
Javalanche: Efficient Mutation Testing for Java

David Schuler · Andreas Zeller
Saarland University, Saarbrücken, Germany

{ds, zeller}@cs.uni-saarland.de

ABSTRACT

To assess the quality of a test suite, one can use muta-

tion testing—seeding artificial defects (mutations) into the
program and checking whether the test suite finds them.
JAVALANCHE is an open source framework for mutation
testing Java programs with a special focus on automation,
efficiency, and effectiveness. In particular, JAVALANCHE as-
sesses the impact of individual mutations to effectively weed
out equivalent mutants; it has been demonstrated to work
on programs with up to 100,000 lines of code.

Categories and Subject Descriptors

D.2.5 [Software]: Software Engineering—Testing and De-

bugging

General Terms

Experimentation

Keywords

Mutation Testing

1. INTRODUCTION
Mutation testing assesses the quality of a test suite by ap-

plying small changes (mutations) to a program, and subse-
quently checking if the test suite detects them. Since muta-
tion testing was first proposed by Richard Lipton in 1971 [4],
several mutation testing frameworks have been developed,
such as MOTHRA [1] for Fortran programs, Proteum for
C, and Jester, µJava, and Jumble for Java. These frame-
works differ in terms of mutation operators, efficiency and
automation. In this paper, we present JAVALANCHE— an
open source framework for mutation testing, which blends
the best techniques from previous frameworks together with
novel optimizations to allow efficient and fully automated
mutation testing. A unique feature of JAVALANCHE is that
it ranks mutations by their impact on the behavior of pro-
gram functions. The greater the impact of an undetected
mutation, the lower the likelihood of the mutation being
equivalent (i.e., a false positive)—and the higher the likeli-
hood of undetected serious defects.

Copyright is held by the author/owner(s).
ESEC-FSE’09, August 23–28, 2009, Amsterdam, The Netherlands.
ACM 978-1-60558-001-2/09/08.

Figure 1: The JAVALANCHE Eclipse plug-in.
JAVALANCHE lists all undetected mutants, ranked
by their impact on the program behavior.

2. AUTOMATION AND EFFICIENCY
In order to asses the quality of test suites for realisti-

cally sized software projects, we developed JAVALANCHE

with the focus on automation and efficiency. We thus im-
plemented a large set of optimizations:

Selective mutation A small set of mutation operators may
yield a sufficiently accurate approximation of the re-
sults obtained by using all possible operators [3]. JAVA-

LANCHE uses the same small set: replace numerical
constant, negate jump condition, replace arithmetic
operator, and omit method calls.

Mutant schemata To reduce the number of generated ver-
sions, we use mutant schemata [6]: The program holds
multiple mutations, each guarded by a runtime flag.

Coverage data Not all tests in the test suite execute every
mutant. In order to avoid executing those tests, we col-
lect coverage information for each test—and then only
execute those tests that cover the mutated statement.

Manipulate bytecode We manipulate Java bytecode di-
rectly to avoid costly recompilation.

Parallel execution JAVALANCHE can execute several mu-
tations in parallel, thus taking advantage of parallel
and distributed computing.



Table 1: Description of subject programs.

Project Program Test code Number Statement Number of Mutation Mutation
Name size (LOC) size (LOC) of tests coverage (%) mutations runtime (s) score

ASPECTJ 94,902 14,736 339 33,73 14,357 347m 38s 29.75(70.18)
BARBECUE 4,837 3,160 137 50,45 18,358 9m 16s 4.59 (73.05)
COMMONS-LANG 18,817 32,756 1,662 84,09 19,566 79m 19s 22.45 (65.06)
JAXEN 12,449 8,371 680 66,77 9,972 117m 15s 47.15 (70.88)
JODA-TIME 25,879 48,130 3,496 87,72 23,833 272m 25s 63.29 (86.72)
JTOPAS 2,031 3,185 128 80.68 1,921 45m 27s 57.42 (72.95)
XSTREAM 14,388 15,618 1,005 77,23 10,607 115m 33s 60.41 (82.02)

Lines of Code (LOC) are non-comment, non-blank lines as reported by sloccount. For ASPECTJ, we only considered the core package tests.

Automation JAVALANCHE is fully automated, requiring
only the name of a test suite, the base package name
of the project, and the set of classes needed to run the
test suite.

Some of these optimizations are also implemented in other
mutation testing tools. For example, Jumble and µJava also
manipulate bytecode directly, and µJava also uses mutant
schemata. However, none of the other tools combines all
these optimizations, uses coverage data, or allows parallel
execution of mutations.

3. PERFORMANCE MEASUREMENTS
Table 1 shows the results for applying JAVALANCHE on

seven programs, ranging from 2,031 lines of code (column 2)
for JTOPAS to 94,902 for ASPECTJ. The test suites consist
of 128 (column 4) test cases with 3,185 (column 3) lines of
code for JTOPAS up to 3,496 with 48,130 lines for JODA-

TIME. The number of mutations ranges from 1,921 (column
6) for JTOPAS to 23,833 for JODA-TIME. To our knowledge,
this is the first time mutation testing has been applied to
programs of such size.

Running JAVALANCHE (column 7) takes between 9 min-
utes for BARBECUE and 272 for JODA-TIME. 1 The low
number for BARBECUE is due to the fact that JAVALANCHE

only checks mutations that are covered by tests, and BAR-

BECUE has a huge number of mutations in parts that are
only exercised during class loading, which are not covered by
tests explicitly. By analyzing the mutation testing results,
we can calculate the mutation score for a project (column
8), which is the number of detected mutations divided by
the total number of mutations. This score varies between
4.6 % for BARBECUE and 63.3 % for COMMONS-LANG.
The relative low numbers are due to the fact that there are
many mutations that are not covered, and thus cannot be
detected. Therefore, we also give the mutation score for
mutations that were covered, which ranges form 70.2 for
ASPECTJ to 86.7 for JODA-TIME.

4. RANKING MUTATIONS BY IMPACT
Besides the time needed for mutation testing, another sig-

nificant cost stems from equivalent mutants. Equivalent mu-
tants are changes to the syntax of the program that do not
change its semantics. Thus, it is impossible to write a test
case that distinguishes the original program from the mu-
tated one. When using mutants to improve a test suite (by
writing additional tests for undetected mutants), the man-
ual assessment of mutants place an additional burden on a
1The runtime is measured in CPU time, e.g. 10 minutes on
5 cores would result in a runtime of 50 minutes.

developer. Therefore, we developed techniques that assess
the impact of mutations.

An impact of a mutation is a measure how much the run
of a mutant differs from a run of the normal program. By
classifying the mutations according to their impact on dy-

namic invariants [5] and code coverage [2], we were able
to significantly reduce the number of equivalent mutants.
JAVALANCHE is designed in such a way that it supports
these and further impact measurement techniques. Our
studies [2, 5] have shown that focusing on mutations with
impact keeps down the percentage of equivalent mutants.
Intuitively, we also reason that if a mutation has lots of
impact throughout the program’s execution, and it is not
detected by the test suite, it is also likely to create more
severe errors than a mutation which has little impact.

5. CONCLUSION
If you plan to use mutation testing on Java programs, and

are looking for an automated and efficient tool, you may wish
to consider JAVALANCHE. Not only is it built for efficiency
from the ground up, it also effectively addresses the problem
of equivalent mutants. JAVALANCHE is publicly available
at the JAVALANCHE web site

http://www.javalanche.org/

6. REFERENCES

[1] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken,
and A. J. Offutt. An extended overview of the Mothra
software testing environment. In Proceedings of the Second
Workshop on Software Testing, Verification, and Analysis,
pages 142–151, Banff, Alberta, 1988. IEEE Computer
Society Press.

[2] B. J. M. Grün, D. Schuler, and A. Zeller. The impact of
equivalent mutants. In Mutation 2009: International
Workshop on Mutation Analysis, Apr. 2009.

[3] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An experimental determination of sufficient mutant
operators. ACM Transactions on Software Engineering and
Methodology (TOSEM), 5(2):99–118, 1996.

[4] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting the
orthogonal, pages 34–44. Kluwer Academic Publishers,
Norwell, MA, USA, 2001.

[5] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation
testing by checking invariant violations. In ISSTA ’09:
Proceedings of the 2009 International Symposium on
Software Testing and Analysis, July 2009. To appear.

[6] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation
analysis using mutant schemata. In ISSTA ’93: Proceedings
of the 1993 International Symposium on Software Testing
and Analysis, pages 139–148, New York, NY, USA, 1993.
ACM.

http://www.javalanche.org/

	Introduction
	Automation and Efficiency
	Performance Measurements
	Ranking Mutations by Impact
	Conclusion
	References

