
How Documentation Evolves Over Time

Daniel Schreck
Dept. of Computer Science

Saarland University
Saarbrücken, Germany

schreck@st.cs.uni-sb.de

Valentin Dallmeier
Dept. of Computer Science

Saarland University
Saarbrücken, Germany

dallmeier@cs.uni-sb.de

Thomas Zimmermann
Dept. of Computer Science

Saarland University
Saarbrücken, Germany

tz@acm.org

ABSTRACT
Good source code documentation, especially of program-
ming interfaces, is essential for using and maintaining soft-
ware components. In this paper, we present the Quasoledo
tool that automatically measures the quality of documenta-
tion with respect to completeness, quantity, and readabil-
ity. We applied our set of metrics to the Eclipse project,
and benchmarked against the well-documented Java class
library. The result of Quasoledo is a map of documen-
tation quality in Eclipse, showing the best documentation
for its core components. Additionally, we looked at the evo-
lution of Eclipse and identified batch updates that caused
jumps in documentation quality. For Eclipse, only 32.6%
of all changes touched documentation.

1. INTRODUCTION

Unfortunately, much computer system documentation is
difficult to understand, badly written, out-of-date or

incomplete. – Ian Sommerville [10]

A survey of industrial software projects in 2002 found that
satisfaction with documentation quality is low or even very
low in 84% of the investigated development projects [12].
Projects with bad documentation are difficult to maintain
and extend since original developers may no longer be avail-
able.

The results of the study also indicated that bad docu-
mentation is not a result of bad documentation processes,
but of developers not adhering to the specified processes. A
project manager that wants to assure good documentation
quality therefore needs an easy means to assess the current
level of documentation. For large projects, this can become
a tedious task, which is why we would like to automate it.

The goal of our work was to automatically assess the qual-
ity features of source code documentation for computer pro-
grams. We focus on source code documentation since de-
velopers consider source tools like Javadoc as one of their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE’07, September 3-4, 2007, Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-722-3/07/09 ...$5.00.

most important documentation tools [6]. In this paper, we
specifically explore the following three questions:

1. How can we measure documentation quality? (Sec. 2)

2. Which parts of a program are documented well or
poorly? (Section 3)

3. When and why in the evolution of a project does doc-
umentation quality change? (Section 4)

In order to address these questions, we implemented a pro-
totype named Quasoledo that analyzes comments in Java
source code. We applied our approach to the source code
of Eclipse, an industrial-sized open-source project with al-
most two million lines of code. With Quasoledo we drilled
down several aspects of documentation quality to program
parts that might need improvement of documentation. Fur-
thermore, we automatically identified major evolution steps
in the documentation of Eclipse. Such points in time are
helpful to annotate the history of a project and build a jour-
nal of software evolution, including events such as documen-
tation phases and refactorings.

2. DOCUMENTATION QUALITY
We now present the metrics (Section 2.1) and readability

measures (Section 2.2) that we used to assess the quality
of documentation. While not all aspects of documentation
quality can be measured automatically, we believe that our
set of measures can already greatly assist developers and
managers.

In this paper, we focus on Javadoc comments that are
embedded in the source code (see Listing 1 for an example)
and used by the Javadoc tool to generate HTML reference
documents. The reference documents can be used internally
by the developers of the software, but are typically intended
for external developers that need to use the software API.

In the source code, each Javadoc comment starts with the
string /** and precedes a class, method, or field. The text
immediately at the beginning is used as the main description
of the associated declaration. Tags provide details about
certain aspects of an element such as parameters, return
value, and exceptions.

2.1 Metrics
We arrange similar metrics into families. All metrics in

a family use the same formula, but each takes a different
set of source entities into account such as only classes, only
methods or all entities. In this paper we concentrate on

/∗∗ Splits this string around matches of a
regular expression.

∗ @param regex the delimiting regular
expression

∗ @return the array of strings computed by
splitting this string

∗ @throws PatternSyntaxException if the
regular expression’s syntax is invalid ∗/

public String[] split(String regex) {
return this.split(regex, 0);

}

Listing 1: Example of a Javadoc comment

metrics that consider only methods, because most of the
interaction with interfaces happens through method calls,
making method Javadoc most important.

Completeness.
The ANYJ family computes the ratio of declarations with
any Javadoc to the total number of declarations.

ANYJ =
declarations with any Javadoc comment

total number of declarations
(1)

Listing 1 has a score of ANYJ = 1.0 because there is one
method declaration and it has a Javadoc comment.

In order to have complete Javadoc, every method param-
eter must be documented with a @param, every return value
with @return and every exception with @throws or @excep-
tion. We take these tags into account when we compute
the documented items ratio (DIR). Here, an item includes
possible tags, as well as classes, fields, and methods.

DIR =
documented items

documentable items
(2)

The method in Listing 1 scores DIR = 3
3

= 1.0 because
the method itself, the parameter and the return value each
are documented. The tag @throws is not considered as the
exception is not declared on the method.

Sometimes developers use traditional style comments in
the same way that Javadoc is used—they put it immediately
before a method declaration and explain the purpose of the
method in the comment. That way the documentation is
not found by tools and is thus of little use to users, but
the developers can provide an internal specification of the
method. To allow for detecting such documentation we have
the ANYCmethod metric, which is the ratio of methods with
any kind of non-empty comment preceding it, no matter if
Javadoc or ordinary comment.

ANYCmethod =
methods with any kind of comment

methods
(3)

The Listing scores ANYCmethod = 1.0 as the method has a
Javadoc comment. The difference to ANYJmethod is that a
comment like “// Splits the String” before the method will
result in ANYCmethod = 1, but ANYJmethod will be 0.

Note that the values of ANYJ, ANYCmethod, and DIR are
limited to the interval [0,1], where 1 is the best score.

Quantity.
The words in the Javadoc per declaration (WJPD) metrics
measures the average number of words in Javadoc. If a
declaration does not have Javadoc, it is counted with zero

words. HTML tags in Javadoc content are ignored.

WJPD =
words in Javadoc of declarations

declarations
(4)

Accordingly, Listing 1 scores WJPD = 29
1

.
A low number of words might indicate that the documen-

tation gives too little information, while very high values
might indicate documentation that is too verbose for typi-
cal usage. Ultimately, the difficulty of a method should be
considered, because high values might also be because of a
complex interface.

2.2 Readability
Source code documentation should be easily accessible to

both users and developers.1 It is important for users, be-
cause to skip reading could mean they make errors in inter-
facing the code; and it is important for developers, because
to keep documentation and implementation in-sync they fre-
quently need to check the documentation and want to do so
quickly.

Since the early twentieth century, linguist researchers have
striven to find out what makes a text difficult to read and
understand. Testing text with users is the best way to find
out, however, such tests are time-consuming and expensive.
In 1949 Robert Flesch proposed his Flesch Reading Ease to
assess text based on its structure and by now it “became the
most widely used formula and one of the most tested and
reliable” ([3], p. 21).

In 1975 Kincaid, Fishburne, Rogers, and Chissom adapted
the Flesch Reading Ease and several other readability mea-
sures to a grade level scale and adjusted it with navy train-
ing documents and adult readers. The Flesch-Kincaid Grade
Level is a U.S. grade level that the readers of a text should
have at least:

Kincaid = 0.39× #words

#sentences
−11.8×#syllables

#words
−15.59 (5)

The Kincaid formula is recommended by the U.S. Depart-
ment of Defense, the Internal Revenue Service and other
U.S. government agencies to achieve better readability of
their documents [3]. The appropriate readability grade level
depends on the intended audience, but should in general not
be above college level (12th grade).

Quasoledo uses the UNIX tool STYLE [1] to calculate
seven readability formulas. In this paper we will discuss the
results for the Kincaid measure.

2.3 Aggregation
There are several granularity levels on which a Java pro-

gram can be divided into parts, starting with the coarsest:
product, module, package and class level. For reasons of
brevity we only discuss the results for product and package
level here. Results and more on product and package level
can be found in [9].

Visibility levels are orthogonal to the granularity levels
of Java program elements. These levels are in decreasing
order: public, protected , package private and private. To in-
dicate the visibility level, we add a superscript to the name
of the metric, like in ANYJpublic

method. Keep in mind that just
public and protected program elements are externally acces-
sible. Consequently, HTML reference documents for exter-

1The term user refers to a developer using an API.

Figure 1: Public methods are documented more fre-
quently (ANYJmethod)

Figure 2: Readability of documentation for Eclipse
API and Java (Kincaid)

nal developers are generated only from the Javadoc of those
elements.

The measures in the previous sections were for single
classes. In order to apply them to parts or all of a software
product, we combine them as follows: For the relative met-
rics like ANYJ, DIR and WJPD we just add up numerator
and denominator separately. This way aggregation is implic-
itly weighted according to the size of the classes’ interfaces—
classes with more declarations will influence the aggregated
value more. The readability scores are calculated on the
text extracted from all the Javadoc belonging to the class,
package, module or product. The scores are never combined
in any way, they are recalculated completely by the STYLE

tool for each set of Javadoc comments. A new paragraph is
started for every class, method or field description.

2.4 Discussion
Readability formulas are a valid way to assess readabil-

ity, but they do not cover everything. Or with the words
of G. Hargis [7]: “Technical writers have accepted the lim-
ited benefit that these measurements offer in giving a rough
sense of the level of difficulty of material.” In a similar
way our selection of metrics and measures is far from be-
ing comprehensive, but covers many important aspects such
as documentation that is incomplete, too brief, or too diffi-
cult. With today’s technology automatic assessment, how-
ever, can only assist and not replace human analysis.

3. WHERE IS POOR DOCUMENTATION?
We applied our Quasoledo tool on Eclipse (snapshot of

April 2006), a big open source product with over 1.6 million
source lines of code, in order to identify the parts with good
and poor documentation. As a benchmark for the quality,

Figure 3: Benchmarking Eclipse API against Java
(ANYJmethod and DIRmethod)

we used the documentation of Sun Microsystem’s implemen-
tation of the Java class library, version 5.0.

3.1 Documentation Quality in Eclipse
Eclipse is seperated into API and non-API packages be-

cause its modules typically have internal packages besides
those meant for public use. As API and internal parts have
different documentation needs, we discuss them separately.

The internal classes of Eclipse outnumber the API classes
three to one; there are 11,336 internal, but only 3,753 API

classes. Moreover, there are 103,920 internal methods, but
only 42,013 API methods. Looking at the number of words
in the Javadoc, the picture turns around, as only 758,049
words can be found in the internal Javadoc versus 1,544,101
words in API classes. So, while the internal part represents
at least two thirds of Eclipse, it has only one third of the
documentation volume.

In fact, to document all API but not the internal parts is
proclaimed policy of the Eclipse developers [2]: “By their
very nature, API elements are documented and have a spec-
ification, in contrast to non-API elements which are internal
implementation details usually without published documen-
tation or specifications.” Further, for Eclipse only public
and protected classes, methods and fields are considered as
API elements. This fact is evident in Figure 1 which differen-
tiates the values of ANYJmethod by visibility and separated
into internal and API packages: public and protected API

methods have Javadoc more than twice as often as other
methods.

The quantity of documentation also varies. While the av-
erage Javadoc method comment on a public API method has
48.8 words, the average public Javadoc comment in an inter-
nal package has just 17.8 words. Moreover, while Javadoc
comments on internal methods have roughly the same aver-
age length regardless of their visibility (19.0± 1.5), the doc-
umentation quantity of API methods grows with increasing
visibility from 22.1 for private methods to 48.8 for public
methods.

3.2 Benchmarking Documentation Quality
In order to have a benchmark for the Eclipse scores, we

compare them to scores obtained from the Java API of Sun
Microsystem’s Java version 5.0, i.e., the public and protected
elements in the packages java and javax.

Figure 3 compares Eclipse and the Java class library
on the two visibilities relevant for API documentation. The
scores on the completeness metrics are close together. The
Java library scores a bit higher in terms of public Javadoc;

Figure 4: Treemap of documentation quality for Eclipse packages (ANYJ
public/protected
method)

its score for DIRmethod and ANYJmethod is 4.6% and 7.3%
higher, respectively. On protected Javadoc the picture is
mixed; while Eclipse has a higher score on ANYJmethod, its
score is lower on DIRmethod. Thus, there are more methods
in Eclipse that have some Javadoc, but there are fewer tags
given.

In terms of documentation quantity the difference is sim-
ilar. The Java API scores WJPDpublic

method =49.3 and Eclipse

API scores 41.7. Similarly WJPDprotected
method is 28 for Java and

23.2 for Eclipse API. When looking only at the average over
the methods that have Javadoc, the difference is smaller:
53.2 versus 48.8 on public methods and 37.2 versus 31.7
on protected methods. To sum up, the Eclipse API has
Javadoc on fewer elements, and the comments are shorter
on average.

3.3 Readability of Documentation
Figure 2 shows the readability of Eclipse API and Java

documentation broken down by visibility. Less visible pro-
gram elements are easier to read for both Eclipse and Java.
One reason could be that less visible elements often have
short Javadoc that is less likely to contain long and complex
sentences. However, as there is no visibility level where the
scores differ by more than one grade level, the difference is
negligible.

Comparing the Eclipse API and the Java class library
documentation, it turns out that Java documentation is
slightly more difficult to read than Eclipse documentation.
This is rather surprising considering that the Java library
documentation is used by more people than that of Eclipse.
In Section 2.2 we argued that a Kincaid grade level below
12 is appropriate. Our results show that both the Eclipse
API and Java API achieve that goal.

3.4 Mapping Documentation Quality
For assessing and comparing documentation quality be-

tween packages, we used treemaps. Treemaps are drawn in

a rectangular area and represent entities through colored
boxes. The size of a box corresponds to the size of the rep-
resented entity. In our case, the entities are packages and
their size is the number of methods. The color of a box cor-
responds to the package’s documentation quality, as deter-
mined by one of our metrics. Child packages are drawn in-
side their parent’s box and enlarge it accordingly. Treemaps
are often explored interactively, usually querying the label of
a box by pointing the mouse at it. For the treemaps printed
in this paper we labeled important packages by hand.

Figure 4 illustrates the completeness of documentation

quality as measured by the ANYJ
public/protected
method score for

Eclipse packages. Packages with a score of one are rep-
resented through a white box; those with a score of zero
through a black box. The scores in between are represented
on a gray scale: the lighter the color, the better the score.
Further, the larger a box, the more public and protected
methods the package has. The upper quarter of the diagram
contains the API packages, and the lower three quarters con-
tain the internal packages.

Again we can observe the differences in documentation
quality between API and internal packages. There are a few
internal packages with good documentation quality in terms

of ANYJ
public/protected
method , for example, the debugging packages

in jdt.internal.debug.core and jdi.internal. In general, though,
internal public and protected methods are seldom docu-
mented. However, not all API packages get top scores. Most
of the less documented packages deal with GUI presentation,
like jdt.ui, jface or ui. Particularly well documented are core,
jdt.core, jdt.debug and update.

3.5 Discussion
The scores of our metrics for Eclipse reflect the known

split of Eclipse into well documented API and poorly docu-
mented internals. This finding confirms that our metrics are
suitable to measure differences in documentation quality.

For both Eclipse and the Java class library, Javadoc

Figure 5: Annotated evolution graph of ANYJpublic
method of Eclipse API packages

availability (ANYJ), tag usage (DIR) and verbosity (WJPD)
all decrease with lower visibility. Further, Eclipse core
modules are documented the best, both in terms of ANYJ

and DIR; in contrast GUI packages are documented the
worst. In general, we observed that for Eclipse the most
important and central packages usually were documented
best.

4. HOW DOCUMENTATION EVOLVES
In this section, we investigate the evolution of documen-

tation quality in Eclipse. The Eclipse project has a fairly
long development history of five years and over 100,000
changes. Our Quasoledo tool can either

• sample the history in defined intervals to obtain a
quick overview or

• replay the entire development history of a program
(commit by commit) to show a detailed overview how
documentation quality evolves over time.

4.1 Evolution of Documentation Quality
In Figure 5 we show the evolution of the ANYJpublic

method met-
ric on API methods of Eclipse. Time is represented in the
x-dimension, with releases marked on the x-axis. The first
timepoint in the history is April 28, 2001; the last is April
8, 2006. Note that the y-axis starts at 0.65 as the score
never drops below that value. Jumps in Figure 5 have been
automatically annotated by Quasoledo with commit mes-
sages from the CVS archive from Eclipse. Therefore we can
see not only when documentation quality changed, but also
why.

In order to annotate the jumps, Quasoledo first iden-
tifies the widest jumps between the available sample data

points. Next Quasoledo increases the sampling granularity
to the level of commits and performs a linear search to iden-
tify the commit (and its message) that caused the jump. In
case a wide jump consists of several smaller changes, Qua-
soledo reports the biggest of those changes.

In case the available data already includes all commits,
we directly start with the linear search. We used this latter
variant to obtain the data in the figure, because it ensures
that no jumps are missed. However, the runtime cost to
create the detailed data with all commits in the first place
is considerable.

The text in the boxes in Figure 5 summarizes the prop-
erties of the commit. The bold number in each box is the
rank in terms of the relative impact the commit has had
on the ANYJpublic

method score. The text in quotes (“. . . ”) is the
comment provided by the CVS user when she committed the
changes. In addition, we list the number of files affected by
the commit or the number of lines changed. For the figure
Quasoledo annotated the top 20 commits, but we do not
present all of the in the graph. Some commits with empty
comments, some merges and file additions are left out.

We can observe two different reasons for jumps in Fig-
ure 5: (1) additions or deletions of large quantities of files
(“new/removed code”) and (2) changes that affect many
lines (“churned code”).

Rank 1, 2, 3, and 10. The widest jumps occurred in the
first few days of Eclipse, when more and more files were
added to the CVS repository. While the first few files had
Javadoc on all public API methods and thus Eclipse had
ANYJpublic

method = 1.0, additions of more and more files with
less Javadoc resulted in the score dropping to 0.67 within
two weeks. Four commits, ranking first, second, third and

tenth added 1,622 files.

Rank 4, 9, 15 and 8, 18 (“JavadocBasher”). An-
other big change in the quality of documentation occurred
three weeks after release 1.0. Two commits (ranked fourth
and ninth in terms of impact), both with the comment
“JavadocBasher”, added more than 15,000 lines with 44,256
words to 43 files, only 9 lines were deleted. This means that
the commits cannot just have improved existing Javadoc
comments only, but mostly added comments to previously
undocumented program elements, which explains the jump.

The term “JavadocBasher” appears not only when docu-
mentation is added, but also when it is changed. The com-
mit with rank 15 affected a total 189 files, added 6,783 lines
and removed 1,123 lines. Since CVS records changes as re-
movals and additions, we validated by manual inspection
that many of these lines were actually changed, e.g., spelling
and punctuation was corrected and sentences were reworked.

Apparently, the message “JavadocBasher” describes com-
mits that polish the Javadoc of recently developed code,
which typically happen shortly before a release. This in-
dicates that technical writers are responsible that Javadoc
can be understood and complies with the HTML standards.
In Eclipse, we identified two developers bashing Javadoc:
“carolyn” checked in the commits with ranks 4, 9 and 15
and “veronika” the ones with ranks 8 and 18.

Rank 5. Later jumps in the graph were caused by merges
from other branches, like in the commit with rank five. Its
comment is “merging carbon work with HEAD”. Carbon is
the name of a native GUI toolkit for the operating sys-
tem MacOS. Thus, the changes affected the GUI code of
Eclipse.

4.2 Co-changes of Documentation
We also checked how often Javadoc is changed along with

the code (a so-called “co-change”) and how often the two
are changed independently. Although, a change which only
touches code and not the Javadoc may indicate aging of
Javadoc, such changes are more likely internal optimiza-
tions, refactorings and the like. Changes that touch code
and documentation, are likely to implement new features or
change external functionality.

Methods.
For Eclipse we found that out of the 399,908 changes
on methods, 15.3% changed only the Javadoc and 72.6%
changed only the code. 12.1% changed both. These num-
bers indicate that code and documentation are updated sep-
arately. This process can be sub-optimal because developers
have to understand code they or someone else has written
earlier.

Commits.
Out of 71,313 commits, 2.1% changed only Javadoc, 67.4%
changed only code and 30.5% changed both. The interesting
number here is 2.1% which shows that there exist commits
that exclusively touch documentation. Additionally, almost
every third change touches documentation (32.6%).

Fixes.
We also correlated bug fixes with changes on Javadoc.

• Bugfixes. Of the 28,273 commits that were fixes, 255

(0.9%) changed only Javadoc, 68.7% changed only
code and 30.4% changed both.

• Non-Bugfixes. In the 43,040 commits that were not
fixes, changes affecting only the Javadoc are more fre-
quent with 2.9%. About 66.5% of commits touched
only code and 30.6% changed both.

These results show that concerning the maintenance of
Javadoc, there is no clear difference between fixes and regu-
lar development changes. However, interesting is that some
bugs (0.9%) can be fixed by only adjusting Javadoc. One
example for this is Eclipse bug report 119638 “Typo in
ToolItem.getControl”. The corresponding fix just changed
“items” to “item” and removed a dot at the end of the sen-
tence.

252c252
< * the item when the items is a <code>SEPARATOR</code>.

> * the item when the item is a <code>SEPARATOR</code>

4.3 Discussion
Ideally, documentation of a program element should al-

ways be up-to-date, and be updated whenever its external
behavior is changed. In reality, programs can and often do
change while they are still in development. Developers do
not want to waste their time writing documentation that is
likely to be thrown away later. Therefore, they often keep
developing new code until it runs and has been tested. Writ-
ing documentation is then deferred to a later point in time
(in form of a Javadoc bash). It can become a problem, if
much time passes between writing the code and writing its
documentation, because developers tend to forget rationale
and design after some time. Later then, developers need to
invest much time into re-understanding the code. Thus, a
reasonable policy would not require a program element doc-
umentation to be written at the same time as the code, but
there should not be more than a few days passing in between.
Additionally, having a correction phase for documentation
before a release, where wording and other matters of sec-
ondary importance are handled (such as correcting HTML

code or grammar), is reasonable.

5. RELATED WORK
As mentioned in the introduction, the problem of poor

quality system documentation is widely known. Yet, there
are few scientific papers dealing with automatic assessment
on the specific problem of source code documentation. In
the following paragraphs we present works with similar, yet
different goals to ours.

The goal of Robles et al. [8] is to automatically evalu-
ate documentation quality. They present a tool that can
automatically assess the volume of documentation of open
source software. The tool reports the amount of text docu-
ments as well as the amount of source code comments found
in a software archive. In contrast to our work, the parts of
the software that lack documentation cannot be pinpointed
as easily with the reports.

Etzkorn et al. [5] collected metrics on object oriented soft-
ware to judge its “reusability quality“. Among other met-
rics, they also calculated a documentation quality metric
from the comment density in C++ code which they used
to categorize documentation into five buckets ranging from

excellent to unacceptable. On three C++ GUI libraries the
categorization matched that of experts in 62.5% of the cases.
The authors additionally found that experts also evaluated
the quality of the identifiers used for class, method or field
names. Consequently, experts considered some classes with-
out comments to be documented, because they could under-
stand everything from the identifiers. However, it must be
considered that the software consisted of GUI packages, for
which the concepts used are easy to grasp in many cases.

Today there is no technology for automatically under-
standing comments or identifiers. A step in that direction
was made by Etzkorn et al. [4] with their tool Chris, which
used a natural language parser. From identifiers and com-
ment sentences Chris built a conceptual model of the func-
tionality of each code entity. Their tool was the first to com-
bine information from identifiers and comments into natural
language reports of the functionality for each class.

Steensland and Dervisevic [11] did a case study at an in-
ternational company that develops business software. They
strove to improve comprehensibility and translatability of
end-user documentation by enforcing style rules based on
controlled language theory. Experienced technical writers
at the company preferred documentation respecting these
rules in 85% of the cases.

In recent years, integrated development environments
(IDEs) evolved into assisting developers in writing and main-
taining source code documentation. The popular Eclipse
IDE is an example for this in the Java world. It can be
configured to keep a list of declarations missing Javadoc or
missing some tags. This list representation is useful when
developers want to have documentation for all declarations,
but it quickly grows unusable if they deliberately decide not
to document certain parts of the code.

6. CONCLUSIONS
We introduce several metrics that assess quality features

of source code documentation. Our prototype Quasoledo
analyzes comments in Java source code. The tool presents
results in space (e.g. for different modules in a project) and
over time (the project history). We applied Quasoledo
to Eclipse, an industrial-sized open-source project with al-
most two million lines of code.

Our findings indicate that there are strong differences in
documentation quality across modules, especially for inter-
nal and non-internal-packages. This is in accordance with
documentation guidelines of the Eclipse foundation, which
confirms that our metrics are suitable to assess documenta-
tion quality.

Quasoledo found several strong jumps in documentation
quality over the history of Eclipse. Commit messages for
the changes that caused these jumps indicate that techni-
cal writers are responsible for maintaining documentation
quality. Overall we found that, after an initial setup phase,
documentation quality of Eclipse increases over time.

Our future work will concentrate on increasing the accu-
racy of our metrics, for example by including documenta-
tion inherited from interfaces and superclasses. Apart from
that, we also want to integrate Quasoledo into an IDE such
as Eclipse, to provide developers with a quick overview of
where documentation needs to be improved.

For ongoing information on the project, see

http://www.softevo.org/

Acknowledgments. Our work on mining software repos-
itories is funded by the Deutsche Forschungsgemeinschaft,
grant Ze 509/1-1. Thomas Zimmermann is additionally
funded by the DFG-Graduiertenkolleg “Leistungsgarantien
für Rechnersysteme”. We thank Michael Burch, University
of Trier, Germany for providing his Treemap tool to create
Figure 4.

7. REFERENCES
[1] L. Cherry and W. Vesterman. Writing Tools: The

STYLE and DICTION Programs. Technical report,
Bell Laboratories, Murray Hill, N.J., 1981.

[2] J. de Rivires. How to Use the Eclipse API. Technical
report, Object Technology International, 2001.
Available online at
http://www.eclipse.org/articles/article.php?

file=Article-API-Use/index.html; last visited on
February 26th 2007.

[3] W. DuBay. The Principles of Readability. Costa
Mesa, CA: Impact Information, 2004.

[4] L. Etzkorn, L. Bowen, and C. Davis. An approach to
program understanding by natural language
understanding. Natural Language Engineering,
5(03):219–236, 1999.

[5] L. Etzkorn, W. Jr., and C. Davis. Automated
reusability quality analysis of OO legacy software.
Information & Software Technology, 43(5):295–308,
2001.

[6] A. Forward and T. Lethbridge. The relevance of
software documentation, tools and technologies: a
survey. Proceedings of the 2002 ACM symposium on
Document engineering, pages 26–33, 2002.

[7] G. Hargis. Readability and computer documentation.
ACM Journal of Computer Documentation (JCD),
24(3):122–131, 2000.

[8] G. Robles, J. M. G. Barahona, and J. L. Prieto.
Assessing and Evaluating Documentation in Libre
Software Projects. In Workshop on Evaluation
Frameworks for Open Source Software (EFOSS 2006),
Como, Italy, 2006.

[9] D. Schreck. Quality of Source Level Documentation.
Master’s thesis, Department of Computer Science,
Saarland University, Saarbrücken, Germany, 2007.

[10] I. Sommerville. Software Engineering, Vol 2: The
Supporting Processes, chapter Software
Documentation. Wiley-IEEE Press, 2002.

[11] H. Steensland and D. Dervisevic. Controlled
Languages in Software User Documentation. Master’s
thesis, Linkping University, Department of Computer
and Information Science, 2005.

[12] M. Visconti and C. Cook. An overview of industrial
software documentation practice. Computer Science
Society, 2002. SCCC 2002. Proceedings. 22nd
International Conference of the Chilean, pages
179–186, 2002.

[13] T. Zimmermann. Fine-grained processing of CVS
Archives with APFEL. Proceedings of the 2006
OOPSLA workshop on eclipse technology exchange,
pages 16–20, 2006.

