single step in the algorithm proceeds as follows: First,
every individual of the generation is evaluated using the
fitness function as given above. Then, consecutively, the
mutants that build the next generation are selected and
evolved in several steps, at which we are going to look more
closely in the following sections.

D. Elitism and Selection

The elitism rate determines the amount of mutations of a
population which is given unchanged to the next generation
in percent. The mutations with the highest quality according
to the fitness function are passed on. Afterwards, the indi-
viduals that are going to be the “parents” of the rest of the
next generation, are chosen. They are selected by using a so
called roulette wheel selection [4].

E. Crossover

The crossover allows the mutations to exchange some
of their properties. Each individual that was selected by
the roulette wheel for the new population, will participate
in the crossover with a given probability. These selected
individuals are then arranged in pairs. For each pair of
coupled individuals, the two “parent” individuals are split
at a random position, and replaced by their “children”, a
recombination of the split individuals as can be seen in
Figure 4.

Not in all of the cases in which a crossover takes place, a
mutant that is applicable to the code is created. Those invalid
mutants have of course to be discarded; in such a case, no
crossover takes place and the original mutants are fed once
more into the algorithm.

Class1 Operator1 Parameter1

Class2 Operator2 Parameter2

Class1 Operator2 Parameter2

Class2 Operator1 Parameter1

Figure 4. An example of two mutants performing a crossover

F. Mutation

The last step is the mutation phase. Its main function is
to provide each generation with some new genetic material
that has not been used before, so that the evolution of the
population is not forced into one direction only.

A fixed probability is used to select the individuals that
undergo a genetic mutation from the selected and then
crossed-over set. Only those individuals that were not chosen
to be handed over unchanged are considered. When a mutant
is selected for genetic mutation, either its line number or
parameter is mutated. Line numbers are replaced with a
feasible line number from the near environment (i.e. a
mutation of the same type within a range of ± 5 lines),
and parameters are replaced with a random value.

During the selection, crossover and mutation phase, some
mutants may be drawn or produced multiple times. This,
however, stands against our aim of an equal distribution of
mutations regarding their location over the program code,
and therefore all mutations that occur more than once in the
newly created generation are removed (i.e. only one copy of
the mutation is kept) and replaced with new mutants from the
initially generated pool. This has the side-effect of bringing
more new genetic material to the algorithm and so widening
its search area.

G. Termination and Output

The algorithm stops after an initially fixed number of
steps. An alternative would have been to depend the ter-
mination of the algorithm on the quality of a generation,
but as it is not sure if a population ever reaches this limit
we dropped this possibility. The output of the algorithm is
a ranking of the mutants of the last generation produced,
giving the undetected mutants with the highest impact first
to the user.

IV. IMPLEMENTATION

The evolutionary algorithm was directly included as a
package into the JAVALANCHE source code. The main part
consists of two steps: Step 1 creates the start population
(pool) of the algorithm; Step 2 evaluates each generation



and creates the next one. To create the initial pool, mutants
are drawn randomly from the JAVALANCHE mutant database
and then extended by giving an additional parameter to them.
For reasons of efficiency, in each step of the algorithm, only
the non-elitism mutants are run to compute their traces. This
is sufficient for computing the impact of each mutant as the
traces of the mutants that remain unchanged due to elitism
stay the same as in the step before. The tracing itself is done
with the built-in coverage tool of JAVALANCHE.

V. EVALUATION

For the evaluation of our approach, we were interested in
the following questions:

• Does our genetic algorithm help to produce a set of
mutations that have a high unique impact and are not
detected?

• How does the choice of parameters affect the results?
• How do the results compare to the results of regular

mutation testing?
To answer these questions, we applied our genetic algorithm
approach to JAXEN, an open source XPath Engine. JAXEN
is a medium sized project of about 12.000 lines of source
code that comes with a JUnit tests suite which consists of
690 test cases.

In order to answer our first question, we look at the
average unique impact, the average impact and the number
of undetected mutations for applying our approach using the
default parameters of our algorithm (see Section V-A). The
effects of varying some of the parameters are investigated
in Section V-B. Finally in Section V-C, we compare our ap-
proach against the output of an original run of JAVALANCHE
that measures the coverage impact for all mutations.

A. Evolution of a Population

This section explores the evolution of a population, look-
ing at how the impact, fitness and number of undetected
mutants, developed while running the algorithm. For the
experiments we used the default values of the algorithm
which are: An elitism rate of 0.7, a crossover rate of 0.5, a
mutation rate of 0.2, and a population size of 100 (which
we believe is a convenient output size for the user).
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Figure 5. Run of the genetic algorithm with an elitism rate of 0.7, a
mutation rate of 0.2, crossover rate of 1 and population size of 100

The results for this experiment are shown in Figure 5. The
x-Axis give the number of steps in the genetic algorithm and
the y-axis gives a scale for the different values. The average
impact of a population, shown as a grey line, does not
increase much while running the algorithm, on the average
from 190 to 210, which is at the most 10 to 20 percent.
This is due to the fact that detected mutants, which are
still contained in the population, have an on average higher
impact than undetected mutants. Nevertheless, the quality
of the undetected mutants increases a lot: The average
impact of the undetected mutants grows from 34.8 to 179,
the highest-ranked mutants in the start populations have
an impact of approximately 55, after 30 steps the highest-
ranked mutants the highest impact reached for an undetected
mutant is 650. The number of undetected mutants evolved
from a pool of 100 mutants increases from 16 in the original
pool to 72, that is three quarters of the whole pool, in about
4 steps. In general we can observe that in the first few steps
the algorithm performs very well, but after that no significant
improvements are made.

The genetic algorithm produces a set of mutations that
consist of mostly undetected mutations that have a high

impact and are well spread throughout the program.

B. Algorithm Parameters

This section explores the effects the single parameters
have on the results of running the genetic algorithm.

1) Elitism Rate: The elitism rate determines the amount
of mutations of a population which is given unchanged to
the next generation in percent. These mutations are chosen
by their quality, such that the most valuable mutants, i.e.
those with the highest fitness, are passed on.
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Figure 6. Elitism 0.2

For our experiments we tried values from 0.2 (Figure 6)
to 0.7 (Figure 5) with clear results. When we compare the
results we can see that with the elitism rate also the average
impact, the average unique impact, and the number of
undetected mutants increases. Thus, it can be followed that
a higher elitism rate leads to better mutants in a generation,
regarding both impact and undetectability.

2) Crossover Rate: When performing a crossover, two
mutants can exchange certain properties in order to cre-
ate new genetic material. For our experiments we applied



Table I
RESULTS FOR A RANDOMLY DRAWN SET OF MUTANTS FROM JAVALANCHE AND A POPULATION BEFORE AND AFTER 30 STEPS OF EVOLUTION,

BOTH OF SIZE 100

JAVALANCHE Start Pool Genetic Algorithm

Average Impact 308 180 210
Average Impact of undetected Mutants 4.78 34.8 179
Impact of Best undetected Mutant 158 158 650
Percentage of undetected Mutants 9 16 72
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(a) Crossover rate 1
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(b) Crossover rate 0.5

Figure 7. Comparison of the crossover rates 1 and 0.5

crossover to the non-elitism mutants with a probability of
either 100 or 50 percent.

As Figure 7 shows, there is no significant difference for
the different crossover rates. Crossing mutants less often
might preserve, similar to elitism, already good mutants
instead of manipulating them. Nevertheless, crossover is
necessary to find new, not yet used mutations for the next
generation.

3) Mutation Rate: The main function of mutation is to
provide each generation with some new genetic material
that has not been used before, so that the evolution of the
population is not forced into one direction only. Similar to
the change of the crossover rate, changing the mutation rate
does not change the results visibly. A higher mutation rate
nevertheless decreases the number of double mutations that
have to be replaced after each step in the algorithm and
therefore is still useful.

C. Comparison with JAVALANCHE

This section compares the final results of the algo-
rithm presented in the section before with the output of
JAVALANCHE.

Table I gives the result for all mutants produced by
JAVALANCHE (column 2), a randomly chosen set of muta-

tions from of mutant start pool drawn for running the genetic
algorithm (column 3), and the results after 30 steps of the
algorithm (column 4).

The average impact of all JAVALANCHE mutations is
308 which is higher than the average impact of the start
population (180) and of the population that has been evolved
for 30 steps (210). This can be explained by the fact that
on average, undetected mutants have a lower impact than
detected ones. However, this is not true for the average
impact of the undetected mutants: The undetected mutants
generated by the genetic algorithm have an average impact
of 179, whereas for JAVALANCHE this value is 4.78. Already
the use of a diversified set of mutation operators as in the
case of the pool has significant effects: The average impact
of the mutations from the pool lay at about 34.8.

A population after an evolution of 30 steps contains up to
72 % undetected mutants, that is nearly three quarters of the
population. On the contrary, the output set of JAVALANCHE
contains only 10 % of undetected mutants.

When comparing the quality of the best mutants of a ran-
domly drawn output set of JAVALANCHE and a population
evolved for 30 steps, the differences are huge: The by far
best mutation of the first set has an impact of 158, whereas
the result set of the algorithm contains two mutants with an
impact of 650 each.

The genetic algorithm produces a set with more
undetected mutants which have a higher impact

than drawing a random set from the regular output of
JAVALANCHE.

D. Threats to Validity
There are several possible threats to the validity of this

work. Those are:
• Threats to external validity concern the generalization

of the results. As the method was only examined on
one project, JAXEN, generalization of the results can
not be claimed.

• Threats to internal validity may be caused by the rela-
tively small number of mutants and mutation operators
available. The algorithm was run with a total number
of 6550 mutants made available by JAVALANCHE and
4 different mutation operators. This limitation might
hinder a broader evolution of the mutants.

• Threats to construct validity concern the appropriate-
ness of the measures used. The definition of the fitness



function was based on the assumption that the most
valuable and desirable properties of a mutant are its
undetectability and a high impact. This may be a false
assumption, and might create a bias towards a specific
type of mutations.

VI. RELATED WORK

The idea of using genetic algorithms to evolve mutations
was also introduced in the following works: Adamopoulos
et al. [1] introduced the idea of co-evolving a set of mutants
and a set of test cases. Their aim was to show how selec-
tive mutation testing could be achieved without selecting
mutation operators beforehand, but instead using genetic
algorithms to evolve mutants and test cases to fit each
other in a way that avoids generation of equivalent mutants.
However, they only presented results of simulations of
genetic algorithm runs, which, however, seemed promising.
In our approach, also a genetic algorithm is used to evolve
generations of mutants, but instead of avoiding equivalent
mutants, the algorithm aims at producing undetected mutants
with an impact as high as possible.

In their work on Higher Order Mutation Testing (HOM
Testing), which combines two or more first order mutants
in order to produce more subtle fault combinations, Jia
and Harman [3] use a genetic algorithm to find subsuming
HOMs—that are HOM for which tests that detect this HOM
also detect all the first order mutations that it consists of.

Other works aim at making mutation testing more efficient
or avoiding the generation of equivalent mutants. Weak
Mutation Testing as proposed by Howden [2] is an approach
to increase the efficiency of mutation testing by looking
at differences in the results of components rather than the
output of the program. Offutt and Pan [6, 7] show that de-
tecting equivalent mutants is an instance of the feasible path
problem and presented an algorithm based on mathematical
constraints for automatically detecting equivalent mutants.

The impact metrics and the JAVALANCHE framework that
our approach is based on was presented in earlier papers [9,
8, 10]

VII. CONCLUSIONS AND CONSEQUENCES

In this paper, we presented a genetic algorithm that aims
to produce a set of mutations that is undetected, has a high
impact and is well spread over the code. In our evaluation,
we showed that applying the genetic algorithm improves
from 20 to over 70 percent of undetected mutants in the
output set, at which the average impact of the undetected
mutants increases by a factor of 5. However, our evaluation
also showed that these improvements are made in the first
steps of the algorithm and in later steps the results do not
improve anymore, and different crossover and mutation rates
do not change the results visibly. This indicates a potential
for improving the genetic algorithm. In contrast to treating
single mutations as individuals of the genetic algorithm, we

plan to use sets of mutations for evolution in the algorithm
(similar to the approach of Adamopoulos et al. [1]). The
algorithm runs on several sets of mutations with the aim of
finding an optimal set of mutations that are the most useful
ones for the programmer. Similar to the present approach,
the fitness of the sets is based on the sum of the impact
of the single mutations in the set. Crossover allows the
exchange of mutations between two sets, while mutation
removes mutants from the set or adds new ones, and also
allows manipulation of single mutations in a set.

Besides improvements to the genetic algorithm, we also
plan to apply our approach to multiple other projects, in
order to get more representative results whether genetic
algorithms can help in improving the results from mutation
testing. Furthermore, we plan to investigate the runtime im-
provements compared to applying all mutants exhaustively
more detailed, which is missing in this paper.
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