
If Your Bug Database Could Talk...

Adrian Schröter · Thomas Zimmermann · Rahul Premraj · Andreas Zeller
Saarland University

Saarbrücken, Germany
{schroeter | zimmerth | premraj | zeller}@st.cs.uni-sb.de

ABSTRACT
We have mined the Eclipse bug and version databases to map fail-
ures to Eclipse components. The resulting data set lists the defect
density of all Eclipse components. As we demonstrate in three
simple experiments, the bug data set can be easily used to relate
code, process, and developers to defects. The data set is publicly
avail-able for download.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement— version control; D.2.8 [Software Engineering]:
Metrics— Complexity measures, Process metrics, Product
metrics; D.2.9 [Software Engineering]: Management— Software
quality assurance (SQA)

General Terms
Management, Measurement, Reliability

1. INTRODUCTION
Why is it that some programs are more failure-prone than others?
This is one of the central questions of software engineering. To
answer it, we must first know which programs are more failure-
prone than others. With this knowledge, we can search for
properties of the program or its development process that
commonly correlate with defect density; in other words, once we
can measure the effect, we can search for its causes.
One of the most abundant, widespread, and reliable sources for
failure information is a bug database, listing all the problems that
occurred during the software lifetime. Unfortunately, bug
databases frequently do not directly record how, where, and by
whom the problem in question was fixed. This information is
hidden in the version database, recording all changes to the
software source code. In recent years, a number of techniques
have been developed to relate bug reports to fixes [6, 3, 2]. Since
we thus can relate bugs to fixes, and fixes to the locations they
apply to, we can easily determine the defect density of a
component— simply by counting the applied fixes.
We have conducted such a work on the code base of the Eclipse

programming environment. In particular, we have computed the
mapping of classes to the number of defects that were reported in
the first six months before and after release, respectively. We have
made this Eclipse bug data set freely available and invite readers
to use it for research purposes.
Figure 1 shows an excerpt of the data set in XML format. The file
Plugin.java had 5 failures (and thus defects) before release 3.0
(―pre‖); it had one failure after release (―post‖). T he enclosing
package org.eclipse.core.runtime contains 43 files (―points‖) and
encountered 16 failures before and one failure after release 3.0; on
average each file in this package had 0.609 failures before and
0.022 failures after release (―avg‖).1

What can one do with such data? In this paper, we illustrate how
the data set can be used to address simple research questions:

 Can one predict failure-proneness from metrics like code
complexity? (Section 3)

 What does a high number of bugs found during testing mean
for the number of bugs found after release? (Section 4)

 Do some developers write more failure-prone code than oth-
ers? (Section 5)

This paper does not attempt to give definitive answers on these
questions, but merely highlights the potential of bug data when it
comes to answer these questions. We hope that the public avail-
ability of data sets like ours will foster empirical research in
software engineering, just like the public availability of open
source programs fostered research in program analysis.

2. GETTING BUG DATA
How do we know which components failed and which did not?
This data can be collected from version archives like CVS and
bug tracking systems like BUGZILLA in two steps:

1. We identify corrections (or fixes) in version archives: Within
the messages that describe changes, we search for references
to bug reports such as ―F ixed 42233‖ or ―bug #23444‖. B a-
sically every number is a potential reference to a bug report,
however such references have a low trust at first. We increase
the trust level when a message contains keywords such as
―fixed‖ or ―bug‖ or m atches patterns like ―# and a num ber‖.
This approach was previously used in research [3, 2].

1Since one failure can affect several files in one package; the
counts on package level cannot be aggregated from file level and
therefore are provided separately.

2. We use the bug tracking system to map bug reports to re-
leases. The bug database version field lists the release for
which the bug was reported; however, since the field value
may change during the life cycle of a bug, we only use the
first reported release. We distinguish two different kinds of
failures: pre-release failures are observed during development
and testing of a program, while post-release failures are
observed after the program has been deployed to its users.

Since we know the location of every failure that has been fixed, it
is easy to count the number of defects per location and release—
resulting in the data set of Figure 1.

3. THE CODE FACTOR
So where do these bugs come from? One hypothesis is that some
code is more failure-prone than other because it is more complex.
Complexity metrics attempt to quantify this complexity, mapping
code to metric values. In earlier work on mining Microsoft bug
databases [4], we could not find a single metric that would
correlate with bug density across multiple projects. Using the
Eclipse bug data set, we can easily check this result by
correlating, for each class, complexity metrics with the number of
bugs.
Chidamber and Kemerer [1] proposed several code metrics that
capture the complexity of a class. Table 1 lists the correlation of
each of these metrics (gathered using the tool ckjm [7]) with pre-
release and post-release failures. Albeit weak, the most strongly
correlated features2 to pre-release and post-release failures include
RFC (Response for a Class), CBO (Coupling Between Object
classes) and WMC (Weighted Methods per Class).
These results are in line with our previous research at Microsoft
[4], thus suggesting that either new or a combination of existing
metrics need to be explored to study the relationship between the
complexity of code to the presence of bugs in a given class. One
important predictor might be the domain of a component— in
related work, we could predict the failure-proneness of an Eclipse
package from its imports alone [5].

2For detailed explanations of these code metrics, the reader is
requested to refer to [1].

4. THE PROCESS FACTOR
Any problem that rises after product release indicates a defect not
only in the product, but also in its process: Clearly, the defect
should have been caught by quality assurance first. In practice,
this may mean that the product was not tested enough. Therefore,
we could turn to the testing process as a cause for the problem.
Failures during testing are recorded as pre-release failures in bug
tracking systems. Other measures for the development process are
the number of changes and authors of a file. Table 2 shows how
these measurements correlate with each other. For pre-release fail-
ures the correlation is highest for the number of changes (0.47)
and authors (0.41) since release 2.1. This is not surprising, since
every pre-release failure also resulted in at least one change
(namely the fix). Post-release failures show almost now
correlation with process measurements, except for pre-release
failures where the correlation is 0.30. To summarize, it is difficult
to predict post-release failures solely from process measurements.

5. THE HUMAN FACTOR
As a third and final example of using the Eclipse bug data set, let
us turn to the ultimate cause of errors: humans. Unfortunately,
data from one project alone is not enough to judge managerial
decisions. However, we can turn to the developers and examine
whether specific developers are more likely to produce bugs.
Tables 3 and 4 summarize pre-release and post-release bug
patterns introduced by developers. In both tables, the first column
lists the names of developers3 and the second column lists the
number of files owned by the developer. The latter was derived by
attributing the file to the developer(s) that owned most number of

3Names have been changed to maintain anonymity.

Number of Pre-release failures Post-release failures
 Pearson Spearman Pearson Spearman
Pre-release failures 1.00 1.00 0.26 0.19
Post-release failures 0.26 0.19 1.00 1.00
WMC 0.32 0.31 0.16 0.11
DIT 0.07 0.11 0.00 0.01
NOC 0.00 0.04 0.00 0.02
CBO 0.36 0.40 0.23 0.12
RFC 0.39 0.38 0.21 0.11
LCOM 0.13 0.23 0.03 0.07
CA 0.09 0.05 0.02 0.04
NPM 0.20 0.18 0.11 0.09

Table 1: Correlation of pre-release and post-release failures
with code metrics.

Number of Pre-release failures Post-release failures
 Pearson Spearman Pearson Spearman
Pre-release failures 1.00 1.00 0.30 0.20
Post-release failures 0.30 0.20 1.00 1.00
Changes 0.34 0.44 0.14 0.15
Changes since 2.1 0.47 0.56 0.19 0.17
Authors 0.30 0.30 0.15 0.13
Authors since 2.1 0.41 0.49 0.21 0.17

Table 2: Correlation of process measurements with failures
[Eclipse 3.0].

<defects project=”eclipse” release=”3.0”>
 <package name=”org.eclipse.core.runtim e”>
 <counts>
 <count id=”pre” value=”16” avg=”0.609” points=”43” max=”5”>
 <count id=”p ost” value=”1” avg=”0.022” points=”43” max=”1”>
 </counts>
 <compilationunit name=”P lugin.java”>
 <counts>
 <count id=”pre” value=”5”>
 <count id=”p ost” value=”1”>
 </counts>
 </compilationunit>
 <compilationunit name=”P latform .java”>
 <counts>
 <count id=”pre” value=”1”>
 <count id=”p ost” value=”0”>
 </counts>
 </compilationunit>
 ...
 </package>
 ...
</defects>

Figure 1: The Eclipse bug data set (excerpt).

lines of code in a file. Only those developers that owned 50 or
more files were included in the analysis. Columns 3 and 4 record
the number of pre-release and post-release failures per 1000 lines
of code and the average number of pre-release and post-release
failures per file. For brevity, only the first and last six entries of
each table are reported.
In Table 3, one observes substantial differences in pre-release fail-
ure densities in files (indicated by Columns 3 and 4) between dif-
ferent developers. However, such results should be carefully inter-
preted. We suspect that the results do not indicate developer com-
petency but instead, reflect the complexity of code they are work-
ing on. Hence, developers with lesser pre-release or post-release
failures are not necessarily better developers than the others. Our
stance is further supported by there being no clear relation
between the number of files owned by a developer and the
corresponding failure densities observed since experienced and
better programmers may own more files.
Likewise, Table 4 again indicates a high variance in failure den-
sity in files owned by different developers, although the densities
are smaller in comparison to pre-release failures. It is note-
worthy that developer Frederick lists in Table 3 as the owner of
the files with highest pre-release failure density, while in Table 4,
the same developer is the owner of nearly failure free post-
release files. In contrast to Frederick, files owned by Tommy are
less pre-release failure prone while the post-release failures are
considerably higher.
Hence, different developers are likely to introduce different num-
ber of failures into the code for manifold possible reasons. We
consider such information to be only the tip of the iceberg
indicating directions for future investigations pertaining to the
human factor in software development.

6. CONCLUSIONS AND CONSEQUENCES
Where do bugs come from? By mapping failures to components,
the Eclipse bug data set offers the opportunity to research these
questions. Our initial studies, as shown in this paper, do not give a
definitive answer. However, they raise follow-up questions and
indicate the potential of future empirical research based on such
bug data. To support this very research, we are happy to make the
bug data set publicly available.

Overall, we would like this dataset to become both a challenge
and a benchmark: Which factors in programs and processes are
predictors of future bugs, and which approach gives the best
prediction results? The more we learn about past mistakes, the
better are our chances to avoid them in the future— and build
better software at lower cost.
For access to the Eclipse bug data set, as well as for ongoing
information on the project, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments. Our work on mining software repositories is
funded by Deutsche Forschungsgemeinschaft, grant Ze 509/1-1.
Thomas Zimmermann is additionally funded by the DFG-
G raduiertenkolleg ―L eistungsgarantien für R echnersystem e‖.

7. REFERENCES
[1] S. R. Chidamber and C. F. Kemerer. A metrics suite for object

oriented design. IEEE Trans. Software Eng., 20(6):476–493,
1994.

[2] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat:
A project memory for software development. IEEE Transactions
on Software Engineering, 3 1(6):446–465, June 2005.

[3] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug
report data for feature tracking. In Proc. 10th Working
Conference on Reverse Engineering (WCRE 2003), Victoria,
British Columbia, Canada, Nov. 2003. IEEE.

[4] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proceedings of the International
Conference on Software Engineering (ICSE 2006). ACM, May
2006.

[5] A. Schröter, T. Zimmermann, and A. Zeller. Predicting failure-
prone components at design time. In Proceedings of the 5th
International Symposium on Empirical Software Engineering
(ISESE 2006). ACM, Sept. 2006.

[6] J. Sliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? In Proc. International Workshop on Mining
Software Repositories (MSR), St. Louis, Missouri, U.S., May
2005.

[7] D. Spinellis. Code Quality: The Open Source Perspective.
Addison Wesley, 2006.

 Failure-densities
Developer No. of Files PrRF/1000 lines Avg. PrRF/File
Frederick 320 16.42 2.81
Peter 97 14.70 1.96
Isaac 178 9.95 1.69
Mary 392 9.35 1.84
London 63 9.18 1.41
David 88 8.77 1.64
Harry 55 2.55 1.18
Tommy 92 2.20 0.35
King 162 2.18 0.36
Charles 63 1.82 0.43
Nellie 60 1.14 0.32
Robert 58 0.47 0.17

Table 3: Pre-release failures by developer

 Failure-densities
Developer No. of Files PoRF/1000 lines Avg. PoRF/File
Jack 54 0.71 0.13
London 63 0.52 0.08
Queen 111 0.51 0.20
Edward 55 0.41 0.04
Samuel 67 0.39 0.12
Tommy 92 0.34 0.05
Alfred 152 0.03 0.01
Oliver 106 0.03 0.02
Frederick 320 0.02 0.00
King 162 0.00 0.00
Benjamin 119 0.00 0.00
George 52 0.00 0.00

Table 4: Post-release failures by developer

