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Abstract—A known problem of traditional coverage metrics
is that they do not assess oracle quality—that is, whether the
computation result is actually checked against expectations. In
this paper, we introduce the concept of checked coverage—the
dynamic slice of covered statements that actually influence an
oracle. Our experiments on seven open-source projects show
that checked coverage is a sure indicator for oracle quality—
and even more sensitive than mutation testing, its much more
demanding alternative.
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I. INTRODUCTION

How can I ensure that my program is well-tested? The
most widespread metric to assess test quality is coverage.
Test coverage measures the percentage of code features such
as statements or branches that are executed during a test.
The rationale is that the higher the coverage, the higher the
chances of catching a code feature that causes a failure—
a rationale that is easy to explain, but which relies on an
important assumption. This assumption is that we actually
are able to detect the failure. It does not suffice to cover the
error, we also need a means to detect it.

As it comes to detecting arbitrary errors, it does not
make a difference whether an error is detected by the test
(e.g., a mismatch between actual and expected result), by
the program itself (e.g., a failing assertion), or by the run-
time system (e.g., a dereferenced null pointer). To validate
computation results, though, we need checks in the test code
and in the program code—checks henceforth summarized
as oracles. A high coverage does not tell anything about
oracle quality. It is perfectly possible to achieve a 100%
coverage and still not have any result checked by even a
single oracle. The fact that the run-time system did not
discover any errors indicates robustness, but does not tell
anything about functional properties.

As an example of such a mismatch between coverage and
oracle quality, consider the test for the PatternParser
class from the JAXEN XPATH library, shown in Figure 1. This
test invokes the parser for a number of paths and achieves a
statement coverage of 83% in the parser. However, none of
the parsed results is actually checked for any property. The
parser may return utter garbage, and this test would never
notice it.

public void testValidPaths() throws
JaxenException, SAXPathException {
for (int i = 0; i < paths.length; i++) {
String path = paths[i];
Pattern p = PatternParser.parse(path);

}
}

Figure 1. A test without outcome checks.

To assess oracle quality, a frequently proposed approach
is mutation testing. Mutation testing seeds artificial errors
(mutants) into the code and assesses whether the test suite
finds them. A low score of detected mutants implies low
coverage (i.e., the mutant was not executed) or low oracle
quality (i.e., its effects were not checked). Unfortunately,
mutation testing is costly; even with recent advancements,
there still is manual work involved to weed out equivalent
mutants.

In this paper, we introduce an alternative, cost-efficient
way to assess oracle quality. Using dynamic slicing, we
determine the checked coverage—statements that were not
only executed, but that actually contribute to the results
checked by oracles. In Figure 1, the checked coverage is
0%, because none of the results ever flows into a run-time
check (again, in contrast to the 83% traditional coverage).
However, adding a simple assertion that the result is non-
null already increases the checked coverage to 65%; adding
further assertions on the properties of the result further
increases the checked coverage.

Using checked coverage as a metric rather than regular
coverage brings significant advantages:

• Few or insufficient oracles immediately result in a low
checked coverage, giving a more realistic assessment
of test quality.

• Statements that are executed, but whose outcomes are
never checked would be considered uncovered. As a
consequence, one would improve the oracles to actually
check these outcomes.

• Rather than focusing on executing as much code as
possible, developers would focus on checking as many
results as possible, catching more errors in the process.

• To compute checked coverage, one only needs to run



the test suite once with a constant overhead—which
is way more efficient than the potentially unlimited
number of executions induced by mutation testing.

This paper introduces the concept of checked coverage
(Section II) and evaluates the concept on seven open-source
projects (Section III). Our results show that checked cover-
age is a sure indicator for oracle quality—and even more
sensitive than mutation testing, its much more demanding
alternative. After discussing the limitations (Section IV),
the threats to validity (Section V), and the related work
(Section VI), we close with conclusion and consequences
(Section VII).

II. CHECKED COVERAGE

Our concept of checked coverage is remarkably simple:
Rather than computing coverage—the extent to which code
features are executed in a program—, we focus on those code
features that actually contribute to the results checked by
oracles. For this purpose, we compute the dynamic backward
slice of test oracles—that is, all statements that contribute
to the checked result. This slice then constitutes the checked
coverage.

A. Program Slicing

Program slicing was introduced by Weiser [1], [2] as
a technique that determines the set of statements that po-
tentially influence the variables used in a given location.
Weiser claims that this technique corresponds to the mental
abstractions programmers are making when they debug a
program. Korel and Laski [3] refined this concept and
introduced dynamic slicing. In contrast to the static slice
as proposed by Weiser, the dynamic slice only consists of
the statements that actually influenced the variables used in
a specific occurrence of a statement in a specific program
run.

A static slice is computed from a slicing criterion (s, V ),
where s is a statement, and V is a subset of the variables
used in the program. A slice for a given slicing criterion
is computed by transitively following all data and control
dependencies for the variables V used in s, where data and
control dependencies are defined as follows:

Definition 1 (Data Dependency). A statement s is data
dependent on a statement t iff there is a variable v that is
defined (written) in t and referred to (read) in s, and there is
at least one execution path from t to s without a redefinition
of v.

Definition 2 (Control Dependency). A statement s is control
dependent on a statement t iff t is a conditional statement
and the execution of s depends on t.

A dynamic slicing criterion (so, V, I), in addition, spec-
ifies the input I to the program, and distinguishes between
different occurrences o of a statement s. A dynamic slice for

a criterion is then computed from a trace (trajectory) of a
program run that uses I as input. The transitive closure over
all dependencies of all variables V that are used in the oth
occurrence of statement s forms the dynamic slice.

In contrast to dynamic slices, static slices take all possible
dependencies into account. Therefore, static slices tend to
be much bigger than the dynamic slices, where all actual
dependencies are known. As we use the slices to measure
the quality of a test suite, which represents an execution
of a program, we choose dynamic slices for our approach.
Furthermore, we consider all occurrences of a statement for
a dynamic slice. This is done by computing the union of all
dynamic slices for every occurrence of a statement.

static int max(int a, int b) {
  int maxVal;
  countCalls++;
  if (a > b) {
    maxVal = a;
  } else {
    maxVal = b;
  }
  return maxVal;
}
public void testMax() {
  assertEquals(5, max(5, 4));
}

Data Dependency

Control Dependency

Figure 2. Data and control dependencies for a method and its test.

The code shown in Figure 2, for example, has a method
that computes the maximum for two integers, and a test that
checks the result for one input. Solid arrows show the data
dependencies and dashed arrows the control dependencies.
The static slice from the assert-statement consists of all
statements in the max() method except for the increment
of countCalls, as there is neither a control nor a data
dependency from the variables used in the assert-statement
to countCalls. The dynamic slice additionally excludes
the else part in the max() method, since this code is not
exercised by the test, and consequently these control and
data dependencies are not present in the trace.

B. From Slices To Checked Coverage

For the checked coverage, we are interested in the ratio
of statements that contribute to the computation of values
that get later checked by the test suite. To this end, we
first identify all statements that check the computation inside
the test suite. Then we trace one run of the test suite, and
compute the dynamic slice for all these statements. This
gives us the set of statements that have a control or data
dependency to at least one of the check statements. The
checked coverage is then the percentage of the statements
in the set relative to all coverable statements.



Table I
DESCRIPTION OF SUBJECT PROGRAMS.

Project Program Test code Number Test suite
Name Description Version size (LOC) size (LOC) of tests runtime

ASPECTJ AOP extension to Java cvs: 2010-09-15 156,780 32,942 339 11s
BARBECUE Bar code creator svn: 2007-11-26 4,837 3,293 153 3s
COMMONS Helper utilities svn: 2010-08-30 18,452 29,699 1,787 33s
JAXEN XPath engine svn: 2010-06-07 12,438 8,418 689 11s
JODA-TIME Date and time library svn: 2010-08-25 26,582 50,738 2,734 37s
JTOPAS Parser tools 1.0(SIR) 2,031 3,185 128 2s
XSTREAM XML object serialization svn: 2010-04-17 15,266 16,375 1113 7s
Lines of Code (LOC) are non-comment, non-blank lines as reported by sloccount.
For ASPECTJ, we only considered the org.aspectj.ajdt.core package, which has 28,476 lines of source code and 6,830 lines of test code.

C. Implementation

For the implementation of our approach, we use Ham-
macher’s JAVASLICER [4] as a dynamic slicer for Java. The
slicer works in two phases: In the first phase, it traces a
program and produces a trace file, and in the second one, it
computes the slice from this trace file.

The tracer manipulates the java bytecode of a program
by inserting special tracing statements. At run time, these
inserted statements log all definitions and references of a
variable, and the control flow jumps that are made. By
using the Java agent mechanism, all classes that are loaded
by the Java Virtual Machine (JVM) can be instrumented.
(There are a few exceptions though that are explained in
Section IV.) Since Java is an object-oriented language, the
same variable might be bound to different objects. The tracer
however needs to distinguish these objects. For that purpose,
the slicer assigns each object a unique identifier. The logged
information is directly written to a stream that compresses
the trace data using the SEQUITUR [5], [6] algorithm and
stores it to disk.

To compute the slices, an adapted algorithm from Wang
and Roychoudhury [7], [8] is used. The data dependencies
are calculated by iterating backwards through the trace. For
the control dependencies, the control flow graph (CFG) for
each method is built, and a mapping between a conditional
statement and all statements it controls is stored. With this
mapping, all the control dependent statements for a specific
occurrence of a statement can be found.

Our implementation computes the checked coverage for
JUnit test suites, and works in 3 steps:

1) First all checks and all coverable statements are identi-
fied. We use the heuristic that all calls to a JUnit assert-
method from the test suite is considered as a check. As
coverable lines, we consider all lines that are handled
by the tracer. Note that this excludes some statements
such as try, or simple return statements, as they
do not translate to data or control flow manipulating
statements in the byte code.

2) Second all test classes are traced separately. This is
a performance optimization, since we observed that it

is more efficient to compute slices for several smaller
files than computing it for one big trace file.

3) Finally a union of all the slicing criteria that corre-
spond to check statements is built, since the slicer
supports to build a slice for a set of slicing criteria. By
merging the slices from the test classes, we obtain a set
of all statements that contribute to checked values. The
checked coverage score is then computed by dividing
the number of statements in this set by the—previously
computed—number of coverable statements.

III. EVALUATION

In the evaluation of our approach, we were interested
whether checked coverage can help in improving existing
test suites of mature programs. To this end, we computed
the checked coverage for seven open-source programs that
have undergone several years of development and come
with a JUnit test suite. We manually analyzed the results,
and found examples where the test suites can be improved
to more thoroughly check the computation results (see
Section III-B). We also detected some limitations of our
approach, summarized in Section IV.

Furthermore, we were interested how sensitive our tech-
nique is to oracle decay—that is, oracle quality artificially
reduced by removing checks. In a second automated exper-
iment (Section III-C), we removed a fraction of the assert-
statements from the original test suites and computed the
checked coverage for these manipulated test suites. This
setting also allows us to compare checked coverage against
other techniques that measure test quality, such as statement
coverage and mutation testing.

A. Evaluation Subjects

As evaluation subjects we used seven open-source projects
that are listed in Table I. The subjects come from different
application areas (column 2), and we took a recent revision
from the version control system (column 3)—except for
JTOPAS, which was taken from the software-artifact infras-
tructure repository (SIR) [9]. We removed tests that fail, and
tests whose outcome is dependent on the order or frequency
of execution, as we consider this a flaw of the test suite.



Table II
CHECKED COVERAGE, STATEMENT COVERAGE, AND MUTATION SCORE.

Project Checked Statement Mutation
Name Coverage % Coverage% Score %

ASPECTJ 13 38 63
BARBECUE 19 32 66
COMMONS 62 88 86
JAXEN 55 78 68
JODA-TIME 47 71 83
JTOPAS 65 83 73
XSTREAM 40 77 87

Average 43 67 75

Table II gives the results for computing the checked
coverage (column 2), statement coverage (column 3) and
the mutation score (column 4) for our subject projects. The
statement coverage values are between 70% and 90% for all
projects except for ASPECTJ and BARBECUE. For ASPECTJ
the results are lower, because we only used a part of the
test suite, in order to run our experiments in a feasible
amount of time. Although we only computed the coverage
of the module that corresponds to the test suite, test suites
of other modules might also contribute to the coverage of
the investigated module. For BARBECUE, we had to remove
tests that address graphical output of barcodes, as we ran our
experiments on a server that has no graphics system installed
and this causes these tests to fail. Consequently, these parts
are not covered.

In all projects, checked coverage is lower than regular
coverage, with an average difference of 24%. With 37% this
difference is most pronounced for XSTREAM. This is due to
a library class that directly manipulates memory and is used
by XSTREAM in a central part. As this takes place outside
of Java, some dependencies cannot be traced by the slicer,
which leads to statements not being considered for checked
coverage, although they should.

The traditional definition of the mutation score is the
number of detected mutations divided by the total number
of mutations. In our setting, we only consider the score
for covered mutations (last column). These values are also
lowest for ASPECTJ and BARBECUE, because of the reasons
mentioned earlier.

B. Qualitative Analysis

In our first experiment we were interested in whether
checked coverage can be used to improve the oracles of
a test suite. We computed checked and statement coverage
for each class individually. Then we manually investigated
those classes with a difference between checked and regular
coverage, as this indicates code that is executed without
checking the computation results.

In the introduction we have seen such an example for a
test of PatternParser, a helper class for parsing XSLT
patterns, from the JAXEN project (Figure 1). The corre-

sponding test class calls the parse() method with valid
inputs (shown in Figure 1) and invalid inputs, and passes
when no exception or an expected exception is thrown. The
computation results of the parse() method, however, are
not checked. Consequently, this leads to a checked coverage
of 0%.

boolean checkCreateNumber(String val){
try {
Object obj =

NumberUtils.createNumber(val);
if (obj == null) {

return false;
}

return true;
} catch (NumberFormatException e) {
return false;

}
}

Figure 3. Another test with insufficient outcome checks.

Another example of missing checks can be found in the
tests for the NumberUtils class of the COMMONS-LANG
project. Some statements of the isAllZeros() method—
that is indirectly called by the createNumber() method
— are not checked although they are covered by the
tests. The test cases exercise these statements via the
checkCreateNumber() method shown in Figure 3. This
method calls createNumber() and returns false when
null is returned or an exception is thrown, or true oth-
erwise. The result of createNumber(), however, is not
adequately checked. Adding a test that checks the result of
createNumber() would include the missing statements
for the checked coverage.

public String next()
throws TokenizerException {

nextToken();
return current();

}
Figure 4. A method where the return value is not checked.

Figure 4 shows the next() method from the
AbstractTokenizer class of the JTOPAS project. Al-
though this method is executed several times by the test
suite, its return value is never checked and consequently
reported as missing from checked coverage. This means that
the method could return any value and the test suite would
not fail. In the same way as for the previous examples,
adding an assertion that checks the return value properly
solves this problem.

Mature test suites miss checks.

C. Disabling Oracles

In our first experiment, we have seen cases were a test
suite covers parts of the program, but does not check
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Figure 5. Coverage values for test suites with removed assertions.

the results well enough. As discussed earlier, this can be
detected by checked coverage. In our second experiment,
we explored the questions:

• How sensitive is checked coverage to missing checks?
• How does checked coverage compare to other metrics

that measure the quality of a test suite?
To this end, we took the original JUnit test suites of the

seven projects, and produced new versions with decayed
oracles—that is, we systematically reduced oracle quality by
removing a number of assertions executed in these oracles.
In JUnit, assertions constitute the central means for checking
computation results; therefore, removing assertions means
disabling checks and therefore reducing oracle quality.

To disable an assertion in the source code, we completely
removed the line that contains the assertion. In some cases,
we had to remove some additional statements, as the new
test suites were not compilable anymore, or some of the test
cases failed when assertions were removed, because they
relied on the side effects that happened inside the removed
statements. After the test suite could be successfully com-
piled and had no failing tests anymore, we computed the
coverage metrics for each of the test suite.

The results are given in Figure 5. For each of our subject
programs there is a plot that shows the statement coverage
value, checked coverage value, and mutation score for a
test suite with all assertions enabled (0% removed), and
with 25, 50, 75, and 100 percent of the assertions removed,
respectively.

For almost all projects, all metric values decrease with a
decreasing number of assertions. An exception is ASPECTJ,
where the statement coverage values stay constant for all

test suites. This is due to the nature of the ASPECTJ test
suite that does not have any computations inside assertions.
Furthermore, the checked coverage value and the mutation
score are higher for the test suite with 50% assertions
removed than for the suite with 25% removed. As we choose
the disabled assertions randomly each time, some assertion
statements that check more parts of the computation were
disabled in the 25% test suite and not disabled in the 50%
test suite. This also explains the higher values for statement
coverage in the 75% than the 50% test suite for BARBECUE,
and the difference for XSTREAM and checked coverage
between 50 and 25 percent.

All test quality metrics decrease with oracle decay.

In order to compare the decrease of the different metrics,
we computed the decrease of each metric relative to the
value for the original test suite. Figure 6 shows the results
for the seven subject programs.

For statement coverage, the decrease values are the lowest
for all projects. This comes by no surprise, as it is not
designed to measure the quality of checks in a test suite.
Thus, it is the least sensitive metric to missing assert-
statements.

Checked coverage and mutation score show a similar
development for BARBECUE, COMMONS, JODA-TIME and
JTOPAS for 0–75% of removed checks. For the other
projects, there is a greater decrease for the checked coverage
than for the mutation score. On average, when 75% of
the tests are removed, checked coverage decreases by 23%,
whereas the mutation testing score only decreases by 14%.
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Figure 6. Decrease of the coverage values relative to the coverage values of the original test suite.

Checked coverage is more sensitive to missing assertions
than statement coverage and mutation testing.

Note that when all checks are removed, checked coverage
drops to 0% for all projects. This is by construction of
the approach, as there are no statements left to slice from
once all checks are removed from the test suite. Since we
are interested in poor rather than nonexistent oracles, the
results obtained for the decays of 25–75% are much more
meaningful.

D. Explicit and Implicit Checks

As mutation testing is also a measure of a test suite’s
assertion quality, we might also expect that the mutation
score dramatically drops when no checks are left. However,
in the previous experiment, we have seen that test suites
with no assertions still detect a significant fraction of the
mutations (43 % on average). The reason for this is that a
mutation can be detected by an explicit check of the test suite
or by implicit checks of the runtime system. For modern
object-oriented and restrictive programming languages like
Java, many mutations are detected through theses implicit
runtime checks.

JAVALANCHE, the mutation testing tool that we use for
this study, uses the distinction made by JUnit in order to
classify a mutation as either detected by explicit or implicit
checks. JUnit classifies a test that does not pass either as a
failure (explicit), when an AssertionError was thrown
(e.g by an JUnit assertion method), or as an error (implicit),
when any other exception was thrown. As we were interested
how pronounced this effect is, we computed the fraction of

mutations detected by assertions for the original test suite
and the test suite with all checks removed.

Table III
MUTATIONS DETECTED BY EXPLICIT AND IMPLICIT CHECKS.

Project Original Test Suite All checks removed
Name Total Explicit% Total Explicit%

ASPECTJ 5736 63% 5529 53%
BARBECUE 1036 59% 357 6%
JODA-TIME 12164 56% 6094 15%
JAXEN 4154 38% 3298 12%
JTOPAS 1295 57% 597 0%
COMMONS 13415 68% 3377 16%
XSTREAM 7764 35% 5156 5%

Total 45564 55% 24408 21%

Table III gives the results for each project. The first two
values are for the original test suite. First, the total number
of detected mutations (column 2) is given, and then the
percentage of them that are detected by implicit checks
(column 3). The remaining mutations are detected by explicit
checks. The two last columns give the corresponding values
for the test suite with all assert-statements removed.

For the original test suite, 32–65% of the mutations
are detected by implicit checks. This is mainly due to
NullPointerExceptions caused by mutations.

Almost half (45%) of the mutations are detected by
implicit checks.

The test suites with all checks removed still detect 54% of
the mutations that are detected by the original test suite; on
average, 21% of the detected mutations are found by explicit



checks. For this test suite, one might expect 0% of the
mutations detected by explicit checks. However, assertions
in external libraries—that are not removed— cause this
21%. Examples include the fail() method of JUnit or the
verify() method of a mocking framework.

One could argue that it need not matter how a mutation is
being found—after all, the important thing is that it is found
at all. Keep in mind, though, that implicit checks are not
under control by the programmer. A mutation score coming
from implicit checks thus reflects the quality of the run-time
checks rather than the quality of the test suite. Also, the run-
time system will only catch the most glaring faults (say, null
pointer dereferences or out of bound accesses), but will not
check any significant functional property. Therefore, having
mutations fail on implicit checks only is an indicator for
poor oracle quality—just as a low checked coverage.

A test suite with no assertions still detects over 50% of
the mutations detected by the original test suite;

around 80% of these are detected by implicit checks.

E. Performance
Table IV shows the runtime for checked coverage and

mutation testing. The checked coverage is computed in two
steps. First a run of the test suite is traced (Column 2),
then, using the slicer, the checked coverage (Column 3) is
computed from the previously produced trace file. Column 4
gives the total time needed to compute the checked cov-
erage. For almost all projects, the slicing step takes much
longer than tracing the test suite. XSTREAM, however, is an
exception. Here the slicing takes less time, because some
of the central dependencies are not handled by the tracer
(see Section IV). The last column gives the time needed

Table IV
RUNTIME TO COMPUTE THE CHECKED COVERAGE AND THE MUTATION

SCORE.

Project Checked Coverage Mutation
Name Trace Slice Total Test

ASPECTJ 0:08:51 0:35:26 0:43:17 20:18:38
BARBECUE 0:06:10 0:15:30 0:21:40 0:06:07
COMMONS 0:32:07 3:40:37 1:12:44 1:29:06
JAXEN 0:24:21 0:37:18 1:01:39 1:29:00
JODA-TIME 0:23:53 1:38:10 2:02:03 0:45:43
JTOPAS 0:04:04 0:05:32 0:09:36 0:41:25
XSTREAM 0:40:13 0:16:35 0:56:48 1:49:13

for mutation testing the programs with JAVALANCHE. When
we compare the total time needed to compute the checked
coverage with the time needed for mutation testing, checked
coverage is faster for four of our projects and mutation
testing is faster for three of the projects. Keep in mind,
though, that JAVALANCHE reaches its speed only through
a dramatic reduction in mutation operators; full-fledged
mutation testing requires a practically unlimited number of
test runs.

In terms of performance, checked coverage is on par
with the fastest mutation testing tools.

IV. LIMITATIONS

In some cases, statements that contribute to the compu-
tation of results that are later checked by oracles are not
considered for the checked coverage due to limitations of
JAVASLICER or limitations of our approach.

Native code imposes one limitation to the tracer. In Java
it is possible to call code written in C, C++, or assembly
via the Java Native Interface (JNI). This code cannot be
accessed by the tracer as it only sees the bytecode of the
classes loaded by the JVM. Regular programs rarely use
this feature. In the Java standard library however, there
are many methods that use the JNI. Examples include the
System.arraycopy() method, or parts of the Reflection
API. In these cases, the dependencies between the inputs and
the outputs of the methods are lost.

This limitation also caused the huge differences between
normal coverage and checked coverage for the XSTREAM
project. XSTREAM uses the class sun.misc.Unsafe,
which allows direct manipulation of the memory in a core
part. Therefore many dependencies get lost and the checked
coverage is lower than expected. Another limitation imposed
by the tracer is that the String class is currently not
handled. This class is used heavily in core classes of both the
JVM and the tracer; which makes it difficult to instrument
without running into circular dependencies. Handling this
class would allow the slicer to detect dependencies that are
currently missed.

try {
methodThatShouldThrowException();
fail("No exception thrown");

} catch(ExpectedException e) {
// expected this exception

}
Figure 7. A common JUnit pattern to check for exceptions.

A frequently used practise to check for exceptions is
to call a method under such circumstances that it should
throw an exception, and fail when no exception is thrown
(Figure 7). When the exception is thrown, everything is fine,
and nothing else is checked. Therefore, in our setting, the
statements that contributed to the exception are not on a
slice, and thus do not contribute to the checked coverage. A
remedy would be to introduce an assertion that checks for
the exception.

private boolean inSaneState = true;
...
if(!inSaneState)

exceptionThrowingMethod();
...

Figure 8. Statements that lead to not taking a branch.



Another limitation introduced by our approach are compu-
tations that lead to a branch not being taken. In Figure 8, for
example we have the boolean flag inSaneState. Later,
an exception is thrown when this flag has the value false.
Thus only computations that lead to the variable being set to
false can be on a dynamic slice, and computations that lead
to the variable being set to true will never be on a dynamic
slice. Such problems are inherent to dynamic slicing, and
would best be addressed by computing static dependencies
to branches not taken.

V. THREATS TO VALIDITY

Like any empirical study, this study has limitations that
must be considered when interpreting its results.

• External validity. Can we generalize from the results
of our study? We have investigated seven different
open-source projects, covering different standards in
maturity, size, domain, and test quality. But even with
this variety, it is possible that our results do not gener-
alize to other arbitrary projects.

• Construct validity. Are our measures appropriate for
capturing the dependent variables? The biggest threat
here is that our implementation could contain errors
that might affect the outcome. To control for this
threat, we relied on public, well-established open-
source tools wherever possible; our own JAVALANCHE
and JAVASLICER frameworks are publicly available
as open source packages to facilitate replication and
extension of our experiments.

• Internal validity. Can we draw conclusions about
the connections between independent and dependent
variables? The biggest threat here is that we only
use sensitivity to oracle decay as dependent variable—
rather than a more absolute “test quality” or “oracle
quality”. Unfortunately, there is no objective assess-
ment of test quality to compare against. The closest
would be mutation testing [10], but as our results
show, even programs without oracles can still achieve a
high mutation score by relying on uncontrolled implicit
checks. As it comes to internal validity, we are thus
confident that sensitivity to oracle decay is the proper
measure; a low checked coverage therefore correctly
indicates a low oracle quality.

VI. RELATED WORK

A. Coverage Metrics

During structural testing a program gets tested using
knowledge of its internal structures. Hereby, one is interested
in the quality of the developed tests, and how to improve
them in order to detect possible errors. To this end, different
coverage metrics have been proposed and compared against
each other regarding their effectiveness in detecting specific
types of errors, relative costs, and difficulty of satisfying
them [11], [12], [13], [14]. Each coverage metric requires

different items to be covered. This allows to compute a
coverage score by dividing the number of coverable items
by the number of items actually covered.

Best known, and most easy to compute is statement
coverage. It simply requires each line to be executed at least
once. Because some defects can only occur under specific
conditions, more complex metrics have been proposed. The
popular branch coverage requires each condition to evaluate
to both true and false at least once; decision coverage
extends this condition to boolean subexpressions in control
structures. A more theoretical metric is path coverage, mea-
suring how many of the (normally infinitely many) possible
paths have been followed. Similar to our approach data
flow testing criteria [15] also relate definitions and uses of
variables. These techniques consider the relation between
all defined variables inside the program and their uses.
For example, the all-uses criterion requires that for each
definition use pair a path is exercised that covers this pair.
In contrast, our approach is only targeted at uses inside the
oracles. Other definition use pairs are followed transitively
from there.

Each of these proposed metrics just measures how well
specific structures are exercised by the provided test input,
and not how well the outputs of the program are checked.
Thus, they do not assess oracle quality of a test suite.

B. Mutation Testing

A technique that aims at checking the quality of the
oracles is mutation testing. Originally proposed by Richard
Lipton [16], [17], mutation testing seeds artificial defects, as
defined by mutation operators, into a program and checks
whether the test suite can distinguish the mutated from the
original version. A mutation is supposed to be detected
(“killed”), if at least one test case fails on the mutated
version that passed on the original program. If a mutation
is not detected by the test suite, similar defects might be
in the program that are also not detected by the test suite.
Thus, these undetected mutants can give an indication on
how to improve the test inputs and checks. However, not
every undetected mutant helps in improving the test suite as
it might also be an equivalent mutant; that is a mutation that
changes the syntax but not the semantics of a program.

For our experiments we use the JAVALANCHE mutation
testing framework, that was developed with a focus on au-
tomation and scalability. To this end, JAVALANCHE applies
several optimizations, such as selective mutation [18], [19],
mutant schemata [20], using coverage data to reduce the
number of tests that need to be executed, and allowing
parallel execution of different mutations. A more detailed
description of JAVALANCHE can be found in our earlier
papers [21], [22].



C. Program Slicing

Static program slicing was originally proposed by Weiser
[1], [2] as a technique that helps the programmer during
debugging. Korel and Laski introduced dynamic slicing that
computes slices for a concrete program run. Furthermore,
different slicing variants have been proposed for program
comprehension; Conditioned Slicing [23] is a mix between
dynamic and static slicing, it allows some variables to have
a fixed value while others can take all possible values.
Amorphous Slicing [24] requires a slice only to preserve the
semantics of the behavior of interest, while syntax can be
arbitrarily changed, which allows to produce smaller slices.

Besides its intended use in debugging, program slicing has
been applied to many different areas [25], [26]. Examples
include, minimization of generated test cases [27], automatic
parallelization [28], [25], and the detection of equivalent
mutants [29].

D. State Coverage

The concept closest to checked coverage is state coverage
proposed by Koster and Kao [30]. It also measures the
quality of checks in a test suite. To this end, all output
defining statements (ODS)—statements that define a variable
that can be checked by the test suite—are considered. The
state coverage is defined as the number of ODS that are on
a dynamic slice from a check divided by the total number of
ODS. This differs from our approach, as we also consider
statements that influence the computation of variables that
are checked.

Furthermore, the number of ODS is dependent on the test
input: For different inputs, different statements might thus be
considered as output defining. This can lead to cases where
a test suite is improved by adding additional tests (with new
inputs), but the state coverage drops. Checked coverage stays
constant or improves in such cases.

Unfortunately, there is no broader evaluation of state
coverage that we can compare against. In a first short paper
[30], a proof of concept based on a static slicer, and one
small experiment is presented. A second short paper [31]
describes an implementation based on taint analysis [32],
but no experimental evaluation is provided.

VII. CONCLUSION AND CONSEQUENCES

To assess the quality of a test suite, developers so far
had the choice between two extremes: Coverage metrics
are efficient, but fail to assess oracle quality; and mutation
testing detects oracle issues, but is expensive in terms of
computation time and human labor. By assessing which parts
of the covered computation are actually checked by oracles,
checked coverage covers the middle ground, providing a
straight-forward means to assess oracle quality at reasonable
efficiency—and even more sensitive to oracle quality than
mutation testing, as shown in our experiments.

Like any quality metric, checked coverage can only be
an imperfect assessment of a test suite; a full assessment
needs to consider the entire problem context and its as-
sociated risks. Still, some aspects of programs and their
quality assurance could eventually be integrated into the
concept. Besides general improvements regarding scalability,
efficiency, and robustness, our future work will focus on the
following topics:

• Checking contracts. Contracts—that is, runtime
checks for pre- and postconditions and invariants—
promise to detect errors long before they escape to
the end of the computation. The concept of checked
coverage naturally extends to contracts, thus providing
a metric to which extent runtime checks are conducted.

• Defensive programming. Programs sometimes check
their inputs without using explicit assertions, and throw
an exception or otherwise indicate an error. Such
checks could also be treated to contribute to checked
coverage. The challenge is to separate “regular” from
“unexpected” behavior—a separation which is explicit
in assertions and tests.

• Static verification. If we can formally prove that some
condition always holds, then the appropriate result
should also be considered “covered”. Checked coverage
thus gives a means to assess the “proof coverage” of a
program.

To repeat and extend these experiments, all one needs is a
dynamic slicer. Hammacher’s JAVASLICER is now available
as open-source at

http://www.st.cs.uni-saarland.de/javaslicer/

To learn more about our work in assessing test suite
quality, see our project page

http://www.st.cs.uni-saarland.de/mutation/
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