
Detecting Software Theft with API Call Sequence Sets

David Schuler Valentin Dallmeier
Saarland University

Department of Computer Science
Saarbrücken, Germany

{schuler,dallmeier}@cs.uni-sb.de

Abstract

Software birthmarking uses a set of unique character-
istics every program has upon creation to justify own-
ership claims of thefted software. This paper presents
a novel birthmarking technique based on the interac-
tion of a program with the standard API. We have
used this technique to succesfully distinguish 4 differ-
ent implementations of PNG image processing.

1 Introduction

In the last few years we have witnessed a huge in-
crease in the amount of open source projects. Source-
forge.net currently hosts over 115.000 projects, a large
portion of which is licensed under the Gnu Public
License (GPL). This type of license allows users to
pass on the program without charge, but requires new
projects using it to also be licensed under GPL.

Unfortunately for the spirit of open source, not
all individuals or companies obey these requirements.
A popular example of the resent past is the XCP
copy protection software present on many audio discs.
It contains and uses several GPL projects (LAME,
DRMS and others), but is not distributed under the
terms of the GPL. There are many more examples of
companies that illegally use GPL projects to save de-
velopment resources. This is a severe disadvantage for
companies that either don’t use such projects or also
put their products under the GPL.

In order to address the problem of software theft,
researchers have proposed the use of birthmarks for
the prove of ownership. Birthmarking relies on a set
of characterstics a program originally possessed. Two
programs that have similar or identical birthmarks are
very likely to be the same.

This paper proposes a new dynamic birthmark. It
is based on the observation that the way a program
uses standard libraries (e.g. the JAVA API) is a unique
characteristic of every program. The remainder of
this paper gives details about our birthmark, presents
a small experiment to evaluate it’s effectiveness, and
discusses the results.

2 Birthmark Extraction

Since the last release of the java development kit, the
standard API consists of more than 4600 classes. As
virtually every JAVA program uses classes of the API

during it’s execution, API interaction is a good can-
didate for a birthmark. This section explains the way
we capture a program’s API interaction and the de-
termination of the birthmark.

Figure 1 shows a small example where a user im-
plementation of a depth first search (DFSEarch) uses a
Stack provided by the API. To characterize the usage
of the API, we use the sequence of calls that originate
in a user class and invoke a method that is part of the
API. We call this the sequence of API method calls.
For our example, the sequence of API method calls is
push(Node), pop() and top().

For realistic program runs, a trace of the sequence
of API method calls quickly reaches several gigabytes
in size and becomes difficult to handle. Rather than
using the whole trace, we extract sets of call sequences
from it. A call sequence set is obtained by sliding a
window with a fixed size over the trace and remember-
ing all window contents observed. This is described
in detail in (Dallmeier et al., 2005).

Using call sequence sets, we can compare two pro-
grams P and Q in the following way. We trace exe-
cutions of both P and Q and calculate the sequence
sets SP and SQ. If P and Q are the some program
or at least closely related, we expect a large number
of sequences to occur both in SP and SQ. The birth-
mark value BSP ,SQ

measures the fraction of common
call sequences in the union of SP and SQ:

BSP ,SQ
=

#(SP ∩ SQ)
#(SP ∪ SQ)

(1)

A birthmark value close to 1 indicates that P and Q
have very similar API interaction and thus we suspect
P and Q to be the same program.

3 Evaluation of Credibility

We require a birthmark to be credible: Two indepen-
dently written programs P and Q that may accom-
plish the same task must have different birthmarks.
In other words: If P and Q have the same birthmark,



Main DFSearch Stack ArrayList

searchGraph()

push (Node)

add(Node)

pop ()

removeFirst()

top ()

get()

API
classes

USER
classes

Figure 1: Example Interaction with JAVA API.

JAI JIMI JIU SIXLEGS

JAI 0.94 0.01 0.02 0.02
JIMI 0.01 1.00 0.13 0.00
JIU 0.02 0.13 1.00 0.04
SIXLEGS 0.02 0.00 0.04 1.00

Table 1: Credibility results.

then P = Q should be true in almost all cases.
In order to evaluate the credibility of our birthmark

technique, we have conducted an experiment with 4
libraries for reading PNG images. For each library we
collected the API call sequence sets from reading a test
suite of 100 PNG images. Table 1 shows the birthmark
values for comparing each run of a library against all
others. When comparing a library with itself (e.g.
JIMI with JIMI), we compare the call sequence sets
extracted from two runs using the same test suite as
input.

Our results show that using API call sequences is
a credible birthmark: All birthmark values for execu-
tions of different libraries are close to zero, indicating
a strong difference in API interaction for all libraries
although they implement the same task. The results
for comparing two runs of the same library are located
on the main diagonal. Except for JAI, all values are
1.00, indicating that the call sequence sets for both
runs were the same. The slight difference in the call
sequence sets for JAI are due to some GUI threads
running in the background.

4 Related Work

In previous work (Dallmeier et al. (2005)) we have
used call sequences to compare passing and failing
runs of a program. Call sequences are collected on
a per-class basis, and compared across runs to find
the class that is most likely to contain the defect.

Tamada et al. (2003) describe the first practical
application of birthmarks to identify the theft of pro-
grams. They propose a set of static birthmarks for
classes, such as the constant values used to initialize
the fields of a class. A preliminary evaluation reports

that the proposed birthmarks identify a class within
a program with high precision, but can easily be con-
fused by several obfuscation techniques.

Tamada et al. (2004) introduce a definition of dy-
namic birthmarks and propose two such birthmarks
based on the trace of system calls for windows pro-
grams. They claim that these birthmarks are reason-
ably robust against obfuscator attacks, but give no
experimental evidence.

5 Conclusions and Future Work

We have presented a new dynamic birthmark tech-
nique based on the extraction of API call sequence
sets from program runs. In a preliminary experiment,
our technique successfully distinguished 4 different li-
braries for PNG image processing. These results are
promising and justify further evaluation of our tech-
nique. Among other things, our future work will con-
centrate on the following topics:

Birthmark Refinement A possible improvement
of the birthmark may be to ignore calls to commonly
used API classes like String to avoid pollution of the
call sequence sets.

Evaluation of Resilience An effective birthmark
must be resilient to semantic preserving transforma-
tions like obfuscation. We plan to evaluate the re-
silience of our technique against several available ob-
fuscation techniques.

Acknowledgements Christian Lindig provided
valuable insights during birthmark design and eval-
uation.

References

Valentin Dallmeier, Christian Lindig, and Andreas Zeller.
Lightweight defect localization for Java. In Andrew
Black, editor, European Conference on Object-Oriented
Programming (ECOOP), pages 528–550, 2005.

Haruaki Tamada, Masahide Nakamura, Akito Monden,
and Ken ichi Matsumoto. Detecting the theft of pro-
grams using birthmarks. Information Science Technical
Report NAIST-IS-TR2003014, Graduate School of In-
formation Science, November 2003.

Haruaki Tamada, Keiji Okamoto, Masahide Nakamura,
Akito Monden, and Ken ichi Matsumoto. Dynamic soft-
ware birthmarks to detect the theft of windows appli-
cations. In Proc. International Symposium on Future
Software Technology 2004 (ISFST 2004), 2004. Xi’an,
China.


