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SUMMARY

Mutation testing measures the adequacy of a test suite by seeding artificial defects (mutations) into a pro-
gram. If a test suite fails to detect a mutation, it may also fail to detect real defects—and hence should
be improved. However, there are also mutations that keep the program semantics unchanged and thus
cannot be detected by any test suite. Such equivalent mutants must be weeded out manually, which is a
tedious task. In this paper, we examine whether changes in coverage can be used to detect non-equivalent
mutants: If a mutant changes the coverage of a run, it is more likely to be non-equivalent. In a sam-
ple of 140 manually classified mutations of seven Java programs with 5000 to 100 000 lines of code,
we found that (i) the problem is serious and widespread—about 45% of all undetected mutants turned
out to be equivalent; (ii) manual classification takes time—about 15 min per mutation; (iii) coverage
is a simple, efficient and effective means to identify equivalent mutants—with a classification precision
of 75% and a recall of 56%; and (iv) coverage as an equivalence detector is superior to the state of
the art, in particular violations of dynamic invariants. Our detectors have been released as part of the
open-source JAVALANCHE framework; the data set is publicly available for replication and extension
of experiments. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

To assess the quality of a software, one uses testing: executing the program with the purpose of
detecting a defect. Obviously, the better the test suite, the higher the chance of finding errors. But
how do we know how ‘good’ a test suite actually is? One of the best ways to assess the quality of
a test suite is mutation testing—that is, repeatedly seeding artificial defects (‘mutations’) into the
software. If the test suite fails to find these artificial defects, it is likely to miss real defects, too—and
hence should be improved. A typical usage of mutation testing is to seed thousands of mutations
into the program—and then examine those which the test suite did not catch.

Mutation testing has been shown to be an effective assessment for test suite quality [1] and supe-
rior to common assessments such as coverage metrics [2,3]. This effectiveness comes at a cost. The
first problem is that the repeated execution of test suites requires significant computing resources.
With appropriate optimizations, though, it is possible to do mutation testing on even 100 000-line
programs within a few CPU hours [4]. The second problem is more significant: It is possible that a
mutation leaves the program’s semantics unchanged. Such an equivalent mutation cannot be caught
by any test. It needs to be weeded out manually; and it just wastes time as the developer focuses on
the next uncaught mutation without improving the test suite. Although there are techniques to detect
some equivalent mutations [5, 6], the general problem is undecidable [7].
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How widespread is the problem of equivalent mutants? In this paper, we have manually
assessed a random sample of 140 uncaught mutations in seven Java programs. Our results have
serious consequences:

It takes 15 min to assess one single mutation. It is surprisingly difficult to assess the effect of
a single change to the code—in particular, if the change is randomly generated.

45% of all uncaught mutations are equivalent. This high number may come as a surprise, but
keep in mind that most non-equivalent mutants are already caught by the test suite.

The problem gets worse as the test suite improves. As the number of equivalent mutants stays
fixed, their percentage increases further as the test suite finds more and more non-equivalent
mutants.

We also evaluate solutions, though. In an earlier workshop paper [8], we had examined the impact
of mutations on coverage—that is, whether lines are executed or not. In a proof of concept, it turned
out that equivalent mutants tended to keep coverage unchanged, whereas non-equivalent mutants
actually changed the coverage. In this paper, we have refined this technique and applied it to the
140 previously classified mutations. The results are promising: 75% of the mutants are correctly
classified on the basis of their impact on coverage. This means that the effort for mutation testing is
significantly reduced; at the same time, the technique is easily deployed as coverage measurement
tools are commonplace.

Our paper is organized as follows. We dig into the problem by showing some real-world equiva-
lent and non-equivalent mutants (Section 2). After introducing our JAVALANCHE mutation frame-
work (Section 3) and the subject programs (Section 4), our classification study gives details on the
ubiquity of equivalent mutants (Section 5). We then describe how to assess the impact of mutants
on coverage (Section 6), followed by an evaluation of the approach (Section 7). After discussing the
threats to validity (Section 9), we explore the related work (Section 10) and close with conclusion
and future work (Section 11).

2. EQUIVALENT MUTANTS

One usage scenario of mutation testing is to improve a test suite by providing tests for undetected
mutants. To this end, mutations are applied to a program, and it is checked whether the test suite
detects them or not. This step is carried out automatically and results in a set of undetected mutants.
A programmer then tries to add or modify existing tests so that previously undetected mutants are
detected. There are several reasons why a test suite might fail to detect a mutation, which determine
the usefulness to the programmer:

1. The mutation may not change the program’s semantics and cannot be detected. These equiv-
alent mutants cannot help improve the test suite and place an additional burden on the
programmer because the equivalence of a mutation has to be assessed manually.

2. The mutated statement may not be executed. In order to find non-executed statements, standard
coverage criteria can be used.

3. The mutation may not be detected because of an inadequate test suite. These are the most valu-
able mutations because they provide indicators to improve the test suite, which other coverage
metrics might not provide. If a mutation is covered but not detected, this means either that
the tests do not check the results well enough or that the input data are not chosen carefully
enough to trigger the erroneous behaviour.

Let us characterize these different kinds of undetected mutations, using the XSTREAM project
as example.
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Figure 1. A non-equivalent mutation from the XSTREAM project.

Figure 2. An equivalent mutation from the XSTREAM project.

2.1. A Regular Mutation

Figure 1 shows a mutation in the createCallbackIndexMap method of class CGLIBEnhancedCon-
verter, which changes an || operator to an && operator. This causes the expression to evaluate to
true when it should evaluate to false and then to remove the method from an underlying map. In
the end, this results in spurious entries in the XML representation of an object. An existing test case
of the XSTREAM test suite triggers this behaviour (testSupportProxiesUsingFactoryWithMultiple-
Callbacks in class com.thoughtworks.acceptance.CglibCompatibilityTest). However, this test fails
to check the results thoroughly. By modifying this test, one can detect the mutation.

2.2. An Equivalent Mutation

Another mutation of the XSTREAM project is shown in Figure 2, applied to line 198 of
class JsonWriter. Here, the mutation changes an & operator to an j operator, which might
cause the expression to evaluate to true when it should not. This expression is disjunct with
the variable newLineProposed and gets only executed when the variable evaluates to true.
Further investigation shows that newLineProposed is only set to true in one place of
the program and only if the same condition as in the mutated statement format.mode() &
Format.COMPACT_EMPTY_ELEMENT) != 0 is true. Thus, in the mutated statement, this con-
dition is always true when it is evaluated (when newLineProposed is true). The mutation
is equivalent.

2.3. A Mutation That Is Not Executed

The method aliasIsAttribute of ClassAliasingMapper shown in Figure 3 returns true if the given
name is an alias for another type. What happens if we mutate this method so that it always
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Figure 3. A mutation of XSTREAM project that is not executed by tests.

Table I. JAVALANCHE mutation operators.

Replace numerical constant X by X C 1, X � 1, or 0.
Negate jump condition—which is equivalent to negating a conditional statement in the source
code. (Since composite conditions compile into multiple jump instructions, this also negates
individual subconditions.)
Replace arithmetic operator by another one, e.g.C by �.
Omit method call—if the method has a return value, a default value is used instead, e.g.
x DMath.random./ is replaced by x D 0.0.

returns null? The existing test suite does not detect this mutation, because the statement is not
executed. Thus, a test should be added that checks this functionality. However, to detect uncovered
code, we do not need to apply a full-fledged mutation testing. A simple statement coverage does
this much more efficiently. For the remainder of the paper, we thus assume that mutations are only
applied to statements that are executed by the test suite.

3. THE JAVALANCHE FRAMEWORK

As we wanted to assess the equivalence of mutations on projects of significant size, we developed the
JAVALANCHE mutation testing framework [4] with a special focus on automation and efficiency.
To this end, JAVALANCHE applies several optimizations:

Focusing on a subset of mutation operators. The idea of selective Mutation is to use a small set
of mutation operators that is a sufficiently accurate approximation of the results obtained by
using all possible operators [9]. JAVALANCHE therefore uses the same small set of operators
as proposed by Offutt [10] and later adapted by Andrews et al. [1], listed in Table I.

Use mutant schemata. Traditional mutation testing tools produce a new mutated program ver-
sion for every applicable mutation possibility. For a system like ASPECTJ, this would result
in 47 146 different mutated versions, which are too many to be handled efficiently. To reduce
the number of generated versions, we use mutant schema generation [9]. Mutant schema gen-
eration produces a metaprogram that is derived from the program under study and contains
multiple mutations. Each mutation is guarded by a conditional statement that can be switched
on and off at runtime.

Use coverage data. Not all tests in the test suite execute every mutant. In order to avoid exe-
cuting those tests, we collect coverage information for each test. When checking mutants, we
execute only those tests that are known to cover the mutated statement.

Furthermore, JAVALANCHE allows to observe and trace the execution of mutations in order to
determine their impact. Similar to an avalanche, where one small event can have a huge impact,
JAVALANCHE aims at finding those mutations that have a big impact on the program run. The
complete process for applying JAVALANCHE to a program is summarized in Figure 4.

4. SUBJECT PROGRAMS

For our experiments, we took seven open-source projects, from different application areas, listed in
Table II. For each project, we took the most recent version from the version control system (column
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Original Program Rank Surviving MutationsInsert Mutations

1 2 3 4
5

Report to Tester

1

2 3

Run and Determine Impact 

Figure 4. The JAVALANCHE process. After generating mutations (Step 1), JAVALANCHE runs the test
suite on each and ranks mutations by their impact on data and coverage (Steps 2 and 3). Finally, the tester

(Step 4) improves the test suite to detect the top-ranked mutations.

Table II. Description of subject programs.

Project Program Test code Number Test suite
name Description Version size (LOC) size (LOC) of tests runtime (s)

ASPECTJ AOP extension to Java cvs: 2007-09-15 94 902 14 736 336 9
BARBECUE Bar code creator svn: 2007-11-26 4 837 3 293 153 3
COMMONS Helper utilities svn: 2009-08-24 19 583 34 125 1608 22
JAXEN XPath engine svn: 2008-12-03 12 438 8 399 689 10
JODA-TIME Date and time library svn: 2009-08-17 25 909 48 178 3497 48
JTOPAS Parser tools 1.0(SIR) 2 031 3 185 128 2
XSTREAM XML object serialization svn: 2009-09-02 16 791 15 311 1122 20

Lines of code (LOC) are non-comment, non-blank lines as reported by sloccount. For ASPECTJ, we only
mutated the org.aspectj.ajdt.core package, which has 25 913 lines of source code and 6828 lines of test code.

Table III. Results of JAVALANCHE for the seven subject programs.

Project Covered Number Mutation Mutation score
name mutants of mutants score (%) for covered (%)

ASPECTJ 17 328 9 168 35.41 66.93
BARBECUE 17 631 1 687 5.68 59.40
COMMONS 14 716 13 748 79.16 84.73
JAXEN 9 285 6 333 48.39 70.95
JODA-TIME 21 052 13 293 51.42 82.83
JTOPAS 1 678 1 400 67.64 81.07
XSTREAM 8 240 6 488 68.54 87.05
Total 89 930 52 117 45.47 78.45

3)—except for JTOPAS, which was taken from the software-artifact infrastructure repository (SIR)
[11]. Each program comes with a JUnit test suite, from which we removed tests that fail, and tests
whose outcome is dependent on the order or frequency of execution (which would be considered a
flaw of the test suite).

Table III shows the results for applying mutation testing without impact calculation to the subject
programs. First, JAVALANCHE determines all possible mutations for a program (column 2). From
the total number of mutations, JAVALANCHE only considers those that are covered by at least one
test (column 3). ‡ After executing all mutations, we get the mutation score for a project (column 4)
and the mutation score relative to the covered mutations (column 5)—the number of mutations that
are detected by the test suite (at least one test fails) divided by the total number of covered mutations.

‡JAVALANCHE does not consider mutations that are only executed during class loading as covered. This explains the
low coverage for BARBECUE.
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Table IV. Classifying mutations manually.

Project Non-equivalent Equivalent Average
name mutants mutants classification time

ASPECTJ 15 (75%) 5 (25%) 29 min
BARBECUE 14 (70%) 6 (30%) 10 min
COMMONS 6 (30%) 14 (70%) 8 min
JAXEN 10 (50%) 10 (50%) 15 min
JODA-TIME 14 (70%) 6 (30%) 20 min
JTOPAS 10 (50%) 10 (50%) 7 min
XSTREAM 8 (40%) 12 (60%) 11 min

All 77 (55%) 63 (45%) 14 min 28 s

5. MANUAL CLASSIFICATION

We saw that determining the equivalence of a mutant requires manual investigation. But how
widespread is this problem in real programs? Offutt and Pan [12] reported 9.10% of equivalent
mutants (relative to all mutants) for the 28-line triangle program. As we were interested in the
extent of the problem on modern and larger programs, we applied mutation testing (Section 3) to
our seven subject programs and investigated the results. For each of the seven projects, we ran-
domly took 20 mutations from different classes that were not detected by the test suite for manual
inspection. Then, we classified each mutation either

� as non-equivalent, as proven by writing a test case that detects the mutation, or
� as equivalent when manual inspection showed that the mutation does not affect the result of

the computation.

5.1. Percentage of Equivalent Mutants

The results for classifying the 140 mutations for the seven projects are summarized in Table IV. Out
of all classified mutations, 77 (55%) were non-equivalent and 63 (45%) were equivalent. The project
with the highest ratio of non-equivalent mutants is ASPECTJ with 75%, whereas COMMONS had
the lowest percentage with 30%. Such differences might also indicate differences in the quality of
the test suites, as better test suites have a higher rate of equivalent mutations among their undetected
mutations. Notice that the ratio of 45% of equivalent mutants relates to the undetected ones. Relative
to all mutants, we obtain a ratio of 7.39% of equivalent mutants.

On our sample of real-life programs, 45% of the undetected mutations were equivalent

5.2. Classification Time

The time required for classifying mutations as equivalent or non-equivalent varied heavily. Whereas
some mutations could be easily classified by just looking at the mutated statement, others involved
examining large parts of the program for determining a potential effect of the mutated statement.
This led to a maximum classification time of 130 min.

On average, it took us 14 minutes and 28 seconds to classify one single mutation for equivalence.

5.3. Mutation Operators

JAVALANCHE generates mutations by using different mutation operators as introduced in Table I.
In order to check the relation between the equivalence of a mutants and its underlying mutation
operators, we grouped the 140 manually classified mutations according to their operator. The results
are summarized in Table V. Some operators produce far more mutants than others (column 2).
For example, the operator replace numerical constant produces over half of the mutations in our
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Table V. Classification results per mutation operator.

Mutation Number of Non-equivalent Equivalent
operator mutants mutants mutants

Replace numerical constant 78 34 (44%) 44 (56%)
Negate jump condition 12 10 (83%) 2 (17%)
Replace arithmetic operator 7 3 (43%) 4 (57%)
Omit method call 43 30 (70%) 13 (30%)

sample. However, we can also check the ratios of non-equivalent (column 3) and equivalent (col-
umn 4) mutants for the operators. Here, we see that for the operators replace numerical constant
and replace arithmetic operator, which manipulate data, around 57% of all produced mutants are
equivalent, whereas the operators negate jump condition and omit method call, which manipulate
the control flow, only produce around 30%.

Mutation operators that change the control flow produce fewer equivalent mutants than those
that change the data.

5.4. Discussion

The number of 45% equivalent mutants is much higher than the 9% reported by Offutt and Pan,
as their number is relative to all mutations, including the ones that are detected by the test suite.
These mutations, however, are not of interest for improving the test suite, as they do not indicate a
weakness of the test suite. If we also take the detected mutations into account, we found 7.39% of
all mutations to be equivalent, which is roughly in line with the numbers reported by Offutt and Pan.

In practice, though, it is the percentage of equivalent mutations across the undetected mutations
that matters—because these are the mutations that will be assessed by the developer. And here, 45%
of equivalent mutants simply means 45% of wasted time. Even worse, whereas the percentage of
equivalent mutations across all mutations stays fixed, the percentage of equivalent mutations across
the undetected mutations increases as the test suite improves. This is due to the fact that an improved
test suite detects more (non-equivalent) mutants. A perfect test suite would detect all non-equivalent
mutants; hence, 100% of undetected mutants would be equivalent. In other words, as one improves
the test suite, one has more and more trouble finding non-equivalent mutants among the undetected
ones—with the growing effort as the test suite approaches perfection.

The percentage of equivalent mutants increases as the test suite improves.

6. ASSESSING MUTATION IMPACT

Equivalent mutants are defined to have no observable impact on the program’s output. This impact of
a mutation can be assessed by checking the program state at the end of a computation, just like tests
do. However, we can also assess the impact of a mutation while the computation is being performed.
In particular, we can measure changes in program behaviour between the mutant and the original
version. The idea is that if a mutant impacts internal program behaviour, it is more likely to change
external program behaviour. Thus, it is also more likely to impact the semantics of the program. If
we focus on mutations with impact, we would thus expect to find fewer equivalent mutants.

How does one measure impact? Weak mutation [13] assesses whether a mutation changes the
local state of a function or a component; if it does, it is considered detectable (and, therefore, non-
equivalent). In this work, we are taking a more global stance and examine how the impact of a
mutation propagates all across the system. To assess this impact degree, we consider two aspects:
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� One aspect of impact is control flow: If a mutation alters the control flow of the execution,
different statements are executed. This is an impact that can be detected by using standard
coverage measurement techniques.
� Another aspect of the behaviour is the data that are passed between methods during the com-

putation: If a mutation alters the data, different values are passed to methods—an impact that
can be detected by tracing the data that gets passed between methods.
� Another aspect of the behaviour concerns the data that is passed between methods during the

computation: If a mutation alters the data, different values are passed between methods. This
is an impact that can be detected by tracing the data that are passed between methods.

In both cases, we measure the impact as the number of changes detected all across the system;
as the number of impacted methods grows, so does the likelihood of the mutation to be generally
detectable—and non-equivalent.

6.1. Impact on Coverage

In order to measure the impact of mutations on the control flow, we developed a tool that computes
the code coverage of a program and integrated it into the JAVALANCHE framework. The program
records the execution frequency for each statement that is executed for each test case and each muta-
tion. Note that the data collected by our tool are very similar to statement coverage, which computes
whether a statement is executed or not. In addition to statement coverage, our tool also stores the
execution frequency of a statement.

Running the complete test suite of a program and tracing its coverage provide us with a set of
lines that were covered together with frequency counts for every test case of the test suite. By com-
paring the coverage of a run of the original version with the coverage of the mutated version, we
can determine the coverage difference.

6.2. Impact on Return Values

Mutations with impact on the control flow manifest themselves in coverage differences, but it is
also possible that a mutation has only impact on the data, which is not used in control flow affecting
computations. In a manual investigation of 20 random undetected mutations without impact [8], we
found two categories of non-equivalent mutations that had no impact on the code coverage:

� The first category is mutations that changed return values that were subsequently never used in
computations, but were passed to the output of the program.
� The second category is mutations causing state changes that only manifest in a change of the

string representation of an object (as described below).

Therefore, we decided to additionally trace the return values of public methods. We chose the
public methods as they represent an object’s communication to the environment.

Storing all return values of a program run would require a huge amount of disk space. For exam-
ple, objects can cover huge parts of the program state through references. The storage of all this data
for each return value might be justifiable for one run of a test suite. As we plan to use these data for
assessing each mutation, which involves several thousand executions of the test suite, we decided to
abstract each return value into an integer value.

For each public method that has a return value, we store these integers and count how often they
occur. In this way, we end up with a set of integers for each method together with frequency counts.
Similar to coverage data, we can compare the sets of traced return values of the original execution
with the mutated execution and obtain the data difference.

6.2.1. Abstracting Return Values. To obtain an integer value for returned Java objects, we compute
its string representation by invoking toString(). Then, we remove substrings that represent
memory locations, as returned by the standard implementation of the toString() method in
java.lang.Object, because these locations change between different runs of the program even
though the computed data stay the same. From the resulting string, we then compute the hash code.
Thereby, we obtain an integer value that characterizes the object.
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For each primitive value (int, char, float, short, boolean, byte), we store its natural
integer representation; for 64-bit values (long, double), we compute the exclusive or the upper
and lower 32 bits.

6.3. Impact on Invariants

In our previous work [4], we estimated the impact on the data by using dynamic invariants. To this
end, we learned dynamic invariants from the original program by using DAIKON [14]. Then, we
generated checkers that check those invariants at runtime and run the mutations, and finally obtained
a set of violated invariants for each mutation.

The results showed that if a mutation violates dynamic invariants, it is very likely to be non-
equivalent. However, mutations that violate dynamic invariants are rare. This finding motivated us
to choose the impact on the return values as a more fine-grained view on impact. Our abstraction
over the return values is more fine grained because it takes into account every observed return value.
The dynamic invariants, however, hold for all observed runs, and they are discarded as soon as one
violation is observed.

6.4. Impact Metrics

The techniques defined above produce a set of differences between a run of the test suite on the
original and mutated program. Using these differences, we define impact metrics that quantify the
difference between the original and mutated run:

Coverage impact—the number of methods that have at least one statement that is executed at a
different frequency in the mutated run than in the normal run—while leaving out the method that
contains the mutation.
Data impact—the number of methods that have at least one different return value or frequency in
the mutated run than in the normal run—while leaving out the method that contains the mutation.
Combined coverage and data impact—the number of methods that have either a coverage or
data impact.

These metrics are motivated by the hypothesis that a mutation that has non-local impact on the
program is more likely to change the observable behaviour of the program. Furthermore, we would
assume that mutations that are undetected despite having an impact across several methods can be
considered as particularly valuable for the improvement of a test suite, as they indicate inadequate
testing of multiple methods at once.

6.5. Distance Metrics

To further emphasize non-local impact, we use distance metrics that are based on the distance
between the method that contains the mutation and the method that has a coverage or data difference.

The distance between two methods is the length of the shortest path between them in the undi-
rected call graph. The undirected call graph is a variant of the traditional call graph that contains a
node VM for each method M in the program. There is an edge between two nodes VM and VN if
there exists a call from method M to N or vice versa.

By using this distance, we can define three distance metrics analogous to the impact metrics
defined above:

Coverage distance—For each method that has a coverage difference, we compute the distance via
the shortest path to the method that contains the mutation. The coverage distance is the longest of
these distances because this represents the furthest coverage impact this mutation has.
Data distance—For each method that has a data difference, we compute the distance via the
shortest path to the method that contains the mutation. The data distance is then the longest of
these distances, as this represents the furthest data impact this mutation has.
Combined coverage and data distance—The maximum of the data and coverage distance.
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6.6. Equivalence Thresholds

Each of the metrics defined above (Sections 6.5 and 6.4) produces a natural number that describes
the impact of a mutation. As we want to automatically classify mutations that are less likely to be
equivalent, we introduce a threshold t : A mutant is considered to have an impact if and only if its
impact metric is greater than or equal to t .

7. EVALUATION

We evaluated the coverage and data-based impact metrics in three experiments. First, we applied our
techniques to automatically classify mutants to the 140 manually classified mutants (Section 7.1).
For our second experiment, we devised an evaluation scheme on the basis of mature test suites. This
automated evaluation scheme is presented in Section 7.2 and compares the detection rate of mutants
with impact (MI) and the mutants with no impact (MNI). Finally, we were interested if the mutants
with the highest impact are less likely to be equivalent. We, therefore, ranked the mutants accord-
ing to their impact and looked at the highest-ranked mutants (Section 7.3), both for the manually
classified mutants and the ones detected by the test suites.

7.1. Impact of the Manually Classified Mutations

In the first experiment, we wanted to evaluate our hypothesis that MI on coverage or return values are
less likely to be equivalent. We, therefore, determined the coverage and data differences and com-
puted the impact (Section 6.4) and distance metrics (Section 6.5) for the 140 manually classified
mutants and automatically classified them by using a threshold of 1 for all metrics. Then, we com-
pared these results with the actual results of the manual classification. To quantify the effectiveness
of the classification, we computed its precision and recall:

� The precision is the percentage of mutants that are correctly classified as non-equivalent, that
is, the mutant has an impact and is non-equivalent. A high precision implies that the results
of a classification scheme contain few false positives—that is, most mutants classified as
non-equivalent are indeed non-equivalent.
� The recall is the percentage of non-equivalent mutations that are correctly classified as such. A

high recall means that there are few false negatives—that is, a high ratio of the non-equivalent
mutations was retrieved by the classification scheme.

Although it is easy to achieve a 100% recall (just classify all mutants as non-equivalent), the
challenge is to achieve both a high precision and a high recall.

The results for evaluating the different metrics on the classified mutants are summarized in
Table VI. Each entry gives first the precision of the metric and then its recall. Besides the metrics
defined above, the table also contains the results for the impact on dynamic invariants (Section 6.3).

When considering the average results (last row), we can see that all techniques have a high preci-
sion, ranging from 68% for the data distance and invariant metric to 79% for coverage distance. This

Table VI. Effectiveness of classifying mutations by impact: precision (left) and recall (right).

Coverage Data Comb. Coverage Data Comb. Invariant
impact impact impact distance distance distance impact

ASPECTJ 72/87 72/87 72/87 77/67 67/67 67/67 100/7
BARBECUE 100/43 100/29 100/43 100/43 100/29 100/43 75/43
COMMONS 0/0 0/0 0/0 0/0 0/0 0/0 50/17
JAXEN 67/60 78/70 73/80 67/60 78/70 73/80 50/10
JODA-TIME 90/64 89/57 91/71 90/64 89/57 91/71 100/21
JTOPAS 100/70 43/30 64/70 100/60 50/30 67/60 100/10
XSTREAM 50/25 67/25 60/38 50/13 67/25 67/25 40/25
Total 75/56 67/48 70/61 79/49 68/44 71/55 68/19

The first value in a cell gives the precision and the second the recall.
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means that 68% to 79% of all mutations classified as non-equivalent actually are non-equivalent. In
comparison, a simple classifier that classifies all mutations as non-equivalent would have a precision
of 54%. Thus, the metrics improve over the simple approach by 14 to 25 percentage points.

Mutations with impact on coverage and data have a likelihood of 68 to 79% to be
non-equivalent, compared to 54% across all mutations.

When we look at the results of each project, COMMONS is a clear outlier, with a precision
and recall of zero for almost all metrics. This is due to several mutations that alter the caching
behaviour of some methods. Although they are manually classified as equivalent because the meth-
ods still return a correct object, they have a huge impact because new objects are created at every
call instead of taking them from the cache. When we look at the result of the manual classification
for COMMONS (Table IV), we also see that it is the project with the highest number of equiva-
lent mutants—which might indicate that most mutations that are not detected by the test suite are
equivalent.

The recall values for the coverage and data metrics range from 44% for data distance to 61%
for the combined impact metric. Both the combined impact and combined distance metric have a
higher recall than the two metrics they are based on. This, however, comes at a cost of a lower
precision. Furthermore, all coverage and data metrics also have a far better recall than the earlier
invariant-based technique [4], which has a recall of only 19%.

Coverage and data impact have better recall values than invariant impact.

There is always a trade-off between precision and recall. Increasing either value decreases the
other one. The simple classifier, for example, has a recall of 100% by definition while it only has a
precision of 55 %. On the other hand, we can also increase the precision of our metrics by increasing
the threshold; for example, when we use a threshold of 2 for the coverage impact, we get a precision
of 81% and a recall of 44%.

All distance metrics have a lower recall than their corresponding impact metrics. A reason for this
is that some mutations impact methods that are not connected via method calls. In these cases, the
impact propagates through state changes.

7.1.1. Sensitivity Analysis. The previous results were all computed with a threshold of 1. Thus, it is
not clear how the metrics perform when a higher threshold is used. In order to analyse its influence,
we repeated the previous experiment with varying thresholds. Figure 5 shows a graph for each dis-
tance metric. The x-axis displays the threshold, and the y-axis shows the percentage for precision
and recall. A continuous line stands for the precision whereas a dashed line stands for the recall. For
a higher threshold, we would expect higher precision as only the mutations with a higher impact are
considered. This comes at the cost of a lower recall as fewer mutations are considered in total. By
looking at the graphs, we can see that all metrics follow this trend. For the distance-based metrics,
however, this trend only holds up to a threshold of 15. For thresholds greater than 15, both recall
and precision are 0 because our sample contains no non-equivalent mutation with a distance impact
greater than 15. In contrast to the distance-based metrics, the trend holds for the coverage, data and
combined impact up to a threshold of 100.

Coverage and data metrics are more stable for higher thresholds than distance based metrics.

7.2. Impact and Tests

Besides our evaluation on the manually classified mutations, we also wanted a broader objective
evaluation scheme that can be automated. However, in order to automatically determine the equiva-
lence of a mutation, we need either a test suite that detects all non-equivalent mutations or an oracle
that tells the equivalence of a mutation. Unfortunately, obtaining such a test suite or an oracle is
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Figure 5. Precision and recall of the impact metrics for different thresholds.

infeasible. Thus, we decided to base our automated evaluation scheme on the existing mature test
suites of the projects.

The rationale for our evaluation is as follows: A mutation classification scheme helps the pro-
grammer when it detects many non-equivalent and fewer equivalent mutants. For every mutant that
is detected by the test suite, we know for sure that it is non-equivalent. If we can prove that a classi-
fication scheme has a high precision on the mutations that are detected by the test suite, this might
also hold for the mutations that are not detected by the test suite.

Thus, we applied the impact metrics to all mutations in each project and evaluated them on the
mutations detected by the test suite. The results are given in Tables VII–IX.

For each project and impact metric, we determined the number of mutations that had an impact
(MIs in column 2) and the number that had no impact (MNIs in column 3). For the MIs and MNIs,
we then computed the ratio that was detected by the test suite (column 4 and 5).

In Section 6.6, we saw that we need a threshold t when we consider a mutation to have an impact
according to the underlying metric. As our manual classification showed 45% of the undetected
mutations to be equivalent, we automatically set t so that at most 45% of the undetected mutations
are classified as having no impact.

Table VII. Assessing whether mutants with impact on coverage are detected by tests.

Top 5% Top 10% Top 25%
Project Number of Number of MIs MNIs MIs MIs MIs
name MIs MNIs detected (%) detected (%) detected (%) detected(%) detected (%)

ASPECTJ 5 531 1 661 76 20 100 100 99
BARBECUE 1 045 528 83 32 100 97 99
COMMONS 10 061 4 559 97 58 98 99 99
JAXEN 5 997 548 97 26 100 100 100
JODA-TIME 15 883 2 037 95 18 100 100 99
JTOPAS 1 362 150 93 5 100 100 100
XSTREAM 5 940 788 97 39 100 100 100

MI, mutation with impact; MNI, mutation with no impact.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2013; 23:353–374
DOI: 10.1002/stvr



COVERING AND UNCOVERING EQUIVALENT MUTANTS 365

Table VIII. Assessing whether mutants with impact on data are detected by tests.

Top 5% Top 10% Top 25%
Project Number of Number of MIs MNIs MIs MIs MIs
name MIs MNIs detected (%) detected (%) detected (%) detected(%) detected (%)

ASPECTJ 5 186 2 006 80 19 100 99 99
BARBECUE 956 617 92 25 100 97 99
COMMONS 7 861 6 759 98 70 97 98 98
JAXEN 6 005 540 95 46 100 100 100
JODA-TIME 15 173 2 747 91 55 100 100 99
JTOPAS 1 286 226 94 31 100 100 100
XSTREAM 5 543 1 185 95 64 100 100 100

MI, mutation with impact; MNI, mutation with no impact.

Table IX. Assessing whether mutants with combined coverage and data impact are detected by tests.

Top 5% Top 10% Top 25%
Project Number of Number of MIs MNIs MIs MIs MIs
name MIs MNIs detected (%) detected (%) detected (%) detected(%) detected (%)

ASPECTJ 5 200 1 992 81 17 100 100 99
BARBECUE 1 142 431 81 25 100 97 99
COMMONS 10 467 4 153 95 59 98 98 99
JAXEN 6 063 482 95 41 100 100 100
JODA-TIME 15 841 2 079 91 43 100 100 99
JTOPAS 1 388 124 92 6 100 100 100
XSTREAM 6 059 669 94 52 100 100 100

MI, mutation with impact; MNI, mutation with no impact.

The ratio of mutations with impact ranges from 54% (7861 out of 14 620) for COMMONS and
data impact (Table VIII) up to 93% (6063 out of 6545) for JAXEN and the combined impact metric
(Table IX). The number of mutations with impact that are detected is around 90% on average (i.e.,
at most 10% are equivalent). The average ratio of mutations with no impact ranges from 28% for
coverage impact to 45% for data and combined impact. These results indicate that the impact met-
rics classify the mutations with a high precision, whereas the coverage impact metric has the highest
precision.

Of the mutations that have impact on coverage or data, at most 10% are equivalent.

7.2.1. Sensitivity Analysis. We investigated the sensitivity of our approach to the threshold by
repeating the previous experiment for the coverage impact measure and by varying values for the
threshold. The results are shown in Figure 6. For each of the seven projects, there is one graph,
where the x-axis gives the different threshold values and the y-axis the percentage for three dif-
ferent measurements: (i) a solid line for the mutations with impact, (ii) a dashed line for the ratio
between detected and undetected mutations with impact and (iii) a dotted line for the ratio between
detected and undetected mutations with no impact.

The percentage of mutations with impact declines for all projects, and for BARBECUE, COM-
MONS and JTOPAS, there are no mutations with an impact greater than 200, whereas for JAXEN,
JODA-TIME and XSTREAM, there are some mutations with an impact greater than 800. The ratio
of detected mutations with impact rises up to 100% for all mutations when higher thresholds are
used. This is because only mutations with a big impact (mostly mutations that cause exceptions) are
considered. The ratio of detected mutations with no impact also rises for higher thresholds, because
more mutations are considered to have no impact.

At higher thresholds 100% of the mutations with impact are detected.
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Figure 6. Percentage of mutations with impact and detection ratios of mutations with and without impact
for varying threshold.

7.2.2. Mutation Operators. As the results from the manual classification indicated that there is a
difference in ratio between equivalent and non-equivalent mutations for different mutation opera-
tors (Section 5.3), we were interested in the detection ratios for mutation operators. To this end, we
grouped the results for combined coverage and data impact by mutation operator and combined the
results for all projects. Table X summarizes the results. The number of mutations (column 2) that
are produced for an operator ranges from 2359 for replace arithmetic operator to 22 457 for replace
numerical constant. Similar to the results concerning equivalence (Section 5.3), there is a difference
between operators that manipulate the control flow (negate jump condition and omit method call)
and operators that manipulate data (replace numerical constant and replace arithmetic operator).

Compared with the data manipulating operators, the control flow manipulating operators have
higher detection rate (87% to 90% vs 77% to 81% in column 3), more mutations with impact (92%
to 94% vs 85% to 87% in column 4) and higher detection rates for mutations with impact (88% to
91% vs 84% to 88% in column 5).

Mutations that manipulate the control flow have higher impact and higher detection rates than
mutations that manipulate data.

7.3. Mutations with High Impact

In the previous experiments, we saw that mutations with impact are more likely to be non-equivalent.
Besides that, we were interested in whether mutations with a high impact are more likely to be
non-equivalent.

Table X. Detection ratios for different operators.

Mutation Number of Detected MI (%) MI
operator mutants mutants (%) detected (%)

Replace numerical constant 22 457 76.96 85.08 83.59
Negate jump condition 9 790 90.41 91.65 90.69
Replace arithmetic operator 2 359 80.63 86.90 87.95
Omit method call 21 484 86.55 94.42 88.11
Total 56 090 83.14 89.88 86.85

MI, mutation with impact.
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Table XI. Focusing on mutations with the highest impact: precision of
the classification.

Impact metric Top 15% Top 20% Top 25%

Coverage impact 88% 91% 93%
Data impact 88% 91% 86%
Combined impact 90% 85% 76%
Coverage distance 86% 80% 75%
Data distance 88% 80% 85%
Combined distance 89% 75% 80%

To evaluate this hypothesis, we did two experiments. First, we ranked the mutations that were
detected (as described in Section 7.2) by their impact, picked the top 5%, 10%, and 25% and checked
how many of them were non-equivalent. In a second experiment, we ranked the mutations from the
manual classification according to their impact for the different impact metrics. Then, we picked the
15%, 20% and 25% of the highest-ranked mutations out of all mutations classified as non-equivalent
by the metric and checked if they were correctly classified.

The results for the first experiment (for mutations detected by the test suite) can be found in
the last three columns of Tables VII–IX. For many projects and impact metrics, the 25% of muta-
tions with the highest impact are all detected. If not all are detected, at least 98% of them are. For
the impact on invariants [4], we observed a similar trend but not as distinctive as for the data and
coverage impact metrics.

Table XI shows the results for the manual classification. For all impact metrics, 75% or more out
of the top 25% are non-equivalent. Compared with the precision results in Table VI, picking the 25%
of mutations with the highest impact attains a higher ratio of non-equivalent mutations than choos-
ing mutations with impact in no specific order. In this setting, the coverage impact metric performs
best again. When we choose the top 25% ranked mutations, 93% of them are non-equivalent.

Of the mutations with the highest coverage impact, more than 90% are non-equivalent.

The results for the detected mutants indicate that a high impact strongly correlates with non-
equivalence, and the results for the manually classified mutations confirm this finding for the
undetected mutants.

In practice, this means that focusing on the mutations with the highest impact will yield the fewest
amount of equivalent mutants. The question is whether mutations with a high impact are also the
most valuable mutations—that is, whether they uncover most errors or the most important errors.
Our intuition tells us that if we can make a change to a component that impacts several other com-
ponents, while the test suite still does not detect it, such a change has a higher chance to be valuable
than a change whose impact is hardly measurable. The relationship between impact and value of
mutations remains to be assessed and quantified, though.

8. MUTATION OPERATORS

JAVALANCHE uses a reduced set of mutation operators (as described in Table I) in its standard
configuration. This standard set of operators was also used for the experiments presented in this
paper. The set was adapted from the mutation operators used by Andrews et al. [1], and their set
again was adapted from the sufficient mutation operators as determined by Offutt et al. [10]. In their
study, Offutt et al. determined a reduced set of mutation operators that can be used to obtain results
similar to applying all possible mutation operators. In an empirical study on 10 Fortran programs,
they showed that five out of 22 mutation operators are sufficient; that is, test suites that detect all
mutants produced by these operators detect 99.5% of all mutants.

Compared with other research, this choice of different operators might influence our results
because the operators might produce mutations that are easier or more difficult to detect, and they
might produce a different ratio of equivalent mutants. Notice that also other factors might influence
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our results; for example, a different programming language is used (Fortran vs Java), the investi-
gated programs have a different structure and a different size (small procedural programs vs large
object-oriented systems consisting of multiple classes), and the types of test suites differ (simple test
suites that test a small program exhaustively vs complex test suites that test huge parts of a system).

In order to quantify the differences between using the JAVALANCHE standard configuration and
using the sufficient operators as proposed by Offutt et al., we implemented the sufficient operators
in JAVALANCHE, applied them to our subject programs and compared the results.

The operators were implemented according to their description in the book Introduction to soft-
ware testing by Ammann and Offutt [15]. As JAVALANCHE manipulates the bytecode rather than
the source code, some adaption had to be made, and we implemented the operators as follows:

Absolute value insertion (ABS) Every load of a numerical variable (which corresponds to the
opcodes ILOAD, LLOAD, FLOAD, DLOAD, GETSTATIC, GETFIELD) is replaced with its absolute
value, the negative of the absolute value, and a call to a failOnZero() method with the vari-
able as argument. The failOnZero() method considers a mutation to be detected when zero
is passed as an argument.

Arithmetic operator replacement (AOR) In an arithmetic expression with two operants, the arith-
metic operator is replaced with all possible other operators (addition, subtraction, multiplication,
division, modulo); in addition, the whole expression is replaced with each of the two operators
(e.g. the operator and an operand are removed). The power operator is left out because Java does
not support it as a native operator. In the bytecode, this corresponds to manipulating the opcodes
IADD, ISUB, IMUL, IDIV, IREM and corresponding opcodes for the other primitive types LADD,
FADD, DADD and so forth.

Relational operator replacement (ROR) In a relational expression with two operands, the operator
is replaced with all possible other operators (greater/less (or equal), equals, not equals), and the
whole expression is replaced with true and false. This operator corresponds to manipulat-
ing the conditional jump opcodes in the bytecode, such as IF_ICMPEQ, IF_ICMPNE, IF_ICMPLT,
IF_ICMPGT, IF_ICMPLE, IF_ICMPGE and corresponding opcodes for other primitive types.

Logical operator replacement (LOR) In a logical expression with two operands, the operator is
replaced by all possible other operators (bitwise and/or/exclusive or); in addition, the expres-
sion is replaced with each of the two operators. Technically, this corresponds to manipulating the
opcodes IAND, IOR, IXOR, LOR, LAND and LXOR.

Unary operator insertion (UOI) Variables and constants are prepended with a unary operator
(arithmetic minus, and bitwise negate). The unary plus is not inserted because it is the default
and, thus, would only produce equivalent mutants. Moreover, the logical complement is left out
because the boolean type does not exist in the bytecode (it is expressed via integers). In the
bytecode, this operator corresponds to manipulating variable loads like ILOAD, LLOAD, FLOAD,
DLOAD, GETSTATIC, GETFIELD and instructions that load constants, for example, LDC, BIPUSH,
SIPUSH, ICONST_0, ICONST_1 and so forth.

The AOR, ROR, LOR and parts of the UOI operator were realized by extending existing
operators, and the ABS and parts of the UOI operator were newly implemented.

8.1. Results

The results for applying the JAVALANCHE standard operators and the sufficient operators are sum-
marized in Table XII. The table has one line for each project, and the last line summarizes the results
for all projects. Each entry first shows the results for the JAVALANCHE standard operators and then
for the sufficient operators. Each result consists of the total number of mutations, the mutation score
and the mutation score relative to the covered mutations for the mutations.
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Table XII. Comparison of JAVALANCHE standard operators and Offutt-96 sufficient operators.

JAVALANCHE standard operators Sufficient operators (Offutt et al.)

Project Number Mutation Mutation score Number Mutation Mutation score
name of mutants score (%) for covered (%) of mutants (%) score (%) for covered (%)

ASPECTJ 17 328 35.41 66.93 30 643 27.08 53.43
BARBECUE 17 631 5.68 59.40 19 387 15.90 61.38
COMMONS 14 716 79.16 84.73 47 683 72.58 74.86
JAXEN 9 285 48.39 70.95 18 559 43.23 58.94
JODA-TIME 21 052 51.42 82.83 54 032 51.62 76.31
JTOPAS 1 678 67.64 81.07 5 089 75.44 86.78
XSTREAM 8 240 68.54 87.05 13 236 64.83 74.77
Total 89 930 45.47 78.45 188 629 50.00 71.00

When we compare the number of mutations produced by the different operators (column 2 and
5), we see that the JAVALANCHE standard operators produce fewer mutations than the sufficient
ones for all projects. This is most pronounced for the COMMONS project, where the sufficient
operators produce more than three times as many mutants than the standard operators. In total, the
sufficient operators produced more than twice as many mutants than the standard operators (188 629
vs 89 930).

The mutation score, which is the ratio of detected mutants among all mutants, is higher for the
standard operators for four out of seven projects. In total, however, the mutation score for the suf-
ficient operators (50%) is higher than the total score for the standard operators (45%). We also
computed the mutation score relative to all covered mutants because the test suites of the projects
used for this study fail to cover many mutations, and therefore, these mutations cannot be detected.
The mutation score for the covered mutations is higher for the standard operators in five out of
seven cases. This trend also holds when we consider the total score over all projects, where 78% of
the covered mutations produced by the standard operators are detected versus 71% of the covered
mutations produced by the sufficient operators.

From these results, we can conclude that the mutations produced by the standard operators
are less likely to be covered by a project’s test suite, but if they are covered, they are easier to
detect. As the sufficient mutations are slightly harder to detect, we assume that they also produce
slightly more equivalent mutants. As the differences are moderate, we believe that they have no
significant impact on our results; for example, similar results would be obtained by using other
operators. Furthermore, our techniques to detect non-equivalent mutants do not depend on the oper-
ators and might as well be applied on mutations produced by the sufficient operators. Regarding
their effectiveness, there is no reason to believe that they would perform differently for these oper-
ators than for the standard operators. Further research will shed more light on the ‘best’ choice on
mutation operators.

9. THREATS TO VALIDITY

Like any empirical study, this study has limitations that must be considered when interpreting
its results.

Threats to external validity concern our ability to generalize the results of our study. In our stud-
ies, we have examined 20 sample mutations from seven non-trivial Java programs with different
application domains and sizes; some of them were larger by several orders of magnitude than
programs previously used for evaluation of mutation testing [1, 3, 16, 17]. Generally, our results
were consistent across a wide range of programs. Still, there is a wide range of factors of both
programs and test suites that may impact the results, and we, therefore, cannot claim that the
results would be generalizable to other projects.
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Threats to internal validity concern our ability to draw conclusions about the connections between
our independent and dependent variables. Regarding the manual classification (Section 5), our
own assessment may be subject to errors, incompetence or bias. At the time we conducted the
assessment, we did not know how the mutations would score in terms of impact; additionally, to
counter these threats, all our assessments are publicly available (Section 11).

For assessing mutations on the basis of coverage (Sections 7.1 and 7.2), our implementation could
contain errors that affect the outcome. To control for these threats, we ensured that earlier stages
had no access to data used in later stages. We advise and support independent confirmation of our
results and make the framework and necessary data publicly available (Section 11).

Threats to construct validity concern the appropriateness of our measures for capturing our depen-
dent variables. A threat to validity for the manual classification of mutations (Section 5) is that it
was carried out by one programmer. We addressed this by writing a test case for every mutation
classified as non-equivalent. This is the ultimate measure whether a mutant is non-equivalent, as
it proves the non-equivalence. The time needed to classify a mutant depends on the expertise of
a programmer for a project. The classification times reported in our paper refer to a programmer
with a medium expertise of the projects and programmers with a deep knowledge of a project
might classify mutations faster. When classifying mutations on the basis of impact (Section 7.1),
we directly provide the information as required by the programmer. Finally, in Section 7.2, our
assumption that the test suite measures real defects is an instance of the ‘competent programmer
hypothesis’ also underlying mutation testing [18]. This hypothesis may be wrong; however, the
maturity and widespread usage of the subject programs should suggest sufficient competence.
Further studies will help in completing our knowledge on what makes a test suite adequate.

10. RELATED WORK

10.1. Mutation Testing

The idea of using impact on executions to assess mutations was first presented in a short workshop
paper [8], where we framed the problem and showed preliminary results for the JAXEN project.
This paper adds impact on return values and method distance as an additional factor and brings a
full-fledged evaluation.

In an earlier paper [4], we experimented with an alternate approach, on the basis of dynamic
invariants as learned from the test suite. We found that mutations that violate dynamic invariants
also have a higher likelihood to be non-equivalent. Our current approach, though, is more efficient
to use, detects even minuscule alterations in behaviour and produces better results.

The problem of equivalent mutants was also diagnosed and tackled by other researchers.
Baldwin and Sayward [5] proposed the usage of compiler optimization techniques to detect equiv-
alent mutants. The idea of this approach is that some equivalent mutants are optimizations or
de-optimizations themselves or can be optimized away by a compiler. These techniques were later
implemented by Offutt and Craft [6]. The results indicate that the techniques can detect about 10%
of equivalent mutants.

Offutt and Pan [12] realized that detecting equivalent mutants is an instance of the feasible path
problem and presented an algorithm based on mathematical constraints. To be non-equivalent, a
mutation (i) must be reachable, (ii) cause an incorrect state after it is executed (iii) and must have an
effect on the final state. If a mutation cannot fulfill any of these conditions, then it must be equivalent.

These techniques are orthogonal to ours; if it can be statically proven that a mutation is equivalent,
we do not need to compute its impact and we can focus on those mutations that cannot be handled
with the static approaches. Another question is how well the static approaches scale. Whereas we
evaluated our impact metrics on programs of significant size, Offutt and Pan [12], for example,
evaluated their technique on 11 programs with 11 to 30 executable statements.
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Other approaches to the problem of equivalent mutants include aiding the programmer in detect-
ing equivalent mutants using program slicing [17], or generating fewer equivalent mutants by using
genetic algorithms [19] or higher-order mutants [20, 21].

Weak mutation, as proposed by Howden [13], considers a mutation to be detected when its con-
taining component computes a different result for at least one test case. In the paper, however,
it is not exactly specified what part of a program should be considered as a component. Thus,
Woodward and Halewood [22] introduced firm mutation as a middle ground between weak and
regular strong mutation testing. Firm mutation allows to define a starting point, where a mutation
is carried out, and an end point, where the results are compared with executions of an unmutated
program to decide whether the mutation is detected by the tests.

Similar to our data impact, both techniques also measure some differences of internal data during
the program run. In contrast to our approach, they only monitor a part of the program while we
collect the differences across the whole program. Furthermore, we are trying to predict a mutant’s
equivalence from the differences in internally used data instead of using it to define whether a mutant
is detected or not. As we can see from the results in Section 7.1, there are cases where a mutation
causes a component to produce different results, while the whole program produces a correct result.
Another perspective on our approach is that it can be seen as a mix between weak and strong muta-
tion. An impact indicates that a mutation is weakly detected (killed) by an input. If the mutation
is not detected by regular strong mutation testing, the impact can provide clues on how to strongly
detect it.

10.2. Statement Coverage

The traditional use of statement coverage is to measure how well tests exercise the code under test
and to detect areas of the code that are not covered by the tests. In contrast to our approach, which
also takes into account the execution frequency of a statement, traditional statement coverage just
measures whether a statement is executed or not. Besides its traditional use, statement coverage is
also used in different scenarios.

Jones and Harrold [23] presented the TARANTULA tool that uses coverage information for bug
localization. By comparing the statement coverage of passing and failing test cases, the suspicious-
ness of a statement is computed. The intuition behind this approach is that statements that are
primarily executed by failing test cases are more suspicious than statements primarily executed
by passing tests. The statements can then be ranked according to their suspiciousness. The results
of their evaluation show that the defective statement is ranked in the top 10% for 56% of the cases.
Both our approach and TARANTULA follow the idea that changed coverage expresses anomalous
behaviour. TARANTULA uses coverage differences between test cases to find a defective statement
whereas our approach uses coverage difference between runs of the test suite to estimate the impact
of a mutation.

Elbaum et al. [24] investigated how statement coverage data change when the source code is
changed. The results suggest that even small changes can have a huge impact on the code coverage.
However, the authors also state that the changes in code coverage are hard to predict. These findings
support our decision to use statement coverage as an impact metric because mutations are also small
changes. Furthermore, not all changes result in coverage changes, which indicates that the coverage
changes are sensitive to semantic changes.

Gordia [25] proposed the concept of dynamic impact analysis. To this end, the dynamic impact
graph is built, which is directed and acyclic. The nodes of the graph represent different executions
of the program elements. Edges are between nodes that can potentially impact each other. The edges
carry a probability that tells how likely an element impacts its direct successor. By traversing the
graph, it can be computed how likely it is that a program element impacts an output element. The
proposed applications of this approach are to estimate the risk of changes and to aid in test case
selection for mutation testing. However, this approach might also be used in a similar way as our
approach. For a not detected mutant, its probability of manipulating the output can be computed,
which corresponds to its chance of being non-equivalent.
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Test case prioritization [26] is concerned with meeting a specific performance goal faster by
reordering the execution of test cases, for example, to detect faults earlier in the testing process or
to reach specific coverage goals faster. To this end, coverage data are used to prioritize the test cases
according to different strategies.

Software change impact analysis aims to predict the results of code changes, that is, which parts
of the code are affected by a change. Orso et al. [27, 28] proposed an approach for software impact
analysis, which is also called COVERAGEIMPACT. They use their Gamma approach to collect actual
field data from deployed programs to compute the potential impact of a program change. To this end,
traces are taken from a sample of deployed programs. A trace, in this context, consists of all methods
that were called during an execution of the program. Every trace that traverses a changed method
is identified, and all methods that are covered by this trace are added to a set of covered methods.
Then, a static forward slice for every method that was changed is computed, and the methods that
are covered by the slice are collected in a set of slice methods. The intersection of both sets is the set
of methods that are potentially impacted by this change. Besides using the same name, our approach
and the approach by Orso et al. are different. The approach of Orso et al. samples many executions
on different machines to approximate the impact of potentially larger changes on deployed pro-
grams and typical usage scenarios, whereas our approach just aims to assess the impact of one small
change (mutation) for a specified usage scenario (test cases) for one deployed version. However,
using static forward slices can also help in assessing the equivalence of a mutant. A similar idea was
proposed by Hierons et al. [17].

11. CONTRIBUTIONS AND CONCLUSION

Our study shows that equivalent mutants are a serious problem that effectively inhibits widespread
usage of mutation testing, as demonstrated on a sample of 140 mutations on seven Java programs.
However, checking whether a mutation impacts coverage is an effective means to separate equiva-
lent from non-equivalent mutations. In addition, the technique is easy to implement and deploy. All
in all, this paper makes the following contributions:

A case study on the abundance of equivalent mutants. To our knowledge, the present study is
the first to assess the percentage of equivalent mutants on a set of seven real-life programs. The
percentage of equivalent mutants ranges from 25% to 70%.

Evidence into the effectiveness of checking coverage. If a mutation changes coverage, it has a 75%
chance to be non-equivalent. Thus, if a developer focuses on the mutations with most impact, she
has to deal with fewer equivalent mutants. This paper substantiates this claim in an evaluation on
seven programs as shown above.

A benchmark data set for further studies. We have made our framework and all experiment data
publicly available (see below). Further, researchers can thus use our classified mutations to eval-
uate their own techniques—and to improve upon our results.

Our own work does not stop at this point either. Our future work will concentrate on the following
topics:

How effective is mutation testing in improving test suites? By effectively weeding out equiva-
lent mutants, we can run large case studies comparing mutation testing with classical coverage
criteria—and assess how the value of mutations is related to their impact.

How can we find mutants with the highest impact? If a mutation has a high impact on the program
execution, but is undetected by the test suite, it may be particularly valuable. We are investigating
genetic algorithms to systematically generate such mutants.

Are components with high impact mutations defect prone? If mutations in a component have a
particularly high impact, this may indicate that changes to the component are particularly risky.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2013; 23:353–374
DOI: 10.1002/stvr



COVERING AND UNCOVERING EQUIVALENT MUTANTS 373

We want to study how the impact of mutations propagates across components and whether the
impact can be used to predict defects.

The JAVALANCHE framework is available at http://www.javalanche.org/.
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