
Mining Behavior Models from Enterprise Web Applications

Matthias Schur

SAP AG

Darmstadt, Germany

matthias.schur@sap.com

Andreas Roth

SAP AG

Karlsruhe, Germany

andreas.roth@sap.com

Andreas Zeller

Saarland University

Saarbrücken, Germany

zeller@cs.uni-saarland.de

ABSTRACT
Today’s enterprise web applications demand very high release
cycles—and consequently, frequent tests. Automating these
tests typically requires a behavior model: A description of
the states the application can be in, the transitions between
these states, and the expected results. Furthermore one
needs scripts to make the abstract actions (transitions) in
the model executable. As specifying such behavior models
and writing the necessary scripts manually is a hard task, a
possible alternative could be to extract them from existing
applications. However, mining such models can be a chal-
lenge, in particular because one needs to know when two
states are equivalent, as well as how to reach that state. We
present ProCrawl (Process Crawler), a generic approach
to mine behavior models from (multi-user) enterprise web
applications. ProCrawl observes the behavior of the applica-
tion through its user interface, generates and executes tests
to explore unobserved behavior. In our evaluation of three
non-trivial web applications (an open-source shop system, an
SAP product compliance application, and an open-source con-
ference manager), ProCrawl produces models that precisely
abstract application behavior and which can be directly used
for e↵ective model-based regression testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools, tracing; D.2.7 [Software Engineering]: Dis-
tribution, Maintenance, and Enhancement—Documentation;
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation

General Terms
Algorithms, Design, Experimentation

Keywords
Specification mining; dynamic analysis; model-based testing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia

Copyright 13 ACM 978-1-4503-2237-9/13/08 ...$15.00.

1. INTRODUCTION
Today’s enterprise web applications1 are characterized by

a high frequency of updates. To prevent such updates from
breaking functionality, one has to test—and frequent updates
call for frequent tests. Automating such tests requires a
model describing the possible and the expected application
behavior. However, typically web applications come without
explicit models, which implies mostly manual and thus less
e�cient testing—but also slows down understanding and
maintenance of the application.
The field of specification mining aims to facilitate these

activities by mining abstractions from programs and their
executions—typically, models of the program’s behavior. If
these models are precise enough, they can even be used as
post-facto specifications of the program. Specification mining
has been used to successfully derive axiomatic specifications
such as function and data invariants from programs [8], or
finite state automata describing states and transitions for
individual classes [4, 6]. For such small-scale domains, it
is fairly easy to validate specifications, because both pro-
gram code and program state are accessible and amenable
to symbolic reasoning and exhaustive testing.

For enterprise applications, extracting models that describe
their possible behavior is much more di�cult. Program code
and program state, for instance, may not be available for
analysis, as the application may be distributed across several
layers and sites. In general, the only assumption that can be
made is that there is some user interface (UI) such as a web
interface that allows for human interaction.
In this paper, we present ProCrawl, a fully automatic

tool that mines explicit behavior models of enterprise web
applications for the sake of system testing and maintenance.
All ProCrawl requires is the URL of a web application2, lo-
gin credentials for its users, a scope definition (i.e. the parts
of the web application to be observed) and a start event.
The resulting behavior model is a finite state automaton
(FSA) in which the nodes denote abstract individual states
of the web application, numbered in the order they were de-
tected by ProCrawl, whereas the transitions denote actions
that change the state and are performed by users acting in
di↵erent roles. This model may serve as a “gold standard”
oracle [3] detecting regressions which eliminate behavior from
one revision of the application to the other.

1Enterprise systems are about “display, manipulation, and storage
of data and the support or automation of business processes with
that data” [10]
2ProCrawl handles rich Web 2.0 applications, including dynamic
technologies such as AJAX.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia

ACM 978-1-4503-2237-9/13/08

http://dx.doi.org/10.1145/2491411.2491426

422

Figure 2: The ProCrawl behavior model for OpenConf , detailing the peer-review process involving authors,
reviewers, and chairs. The model is unaltered ProCrawl output; only the graph layout was manually adjusted.

Figure 1: The OpenConf conference manager.

As an example, Figure 1 shows the reviewer’s page of
OpenConf3, a web-based conference management system.
Using OpenConf, authors can submit papers which are then
reviewed by peers and finally rejected or accepted (a process
we assume is familiar to most readers of this paper). Using
a login script for an author, a reviewer and a chair each,
ProCrawl infers the life cycle of a submission (cf. Figure 2):
After the author makes a submission, the state of the submit-
ted paper is pending (State 2). The chair can accept (State 9)
or reject (State 10) the paper, before assigning a reviewer.
For each of the three unassigned states there is a correspond-
ing state after the assignment of a reviewer (State 3, 4, 5)
and after the reviewer submitted the review (State 7, 6, 8).
At all times, the chair can revoke an earlier decision or assign
a new reviewer. However, after assigning reviewers, there
is no way back to the unassigned state (2, 9, 10). In order
to completely explore the behavior in the unassigned state,
ProCrawl requires a command to reset OpenConf to State 1.

To extract such a model, ProCrawl observes the behavior
of the web application via the UI. From its observations,
ProCrawl infers state abstractions allowing it to determine
whether a newly detected state is similar to a known one
(which implies a cycle in the model) or whether it is not (in
which case it generates and executes test cases to explore the

3http://www.openconf.com

yet unobserved behavior). This state abstraction is crucial for
the e↵ectiveness of ProCrawl: While e�cient web crawling
tools have been presented before, they do not make their
underlying model explicit [5], or detect inappropriate process
states [13], because they take only a single user and view of
the web UI as basis for state abstraction.
To cater for the specific requirements of enterprise appli-

cations, ProCrawl can handle multiple users, even simul-
taneously (which is crucial for modeling the interaction of,
say, vendors and clients); it assumes that each such user
comes with an init script for logging into the system. For
guiding the mining procedure, the mining scope, i.e. the
views of the SUT’s UI that shall be observed, as well as a
start action (e.g. Make Submission) have to be configured.
For some applications additionally, a command for resetting
the application’s state has to be provided; otherwise, in our
example, ProCrawl could not return to states before paper
assignments were made.

After discussing the requirements for analyzing and testing
enterprise web applications (Section 2), we make the following
contributions:

1. To the best of our knowledge, ProCrawl is the first tool
to extract abstract behavior models from multi-user web
applications. Section 3 discusses how ProCrawl works,
and Section 4 gives details on the implementation.

2. In our evaluation of ProCrawl on three enterprise
systems (an SAP web application, the OXID eShop, and
the OpenConf conference manager), behavior models
as mined by ProCrawl precisely capture the essentials
of the underlying process. Section 5 introduces the case
studies and Section 6 reports the results.

3. The resulting behavior models can be used directly as
input to model-based testing. In Section 7, we show how
automated tests following the mined behavior models
detect disruptive process changes.

After discussing threats to validity (Section 8) and the
related work (Section 9), Section 10 closes with conclusion
and future work.

423

Figure 3: How ProCrawl works. ProCrawl takes a configuration (a) describing individual actors and their initial
data, e.g. logins. It then triggers the start event (here: submit) in the web application (b) and determines the
application state. This leads to an initial behavior model (c), consisting of the start event and the observed
states. ProCrawl then systematically and automatically generates further executions (d) to explore additional
states and transitions. The result is an enriched behavior model (e) obtained from the web application.

2. ENTERPRISE APPLICATION TESTING
Enterprise web applications support business processes

centered around data stored in a back end which is manip-
ulated when executing these business processes. As typical
business processes involve multiple interacting roles (such
as a seller and a vendor, or an author, a reviewer, and a
conference chair), the central data is collaboratively edited
through clients. These clients may have varying functionality
depending on the user role and typically consist of several
UI views, separating the functionality of the application. In
state-of-the-art architectures the back end is accessed by
browser-based clients. An illustrative example is OpenConf,
while more business-oriented ones are presented in Section 5.

To manage complexity, the testing of enterprise web ap-
plications usually takes place on several layers [20]: Unit
tests ensure that software units are functionality correct in
isolation with the goal of high code coverage, while service
and integration tests ensure the fulfillment of contractual
obligations of a service/component and correct communica-
tion between coupled services/components. In this paper, we
are focusing on the top most level in this hierarchy where the
system undergoes a cross module system test, replaying the
business processes that the application shall support. Note
that on this level we are not concerned with fully covering
the source code through the tests but rather in successfully
executing all required business processes from an end-user
perspective, i.e. testing through the UI with multiple users
acting in di↵erent roles. In case of a system which integrates
many services/components, this has the advantage that ac-
cess to the source code is not required. However it is a valid
assumption that we can at least reset the system state to
the initial one, e.g. by resetting the application’s database.
The release frequency in today’s industrial practice of

engineering enterprise applications (especially of applications
deployed “in the cloud”) is usually very high. Therefore
regression testing [15] which ensures that functionality is
preserved from one revision to the other on the system level
needs to be highly e�cient and automated.
With the aim of such increased test automation, Model-

based Testing (MBT) [18] has expanded the automation of
software testing towards the test design phase: behavior mod-
els can be used to derive a test suite which is then executed

through a test automation framework. Today, industrial ap-
plication has shown positive e↵ects of MBT on development
productivity (e.g. [11]), however the wide-scale adoption
su↵ers from the absence of explicit models for testing and
maintenance. Especially for regression testing, automati-
cally mining such models reflecting the actual behavior of a
running enterprise system (“gold standard” [3]) would be a
significant step in pushing test automation even further.
Overall speaking, such models need to cover as much

required behavior from the informal documentation, user
stories, etc. as possible, but not more (precision and recall,
see Section 5). Moreover they should be correct w.r.t. the
application implementation, i.e. MBT test generators should
transform them into reproducible program executions. These
executions should ideally only lead to failures if paths through
the business process implemented in the predecessor version
are no longer possible. We will revisit these high-level goals
in Sections 5 to 7.
Technically, these considerations lead to a number of es-

sential requirements a model needs to satisfy to serve as
reasonable input for model-based regression testing of enter-
prise web applications:

• First, models need to provide an appropriate abstraction
of the back-end state, reflecting the fact that both the
user interaction and the data stored in the back end
determine the application behavior.

• Second, business processes typically span across multi-
ple users in di↵erent roles. Hence, the state abstraction
in the test model must take into account the combi-
nation of states from multiple user sessions. Moreover
tests which cut across all implemented processes are not
maintainable and thus need to be modularized, i.e. split
in one test model per business process.

• Third, though UI tests are the perfect means to test
user-level requirements, they are volatile as the UI
changes frequently. To prevent the models from becom-
ing obsolete in case of UI changes, they should only
include business logic actions, i.e. actions for navigat-
ing between UI views should not lead to a new state in
the behavior model, and be separated in scripts making
the abstract actions in the model executable.

424

3. MODEL INFERENCE
ProCrawl highly automatically infers behavior models

with appropriate state abstraction covering multi-user pro-
cess scenarios. The process facilitated by ProCrawl is de-
tailed as follows. First, almost completely automatically,
ProCrawl generates a behavior model, by systematically
crawling the SUT. This technique is described in Section 3.1.
The quality of the inferred behavior models strongly depends
on the applied abstraction mechanisms, which are described
in Section 3.2. Second, a test engineer may complement
the inferred model with additional properties. Based on
these models and the UI scripts generated by ProCrawl,
acceptance tests can be derived and automatically executed
(cf. Section 7), to check whether scenarios across multiple
users with di↵erent roles can be reproduced on a modified
version of the SUT and lead to the expected result.

3.1 Experimental Behavior Model Mining
ProCrawl is an experimental program analysis tool, i.e.

it ”generates findings from multiple executions of the pro-
gram, where the executions are controlled by the tool” [23].
To handle business processes involving multiple interacting
roles, ProCrawl simulates multiple users (actors) operating
the SUT via a web browser. Actors are configured with a
login script to initialize a user session. During the crawling
procedure, ProCrawl uses a separate web browser4 for each
actor. Figure 3 illustrates an example run of ProCrawl on
the conference management system introduced in Section 1.
a) ProCrawl is configured with

– a set of actors operating the SUT via its web UI,
– a mining scope for each actor, i.e. a set of scripts (usu-

ally simply URLs) for navigating to the UI views to be
considered for state abstraction,

– a UI script for triggering the start event (here: submit),
– optionally, a selector for UI elements to be considered

for state abstraction (cf. Section 3.2), and
– a command for resetting the state of the SUT.

b) ProCrawl runs the start script and determines the state
of the SUT by abstracting over the active UI elements.

c) An initial model with the observed behavior is generated.
d) The model is refined in an iterative process of state obser-

vation, modeling and testing: Test : ProCrawl generates
executable scripts from the behavior model and executes
them on the SUT to explore as yet unobserved behav-
ior. Observe: ProCrawl determines the state of the SUT.
Model : The model is refined based on the observations.

e) The enriched model is stored as a finite state automaton
(cf. Figure 2), i.e. a directed multigraph with properties
annotated to nodes and edges, and can be directly used
as a specification for model-based testing (cf. Section 7).
Nodes in the graph represent the states of the SUT as
observed by ProCrawl through the SUT’s web UI; edges
represent a sequence of UI events triggered by ProCrawl

with one of the configured actors.

3.2 State and Event Abstraction
As discussed in Section 2, enterprise web applications sepa-

rate functionality in di↵erent views, which can be accessed by
triggering navigational events on the UI. To extract a model
describing the business logic of the SUT that is exposed via
the UI, ProCrawl abstracts over the active UI elements to

4The number and type of browsers can be configured.

identify similar states and excludes navigational events from
the behavior model. Without abstraction every single change
in the UI presentation would lead to a distinct state.

State Abstraction. The idea behind the state abstrac-
tion mechanism applied by ProCrawl is that the current
state of the SUT is reflected by the UI, where each actor/view
relation exposes a specific part of the application state. There-
fore ProCrawl distinguishes di↵erent states of the SUT using
an abstraction function over the state of the Document Object
Models (DOMs) of these actor/view relations. This allows
ProCrawl to determine the application state without requir-
ing access to the SUT’s source code. The set of views (mining
scope) is configured for each actor. ProCrawl automatically
navigates to the respective views with all actors in parallel,
extracts the DOMs and computes the state by applying filters
on this set of DOMs. In its default configuration ProCrawl

abstracts over all interactive HTML elements (visible hyper-
links and buttons) extracted from the DOMs. However, the
type of HTML elements to be considered for state abstraction
can be configured by providing XPath expressions such as
//*[@class=’ActionButton’] or selectors for text with certain
keywords such as Text(’status:*’).

Event Abstraction. ProCrawl classifies events that do
not change the observed state of the SUT (self-loops in the
FSA) as navigational. Navigational events are specific to
the SUT’s UI and therefore volatile throughout the appli-
cation lifecycle. Furthermore, the usually high number of
navigational events clutters the behavior model, masks the
e↵ective business logic, and makes the models likely to break
in case of UI changes. However, since process scenarios typ-
ically span several views, ProCrawl may need to execute
navigational events in order to activate an HTML element
triggering a functional event. So the derivation of a sin-
gle step in the process scenario may require the execution
of (several) navigational events plus one functional event.
ProCrawl addresses this issue by introducing two layers of
abstraction: a model layer which is independent of naviga-
tional events, and automatically executable UI scripts in Java
as a second layer, binding navigational to functional events.
In this way, if the UI of the SUT changes, it is su�cient to
adapt the navigational events in the generated scripts only;
the model itself remains untouched.

3.3 Steering the Crawling Procedure
By computing the di↵ between the set of active UI elements

before and after triggering an event, ProCrawl is able to
determine the causal dependencies between events, such as
triggering the Make Submission event on the Submission view
of the author actor activates the Assign event on the Assign

Reviewers view for the conference chair. ProCrawl only
triggers events that have a causal relationship to the start
event defined in the configuration. Consequently the behavior
models only contain events that are part of a causal chain as
it is common in business processes; resulting in modularized
behavior models that are easier to understand and maintain.

4. IMPLEMENTATION
ProCrawl is implemented in Java SE 7, using Selenium5

for web browser automation. The tool provides an extension
mechanism based on the observer pattern; observers can
register to certain events, such as before or after clicking an

5http://seleniumhq.org

425

HTML element. Test oracles [15] that shall be called during
the crawling procedure are implemented as observers.
Algorithm 1 shows the initialization of the crawling pro-

cedure for inferring the behavior model. First, the initial
state s0 of the SUT is retrieved (Line 1). As described before,
a state has a set of pending events which are triggered by
ProCrawl through the SUT’s UI in that state; for the initial
state s0 the set of pending events is set to the start event
defined in the crawl configuration (Line 2). Furthermore, we
maintain a set of pending states Sp, which have still to be
explored; this set is initialized with s0 (Line 3). An empty
FSA is created with s0 as initial state (Lines 4). Finally, the
crawling procedure is called with s0 and the FSA (Line 5),
which is then iteratively built up over the set of states.

Algorithm 1: init

Data: set of actors A, set of pending states Sp, config
Output: FSA

1 s0 retrieveState();
2 s0.pending {config.startEvent};
3 Sp {s0};
4 FSA new FiniteStateAutomaton(s0);
5 return crawl(s0, FSA);

The state of the SUT is retrieved as shown in Algorithm 2.
For each actor, the DOMs of the views defined in the actor
configuration are retrieved, by navigating to the view and
inspecting the resulting HTML code (Line 4). After removing
deactivated and invisible HTML elements from the DOM
(Line 5), interactive HTML elements are extracted and added
to the state’s multiset of events (Line 6). Two states are
considered as equal, i↵ the set of distinct elements in the
multiset of events is equal. For each distinct event, a UI script
is generated (Line 9) that triggers the event by navigating
to the respective view with the respective actor and clicking
the HTML element associated with the event.

Algorithm 2: retrieveState

Data: set of actors A
Output: current state s of the SUT

1 s new State();
2 foreach actor 2 A do
3 foreach view 2 actor.config.scope do
4 dom actor.retrieveDom(view);
5 df filter(dom);
6 s.events s.events [events(actor, view, df);
7 end
8 end
9 generateScripts(s.events);
10 return s;

Algorithm 3 shows the crawl procedure recursively building
up the behavior model. In each recursion the current state
of the SUT s0 is checked for pending events. If the set is not
empty, an event is removed (Lines 2–3) and the UI script
associated with the event is executed (Line 4). After the
script execution, the current state s1 of the SUT is retrieved
and the set of pending events, i.e. the events activated by
the executed script, is computed as the relative complement
of the multiset of events in s1 with respect to the events in
s0 (Lines 5–6). If not already present, the current state s1

is added to the set of pending states Sp and FSA nodes; an
edge from s0 to s1, labeled with the triggered event is added
to the set of FSA edges (Lines 7–10). Finally, the crawling
procedure is recursively called with s1 and the updated FSA
(Line 11). If the set of pending events is empty, s0 is removed
from Sp (Line 13). In case there are still pending states in
Sp, the backtracking procedure (Algorithm 4) is called to
reach a pending state sp and the crawling procedure is called
with sp (Lines 15–16). If the set of pending states is empty,
the FSA is returned (Line 18).

Algorithm 3: crawl

Data: set of pending states Sp

Input: current state s0 of the SUT, initial FSA
Output: enriched FSA

1 if s0.pending 6= ; then
2 event 2 s0.pending;
3 s0.pending s0.pending \ {event};
4 executeScript(event);
5 s1 retrieveState();
6 s1.pending s1.events \ s0.events;
7 Sp Sp [{s1};
8 edge new Edge(s0, event, s1);
9 FSA.nodes FSA.nodes [{s1};

10 FSA.edges FSA.edges [{edge};
11 FSA crawl(s1, FSA);
12 else
13 Sp Sp \ {s0};
14 if Sp 6= ; then
15 sp backtrack(s0, Sp);
16 FSA crawl(sp, FSA);
17 else
18 return FSA;
19 end
20 end

Algorithm 4 shows the backtracking procedure, which
computes the shortest path from the current state s0 of the
SUT to a pending state sp using Dijkstra’s algorithm (Line 2)
and executes the UI scripts to reach sp (Line 5). If the FSA
does not contain a path from s0 to a state in Sp, the SUT is
set to the initial state by executing the command provided in
the configuration (Line 10), s0 is set to the initial state, and
the backtracking procedure is called again (Lines 11–12).

5. EVALUATION METHODOLOGY
To assess the e↵ectiveness of ProCrawl in inferring behav-

ior models, we conducted three case studies on real-world
web applications: an SAP enterprise web application, an
open-source web shop and a peer-review system. We use
ProCrawl to infer behavior models for the core processes
and evaluate them in terms of three sets of measures:

Accuracy. What is the fraction of relevant events, i.e. events
related to the target process, in the inferred model (pre-
cision)? What is the fraction of relevant events covered
by the model (recall)? What is the fraction of events
correctly classified as relevant or not relevant (accu-
racy)? To obtain these measures, we manually compare
the inferred models with the application and available
documentation (Section 6).

426

Algorithm 4: backtrack

Data: FSA, config
Input: current state s0 of the SUT, pending states Sp

Output: pending state sp

1 foreach p 2 Sp do
2 edges FSA.shortestPath(s0, p);
3 if edges 6= ; then
4 foreach e 2 edges do
5 executeScript(e.event);
6 end
7 return retrieveState();
8 end
9 end
10 executeCommand(config.initSut);
11 s0 FSA.initialState;
12 return backtrack(s0, Sp);

Correctness. Can the event sequences described in the
model be reproduced on the application? For this
purpose, we automatically generate test cases from the
model and execute the tests on the application, using
the UI scripts generated by ProCrawl (Section 7.1).

Suitability for regression testing. Are the inferred mod-
els useful for regression testing (Section 7.2)?

Another criterion is the runtime; ProCrawl should pass
the“overnight challenge” [9] of completing within 12-16 hours.

5.1 Evaluation Subjects
SAP Web Application (S1). In our first case study, we

applied ProCrawl on an SAP enterprise web application for
exchanging and processing product compliance information
(cf. Figure 4). The main business processes supported by
the application include the connection with suppliers and
customers, and the exchange of product and component dec-
larations. The user interface provides a navigation menu for
accessing several views: inbox for notifications and messages,
network for connecting with suppliers and customers, com-
ponents for managing component declarations and requests,
products for product declarations, suppliers and customers
for processing connection requests. The server side of the
application comprises about 10.5K lines of Java code and the
web interface about 48K lines of Java/JSP and 31K lines of
JavaScript, using the SAPUI5 SDK6, an OpenAjax compliant
library for building rich internet applications.

OXID eShop (S2). The second case study was performed
on OXID eShop 4.7.3 Community Edition7, an open-source e-
commerce platform with about 245K lines of code, including
233K lines of PHP, 5.6K lines of JavaScript using the jQuery8

library and 6K lines of CSS code. The web UI consists of
a front-end interface for ordering products, and a back-end
interface for shop administration and order processing. A
noteworthy characteristic of the back end is the heavy use of
framing, i.e. the UI consists of multiple web pages displayed
simultaneously within the same browser window.

6https://sapui5.netweaver.ondemand.com/sdk
7http://www.oxid-esales.com/en
8http://jquery.com

Figure 4: SAP web application for exchanging and
managing product compliance information.

OpenConf (S3). In the third case study, we applied Pro-

Crawl on OpenConf 5.10 Community Edition, an open-source
peer-review and conference management system (cf. Fig-
ure 1). OpenConf comprises about 14K lines of PHP code
and 360 lines of JavaScript code.

5.2 Evaluation Environment
The evaluation has been done on an Intel Core 2 Duo 2.5 GHz

with 4 GB RAM, running Windows 7 x64 with Google Chrome 24.

6. MODEL ACCURACY
In this section we evaluate precision, recall and accuracy

(ACC) of the models inferred by ProCrawl, as described in
Section 5 (cf. Table 1). Besides the configuration, no user
input was necessary during the crawling procedure.

6.1 Study 1: SAP Web Application
Target Process. The objective of the first experiment

was to infer a behavior model for the connect with supplier
process scenario, which is the first core scenario of the appli-
cation involving two partners. In the scenario a manufacturer
(customer) sends a connection request to a supplier, by click-
ing the Add As Supplier button on the network view of the
application. The request can either be confirmed or declined
by the supplier, by clicking the corresponding button on
the customers view, or revoked by the customer, by clicking
the Cancel button on the suppliers view. Each event except
for revoke results in a notification in the inbox of the other
partner, which can be deleted at any time.

Setup. We conducted three runs with di↵erent configu-
rations: (C1) Default state abstraction considering HTML
button elements and links; and including all views of the
application into the mining scope. (C2) Default state ab-
straction with a reduced set of views in the mining scope.
(C3) Custom state abstraction only considering buttons with
a certain CSS class9 and a reduced mining scope.

For all runs we configured ProCrawl with two actors repre-
senting a customer and a supplier, provided login credentials,
a batch file for resetting the application database and a start
script, triggering the connection request event by clicking the
Add As Supplier button on the network view.

Findings. With C1 and C2, ProCrawl inferred the FSA
depicted in Figure 5. Reducing the mining scope in C2,
9This can simply be done by providing an XPath expression such
as //*[contains(@class, ’ActionButton’)].

427

Table 1: Precision, recall and accuracy (ACC) of ProCrawl in terms of target processes covered in the model.

Subject SLOC Config States Trans. Events Scripts Precision Recall ACC Time

default 14 31 114 1.0 (31/31) 1.0 (31/31) 42 min
SAP Java/93K

custom 12 28 53
5

1.0 (28/28) 1.0 (28/28)
1.0

17 min
default 13 170 9 0.92 (12/13) 0.97 49 min

OXID PHP/245K
custom

6
12 61 8 1.0 (12/12)

0.75 (12/16)
0.93 18 min

Open- default 279 0.95 87 min
Conf

PHP/15K
custom

10 34
102

7 0.82 (28/34) 0.76 (28/37)
0.86 36 min

Figure 5: The ProCrawl behavior model of the connection process in the SAP web application.

reduced the runtime from 64 to 42 minutes and limiting the
set of HTML elements considered for state abstraction in C3
further reduced the runtime to 17 minutes. The FSA inferred
with C1 and C2 consists of 14 states and 31 transitions,
where self-loops, i.e. transitions that do not change the state,
are excluded from the model. The FSA precisely covers
the process description, modeling the interaction behavior
between a customer (Cust.) and a supplier (Supp.) in the
connection process. All transitions represent events relevant
for the target process and all events of the target process are
covered by the model, resulting in a precision and recall of
1.0. ProCrawl generated 5 UI scripts, removing navigational
events from the model and triggered 114 compound events,
consisting of multiple UI events.
With the custom config C3, ProCrawl merged state 12

with state 4 and state 14 with state 9, resulting in 12 states
and 28 transitions. By manually comparing the states with
the application, we figured out that the two additional states
in the default configuration represent di↵erent message types
in the inbox view of the application. In state 12 and 14 the
customer’s inbox contains a declined and a confirmed notifi-
cation. However, in the custom configuration C3, hyperlinks,
which determined the message type, were not considered for
state abstraction.

6.2 Study 2: OXID eShop
Target Process. The objective of the second case study

was to infer a behavior model for the OXID ordering process
involving a customer and a retailer. The customer interacts
via the shop front end, whereas the retailer operates via a
separate back-end interface:

1. The customer adds a product to the shopping cart by
selecting an article in the product view and clicking the
To Cart button.

2. The customer selects a payment method in the shopping
cart and clicks the Continue to Next Step button.

3. The customer orders the product by clicking the Order

now button in the shopping cart view.

4. The retailer sets the status of the order to shipped by
clicking the Ship Now button in the orders view.

Between Step 1 and 2, the customer may submit a coupon
by entering a valid code and clicking the Submit Coupon

button. Between Steps 1 and 3, the customer may remove
articles by selecting them in the shopping cart view and
clicking the remove button. After Step 3, the retailer may

• cancel the order, by clicking a link in the orders view
and confirming the popup; this changes the status of
the order and prevents shipment (Step 4).10

• delete the order by clicking a link in the orders view
and confirming the popup; this deletes the order from
all views in the system, disabling all events related to
that order.

• generate an invoice by clicking the Create PDF button
in the orders view.

10However, the Ship Now button is not deactivated.

428

Figure 6: The ProCrawl behavior model of the ordering process in OXID eShop (del.1 = delete; pau.1 = cancel).

After Step 4 the retailer may reset the order status by clicking
the Reset Shipping Date button in the orders view.

Setup. We conducted two runs: (C1) Default state ab-
straction. (C2) Custom state abstraction considering buttons
and links with specific CSS classes. For both runs we con-
figured ProCrawl with two actors representing a customer
and a retailer, provided login credentials and a start script
adding a product to the shopping cart. The mining scope
was set by providing UI scripts to access the shopping cart
and order history of the front end, as well as the orders view
of the back end. Since deleting an order via the back end
resets the process, ProCrawl did not require a command for
resetting the application database.

Findings. With the default configuration ProCrawl in-
ferred the FSA depicted in Figure 6. Reducing the number
of HTML elements considered for state abstraction in C2,
reduced the runtime from 49 to 18 minutes, as well as the
number of triggered compound events from 170 to 61. The
FSA inferred with C1 consists of 6 states and 13 transitions.
The FSA inferred with C2 is equal, but does not contain the
dashed transition from state 2 to state 3, which represents a
link with the same e↵ect as the Continue to Next Step button.
For each distinct event in the model, ProCrawl generated a
UI script, i.e. 9 in C1 and 8 in C2.

In the FSA inferred with C1, all transitions except for the
dashed one represent relevant events, resulting in a precision
of 0.92. With C2, all of the 12 transitions are relevant. In
both configurations, ProCrawl did not include the Submit

Coupon, as well as the Create PDF event. Although both
events were triggered during the crawling procedure, they
did not change any elements considered for state abstraction;
both models cover 12 out of 16 relevant events (8 out of 10
distinct events), resulting in a recall of 0.75. With 154 (170-
16) true negatives in C1 and 45 (61-16) in C2, the accuracy
is 0.97 and 0.93 respectively.

6.3 Study 3: OpenConf
Target Process. Objective of the third case study was to

infer a behavior model for the OpenConf peer-review process
involving an author, a reviewer and a conference chair :

1. The author makes a submission by filling out the sub-
mission form and clicking the Make Submission button.

2. The chair assigns reviewers for the submission by navi-
gating to the Auto Assign Reviewers view and clicking
the Make Assignments button.

3. The reviewer submits a review by filling out the review
form and clicking the Submit Review button.

4. The chair changes the status of the submission (pending,
accepted, rejected) by clicking the corresponding button
in the Submission Scores view. Note that the chair does
not have to wait for the reviews.

After Step 1, the author may withdraw the submission at
any time by providing the submission id and the password
from the submission form, clicking the Withdraw Submission

button and confirming the pop-up dialog.
Setup. We conducted two runs: (C1) Default state ab-

straction. (C2) Custom state abstraction considering buttons
of type submit and links with specific attributes. For both
runs we configured three actors: a chair, a reviewer and
an author, provided login credentials where necessary and a
start script for making the submission. The mining scope was
defined by providing UI scripts to access the views mentioned
in the scenario description. Furthermore we provided a batch
file for resetting the application database.

Findings. ProCrawl inferred the FSA depicted in Fig-
ure 2 with both configurations, generating 7 UI scripts. Re-
ducing the number of HTML elements considered for state
abstraction in C2, reduced the runtime from 87 to 36 minutes,
as well as the number of triggered compound events from 279
to 102. The FSA consists of 10 states and 34 transitions, as
described in Section 1. From the 34 transitions, 6 represent
Go events having the same e↵ect as Accept and therefore
being irrelevant for the model, resulting in a precision of 0.82
(28/34). However, ProCrawl was not able to successfully
trigger the Withdraw Submission event11, which can be trig-
gered in each of the 9 states after making the submission,
resulting in a recall of 0.76 (28/37). With 242 (279-37) true
negatives in C1 and 65 (102-37) in C2, the accuracy is 0.95
and 0.86 respectively.

6.4 Summary and Discussion
ProCrawl highly automatically inferred behavior models

with high precision (� 0.82), recall (� 0.75) and accuracy
(� 0.86). The default state abstraction of ProCrawl, con-
sidering buttons and links was e↵ective for all three case
studies. However, adapting the state abstraction to the tar-
get application, reduced the number of triggered events and
consequently the runtime of ProCrawl by 60% on average.
The runtime was below 1.5h for all case studies, passing the
“overnight challenge” of completing within 12-16 hours; by
customizing the state abstraction ProCrawl finished within

11To trigger the event, ProCrawl would need to provide the
submission id displayed after submitting the paper, as well as the
password provided in the submission form.

429

Table 2: Using ProCrawl behavior models for detecting disruptive process changes (A) and UI changes (B).

Test Avg. Test Failure Failure
Subject Model SUT

Cases Case Length Type A Type B
Runtime

1.0 1.1 0 1 10:23 min
SAP app

1.0 0.9
6 9.8

21 0 9:10 min
4.6.5 4.7.3 0 1 3:57 min

OXID eShop
4.5.12 4.6.5

1 26
0 0 6:09 min

36 minutes, even meeting the “lunch challenge”. A major
part of the overall runtime depends on the responsiveness of
the SUT; over the 7 runs, 62.6%± 6.3% of the time has been
spent waiting for the web browser to load the application.

7. TEST CASE GENERATION
The state automata inferred by ProCrawl serve as gold

standard oracles [3], checking whether behavior observed on
a trusted system can be reproduced on another version of
that system. Failing test cases can be caused by

• disruptive changes in the process implementation, i.e.
process steps have been removed or mandatory steps
have been added. (Type A)

• changes on the UI, resulting in obsolete UI scripts. UI
changes appear frequently, especially in an early stage
of development. Therefore the manual e↵ort to fix the
test cases should be minimal. (Type B)

Setup. Nodes and edges in the models are annotated
with properties used for testing, such as the URL to the SUT,
and references to the generated UI scripts. Optionally, the
user can refine the model by adding additional properties
such as requirement tags, enabling requirement coverage in
test generation, define the probability of following an edge
or adding guards and actions to edges in order to handle
complex scenarios. In addition, user-defined oracles and
handlers can be added. However, for the case study we only
annotated the URL to the SUT and a reference to a batch
file for initializing the SUT. For test generation we used
GraphWalker12, with the A* algorithm for path generation
and 100% edge coverage as stop condition.

7.1 Model Correctness
To evaluate the correctness of the inferred models, we use

them as a specification for GraphWalker and check if the
behavior captured in the models can be reproduced on the
source application by executing the test cases generated by
GraphWalker via the UI scripts generated by ProCrawl.

SAP Web Application. GraphWalker generated 6 test
cases with 9.8 events on average, covering 100% of the tran-
sitions. All of the test cases could be executed via the UI
scripts generated by ProCrawl; none of the test cases failed.

OXID eShop. GraphWalker generated 1 test case with
26 events covering 100% of the transitions. There was no
error during the execution.

OpenConf . GraphWalker generated 3 test cases with
14.3 events on average, covering 100% of the transitions.
There was no error during test execution.

12http://graphwalker.org

7.2 Regression Testing
To evaluate the suitability of the models for regression

testing, we inferred models from di↵erent versions of the SAP
application and the OXID eShop and executed the generated
test cases on another version13 (cf. Table 2). The main
objective of regression testing is to detect disruptive process
changes (Type A failure), while non-disruptive extensions are
tolerated. Testing on the UI level naturally also detects UI
changes (Type B failure). In that case, the e↵ort for fixing
broken test cases should be minimal.

SAP Web Application. We used the behavior model
ProCrawl inferred from v1.0 of the SAP web application
to generate test cases with GraphWalker, covering 100% of
the transitions. We executed the 6 test cases on v1.1 and
v0.9 of the application. On v1.1 one of the test cases failed
due to a changed button label. This could simply be fixed
by adapting one of the generated UI scripts. Although the
connection process has been extended in v1.1, all of the test
cases passed after adapting the UI script; indicating that
the process extension was done in a non-disruptive way. To
simulate a disruptive process change, we executed the tests
on v0.9 of the application, where the notification procedure
was not yet implemented. During the execution of the 6 test
cases, 21 errors were reported; in all of them the execution
of the DeleteNotification script failed, because the HTML
element was not found on the UI.

OXID eShop. We conducted two runs, using ProCrawl

to infer a behavior model and generating UI scripts for OXID
v4.5 and v4.6. From the inferred models, we generated test
cases covering 100% of the transitions and executed them on
the subsequent version of the system.

From v4.5 to the latest version 4.7.3 there was no change
in the ordering process, so the inferred models are essen-
tially identical and GraphWalker generated 1 test case with
26 events to cover all transitions. However, in version 4.7 the
label of the ordering button was changed from Purchase to
Order now , resulting in a failed test case. Therefore we had
to adapt the label in one of the generated UI scripts.

7.3 Summary and Discussion
All of the test cases generated from the behavior models

inferred by ProCrawl could be executed on the source appli-
cation without errors, i.e. the behavior captured in the FSA
correctly simulates the respective parts of the SUT.

Using the models for regression testing, we detect changes
on the UI, such as changed button labels, as well as disruptive
process changes. In the former case, the test cases could
simply be fixed by adapting the a↵ected UI scripts, whereas
the model was una↵ected.

13For OpenConf, only the latest version was publicly available.

430

8. THREATS TO VALIDITY
The evaluation of ProCrawl is subject to several threats

to validity. First and foremost comes external validity—the
ability to generalize from our findings. We have evaluated
ProCrawl on three diverse, nontrivial web applications, and
found that the resulting models represent the underlying
processes in a reasonably accurate manner. We have chosen
web applications that implement a multi-user process, provide
an HTMLUI and are to be set up in reasonable time, and
selected the applications’ respective core processes as target.
However, the assumption underlying ProCrawl is that most
behavior can be explored through simple interactions. If the
behavior depends on specific features of the supplied data,
for instance, then a black-box technique like ProCrawl is
unlikely to explore this through guessing. This is a limitation
a↵ecting all kinds of automated test generators, of course, and
ProCrawl is no exception. In the current implementation
input data can either be provided via the configuration or
is randomly generated by ProCrawl until it is accepted by
the SUT, i.e. no error message is shown on the SUT’s UI.
However, processes may vary based on the provided input
data; addressing this issue is left to future work.
For applications that are similar to the ones we studied,

including web shops, submission systems and the like, we
are confident that the ProCrawl results will be similarly
accurate as in our three case studies.
The second important threat in our study is internal va-

lidity—our ability to draw conclusions about the connections
between our independent and dependent variables. As we
check precision and recall against scenarios that we extracted
from the applications and available documentation, there is
an obvious risk of researcher bias—that is, we could have
selected interactions that ProCrawl can find, and left out
those which ProCrawl cannot find. We counter this threat
by including open-source systems in our evaluation set, such
that readers can compare the target processes and models
described in this paper with the applications themselves.
The final concern in our study is construct validity—the

adequacy of our measures for capturing dependent variables.
As it comes to extracting models from systems, comparing
them against ground truth established through static analysis
or testing is common practice; and thus we believe in the
adequacy of our accuracy measures.
In this paper, we have not researched the question of

whether the resulting models are readable or understandable
by humans; however, we found that the resulting models, as
reported in this paper, strive a nice balance between accuracy
(reflecting as much behavior as possible) and abstraction
(allowing for simple understanding), which gave us important
insights into hitherto unknown systems.

9. RELATED WORK
Approaches for automatically inferring properties of soft-

ware components [16] can be classified in static and dynamic
techniques. Static techniques analyze source code and are
usually sound, but have limited scalability. Dynamic ap-
proaches infer properties from multiple program runs, mak-
ing them applicable for real-world applications where source
code may not be available for each component. However,
the quality of the results heavily depends on the choice of
runs. There exist numerous tools that infer various types of
properties by abstracting over a given set of program runs;

a prominent representative in the area of process mining
is the ProM14 framework for analyzing process event logs.
Various other approaches build upon the work of Biermann
and Feldman [2]. However, the fact that such tools rely
on possibly incomplete logs and cannot generate additional
program runs, poses the problem of under- versus overfitting
the given set of program runs [19].
Experimental approaches [23] such as ProCrawl handle

this problem by systematically generating further program
runs. The idea of generating and executing test cases to
infer a more complete model was first published by Xie
and Notkin [21], who implemented the approach in the Ob-
stra [22] tool. Dallmeier et al. implemented this idea for
Java classes in TAUTOKO [6]. Whereas the aforementioned
tools infer models describing the possible behavior of a class
of Java objects using code instrumentation, ProCrawl infers
behavior models of processes involving multiple software com-
ponents operated by users acting in di↵erent roles. ProCrawl

does not modify the application code, but leverages the UI
to observe the behavior and generate test cases simulating
possible user input and therefore being realistic and relevant
by construction [12]. In this matter ProCrawl builds on
former experiences with our previous approach [17] and web
crawling tools like Crawljax [13, 14]; on top it abstracts
from UI specifics with a state abstraction specially designed
to capture multi-user business processes and produces mod-
els which are accurate enough for model-based testing. In
its default configuration the state abstraction applied by
ProCrawl is similar to enabledness preserving abstractions
proposed by de Caso et al. [7] in the context of validating
pre-post condition based specifications. However, ProCrawl

considers di↵erent users performing the operations and allows
to include displayed text in the state abstraction function.
On the service test layer, StrawBerry [1] synthesizes an

automaton modeling the behavior protocol of a web-service
(WS) from the WSDL description and refines the automa-
ton through testing against the WS implementation; while
ProCrawl’s focus is to test and therefore model the SUT’s
behavior on the system test layer, i.e. from an end-user
perspective.

10. CONCLUSION
ProCrawl is a fully automatic tool to mine behavior mod-

els from enterprise web applications for system testing, under-
standing, and maintenance. Its state abstraction is specific
enough to capture essential process steps, including cycles;
yet generic enough to be applicable to a diverse range of web
applications. Requiring little customization, ProCrawl can
be easily deployed on new applications. As our evaluation
shows, the models inferred by ProCrawl are small, accurate,
and cover all to almost all events. In future work, we will
improve our approach to infer process variances based on the
provided input data and investigate further use cases, like
program comprehension.

11. ACKNOWLEDGMENTS
We thank Clemens Hammacher, Jeremias Rößler, Sebas-

tian Wieczorek and the anonymous reviewers for useful com-
ments on earlier revisions of this paper. The work presented
herein is partially funded by the German Federal Ministry of
Education and Research (BMBF) under grant no. 01IC12S01.

14 http://www.processmining.org/prom

431

12. REFERENCES

[1] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli.
Automatic Synthesis of Behavior Protocols for
Composable Web-Services. In ESEC/FSE ’09, pages
141–150, New York, NY, USA, 2009. ACM.

[2] A. W. Biermann and J. A. Feldman. On the synthesis
of finite-state machines from samples of their behavior.
IEEE Transactions on Computers, C-21(6):592–597,
1972.

[3] R. V. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Object Technology Series. Addison
Wesley, 1999.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcli↵, S. Laubach,
C. S. Pasareanu, Robby, and H. Zheng. Bandera:
extracting finite-state models from java source code. In
ICSE ’00, pages 439–448, New York, NY, USA, 2000.
ACM.

[5] V. Dallmeier, M. Burger, T. Orth, and A. Zeller.
Webmate: a tool for testing web 2.0 applications. In
Proceedings of the Workshop on JavaScript Tools,
JSTools ’12, pages 11–15, New York, NY, USA, 2012.
ACM.

[6] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and
A. Zeller. Generating test cases for specification mining.
In ISSTA ’10 Proceedings of the 19th international
symposium on Software testing and analysis, pages
85–96, New York, NY, USA, 2010. ACM.

[7] G. de Caso, V. Braberman, D. Garbervetsky, and
S. Uchitel. Automated abstractions for contract
validation. IEEE Transactions on Software Engineering,
38(1):141–162, 2012.

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):99–123,
2001.

[9] C. Flanagan and K. R. M. Leino. Houdini, an
annotation assistant for esc/java. In Proceedings of the
International Symposium of Formal Methods Europe on
Formal Methods for Increasing Software Productivity,
FME ’01, pages 500–517, London, UK, 2001.
Springer-Verlag.

[10] M. Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[11] W. Grieskamp, N. Kicillof, K. Stobie, and
V. Braberman. Model-based quality assurance of
protocol documentation: tools and methodology.

Software Testing, Verification & Reliability,
21(1):55–71, Mar. 2011.

[12] F. Gross, G. Fraser, and A. Zeller. Exsyst:
Search-based gui testing. In ICSE ’12, pages 1423–1426,
Piscataway, NJ, USA, 2012. IEEE Press.

[13] A. Mesbah, A. Van Deursen, and S. Lenselink.
Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM
Transactions on the Web, 6(1):1–30, Mar. 2012.

[14] A. Mesbah, A. Van Deursen, and D. Roest.
Invariant-based automatic testing of modern web
applications. IEEE Transactions on Software
Engineering, 38(1):35–53, Jan. 2012.

[15] M. Pezze and M. Young. Software Testing and
Analysis: Process, Principles and Techniques. John
Wiley & Sons, 2007.

[16] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini,
and T. Ratchford. Automated api property inference
techniques. IEEE Transactions on Software
Engineering, 39(5):613–637, May 2013.

[17] M. Schur. Experimental specification mining for
enterprise applications. In ESEC/FSE ’11, pages
388–391, New York, NY, USA, 2011. ACM.

[18] M. Utting and B. Legeard. Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.

[19] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek,
B. F. van Dongen, E. Kindler, and C. W. Günther.
Process mining: a two-step approach to balance
between underfitting and overfitting. Software and
System Modeling, 9(1):87–111, 2010.

[20] S. Wieczorek and A. Stefanescu. Improving testing of
enterprise systems by model-based testing on graphical
user interfaces. In ECBS ’10 Proceedings of the 2010
17th IEEE International Conference and Workshops on
the Engineering of Computer-Based Systems, pages
352–357, Washington, DC, USA, 2010. IEEE Computer
Society.

[21] T. Xie and D. Notkin. Mutually enhancing test
generation and specification inference. In International
Workshop on Formal Approaches to Testing of Software
(FATES), pages 60–69. Springer, 2003.

[22] T. Xie and D. Notkin. Automatic extraction of
object-oriented observer abstractions from unit-test
executions. In International Conference on Formal
Engineering Methods (ICFEM), pages 290–305.
Springer, 2004.

[23] A. Zeller. Program analysis: A hierarchy. In ICSE
Workshop on Dynamic Analysis (WODA 2003), pages
6–9, 2003.

432

