
How Helpful Are Automated Debugging Tools?

Jeremias Rößler
Department of Computer Science

Saarland University
Saarbrücken, Germany

roessler@cs.uni-saarland.de

Abstract—The field of automated debugging, which is con-
cerned with the automation of identifying and correcting a
failure’s root cause, has made tremendous advancements in
the past. However, some of the reported progress may be
due to unrealistic assumptions that underlie the evaluation
of automated debugging tools. These unrealistic assumptions
concern the work process of developers and their ability to
detect faulty code without explanatory context, as well as the
size and arrangement of fixes. Instead of trying to locate the
fault, we propose to help the developer understand it, thus
enabling her to decide which fix she deems most appropriate.
This would entail the need to employ a completely different
evaluation scheme that bases on feedback from actual users
of the tools in realistic usage scenarios. With this paper we
propose the details for a first such user study.

Keywords-Automated Debugging, Statistical Debugging, User
Study

I. INTRODUCTION

Automated debugging—identifying and correcting a fail-
ure’s root cause automatically—has made tremendous ad-
vancements in recent years. Many publications in the field
focus on statistical approaches to defect localization [1]–
[6]. These approaches identify potentially faulty code by
observing the characteristics of a large number of failing
and passing program executions. Intuitively, code that is
exercised mostly by failing executions is more likely to
be faulty than code that is exercised mostly by passing
executions. So these techniques rank individual lines of code
of the given program according to their likelihood to contain
the defect. The evaluation scheme [7] commonly applied to
these rankings, bases on some assumptions that a recent user
study by Parnin and Orso [8] showed several issues with.

1) The evaluation assumes that the developer will pro-
ceed linearly through long lists of unrelated suspi-
cious locations. However, this contrasts the findings of
the user study, in which successful developers jump
through such lists, and only developers that were
unable to fix the defect proceeded in a linear fashion.

2) Success is measured in the percentage of the code
of the whole program, the developer would have to
inspect before reaching the defect in the ranking. In
contrast, the user study showed that, after a certain
number of statements inspected, the user’s confidence
in the results ceased and the users stopped using the

tool. That number was absolute and not related to the
size of the program under investigation.

3) The evaluation assumes perfect bug understanding,
which means showing the defective line of code in
isolation suffices for the developer to recognize the
defect. Again, the user study showed that developers
need some explanation or context to understand the
defect before being able to recognize it in the code.

Also, Parnin and Orso [8] found something else during
their user study: developers fix the same bug in different
locations. However, while the authors simply assumed that
some developers chose the “wrong” place to fix the bug, we
think reality is much more intricate: we assume that there
is no “right” location of the bug in the first place. Instead,
the bug can be fixed equally well in multiple locations. The
whole notion of the location of the bug also stems from
a flaw in the evaluation scheme: in all evaluations that we
are aware of (both user studies and quantitative evaluations),
either a given correct program is changed to introduce (seed)
bugs, then the “correct” fix is the one that reverts the change.
Or the “correct” fix is the solution to the bug as recorded
in a bug database, which we deem merely an accidental
selection of the infinitely many possible fixes. And even
more important, we assume that, often enough, the fix of a
bug consists of more than a single line of code and can even
be distributed over several locations in the code. This takes
the whole notion of the “location of a bug” ad absurdum.

Instead of tying to locate the bug, we should aim to help
the developer understand the bug—which simultaneously
addresses all problems mentioned above. However, as bug
understanding is not a directly measurable quantity, this
makes the evaluation problematic. To address this issue we
will perform a user study as detailed in the following.

In the remainder of this paper, we are first going to
introduce the approach we want to evaluate (Section II).
Then we will state the research questions and hypotheses
(Section III), followed by some context of the user study,
the participants and the evaluation scheme (Section IV). We
finish with conclusions (Section V).

II. BUGEX—EXPLAINING BUGS

To overcome some of the issues of statistical debugging
(as given in Section I), we came up with an approach named

✘
✘

✘
✔

✔

✘

✔

✘✘
✘✔

✘✔ ✘✔

(a) failing run (b) generated runs (c) passing and
 failing runs

(d) runtime
 differences

(e) minimal
 highly ranked

 differences

✘✔

Figure 1. BUGEX in a nutshell. Starting with a failing run (a), BUGEX generates additional runs (b). BUGEX establishes the differences between passing
and failing runs (c) in terms of runtime facts (d)—right now, branches taken and state predicates. It statistically ranks these differences and generates more
runs (b) to focus on and further minimize highly ranked differences. Eventually, BUGEX produces a minimal list of highly ranked fact differences (e).

BUGEX. In a nutshell, here is how BUGEX works:
a) Starting off with a failing test case,
b) we generate additional similar test cases that
c) either fail with the very same exception as the original

test case or pass but still execute the critical code.
d) From all of these test cases, we extract runtime infor-

mation that we call facts. Using a statistical debugging
technique [6], we rank those facts according to their
correlation to the failure. All highly correlated facts are
target to test case generation (indicated by the loop),
where we try to generate a passing or a failing test case
that are as similar to the original test case as possible
but differ in the targeted fact.

e) We end up with a minimal set of facts that are
statistically highly correlated to the failure.

The feedback loop from statistical ranking to test case
generation vastly increases performance and at the same time
allows us to create a correlation with outstanding probability
values. Usually the top ranked facts together account for
more than 99,999% of the normalized probability to be
correlated with the failure. It is a generic approach that can
be implemented for all kinds of runtime information. We
implemented the approach for branches and predicates. We
think that the combination of different runtime information
shows different aspects of the failure and gives context that
helps the developer understand the underlying defect. In
recent work we used a set of seven real world defects to
qualitatively evaluate an implementation of the approach,
and we think that the results show that the implementation
meets its goal. However, it may well be that our evaluation is
subjective. So in order to objectively evaluate our approach,
we plan to perform the user study as proposed below.

III. RESEARCH QUESTIONS AND HYPOTHESES

We deem BUGEX helpful for developers to understand a
defect. However, this has to be validated by a user study.
Thus our first research hypothesis (RH) is:

RH1: BUGEX is valuable for the debugging task.

This is a purely subjective evaluation criterion that indi-
cates whether users like to use the tool. We consider our
tool to be valuable for users, if they continuously prefer to
use the tool over not using it. Additionally, we will ask the
users after each bug they fixed, whether they liked the tool,
what they liked about it and what could be improved.

Our approach belongs to the field of automated debugging
and has to compete with other approaches from that field:

RH2: BUGEX is more helpful than state-of-the-art
statistical debugging approaches.

We will consider our tool to be more helpful than an
alternative approach if users continuously prefer it over the
alternative. Additionally, we request the estimated amount
of time needed for fixing a bug, how helpful users consid-
ered the tool and how confident they are in the fix they
implemented.

As indicated in the Introduction (Section I), we assume
that if a defect is expressed only in terms of a failing test
case, then there are many equally valid possibilities to fix
it. The question is, whether developers are aware of this:

RH3: Developers are aware that there are multiple
equally valid ways to fix a defect.

To test this hypothesis, we will ask users after each bug
they fixed, whether they had alternatives and how many.

We further assume that different fixes have different
probabilities to be chosen by the developer. The decision for
a specific fix (including a rewrite of the complete program)
is influenced or even mainly driven by the expected overall
effort, which includes foreseeable future changes and fixes
to probable future bugs. To make a concrete example: if
the developer thinks, that implementing the program with a
different design will save some effort in the long run, and
if there are no additional factors such as upcoming program
release dates, then this will be the fix of choice.

RH4: The main reason to chose a specific fix is that it
bears the least amount of estimated overall effort.

To test this hypothesis, we will ask users after each fix
for which they were aware of alternatives, which factors
influenced their decision for the fix they eventually chose.

Many studies (including the one by Parnin and Orso [8])
show that users will only consider a few results before
giving up on a tool. So we assume that less results are more
valuable, even if they do not contain the optimal solution.

RH5: Users prefer a smaller result set over a larger
one—even if it does not contain the optimal solution.

We consider this hypothesis confirmed if users continu-
ously prefer a smaller result set over a larger one.

IV. PROPOSED USER STUDY

Some of the typical problems of user studies with devel-
opers include the following:

1) The study is performed with only a few developers or
does not exceed a certain time boundary (or both).

2) Either developers work on different tasks and thus the
results are not comparable, or developers are all given
the same program, which encompasses that

a) all programmers are alien to the code and
b) the code cannot exceed a certain size and com-

plexity (see also 1).
All of this limits the generalizability of a study.

To address these problems and the ones given in the
Introduction (Section I), we will perform a different user
study. We utilize the participants of a course in programming
that is due in the second semester of studying computer
science. According to past experience, about 200 students
of vastly differing programming experience are expected to
register for the course, whereas only about 100 are expected
to complete it. During the course, all of these students are
given programming tasks with increasing levels of difficulty.
These tasks start with a simple Hello World-implementation,
and eventually end with a complete game such as Tetris, in-
cluding Graphical User Interface and Artificial Intelligence.
The students have a certain amount of time to complete the
programming task that increases with the difficulty of the
task. They work unmonitored on their chosen workstation,
in their chosen environment and at their chosen time. They
can suspend and continue to work any time.

All intermediate programming results are submitted to a
central server and built and tested every night. The students
receive feedback from automated unit tests. If all tests pass,
the programming task is assumed to be completed. Some of
the tests are given to the students together with the task and
can be run on the workstations as often as needed and are
also run on the server after every commit. Some other tests
are unknown to the students—they are executed only on the
server and only once every night (called nightly tests). Of

these nightly tests, students only receive the failure message
if a test fails. This creates two different usage scenarios:
a normal usage scenario, where tests can be executed and
manually debugged as often as needed, and a scenario, where
students cannot rely on manual debugging at all.

For all failing tests (after every commit for the given
tests and every night for the nightly tests), our BUGEX
prototype will generate explanations that the students can
request. Using this feedback is optional. We will detect every
request of the feedback, and thus will be able to see how
beneficial the students deem the feedback to be (i.e., if they
cease to request it). When requesting it, the students are
required to complete a very short survey regarding the last
feedback they received, before being given access to the new
feedback. Some of the questions of this survey are

- How useful was the feedback?
- Was the bug fixed?
- How long they estimate it took them to fix the bug?
- How confident they are in the chosen fix?
- How many alternatives they noticed to fix the bug?
- Why they chose that alternative to fix the bug?

Completing the surveys will only be enforced by not giving
access to further feedback. So if students cease to use the
feedback, they will also cease to complete the surveys.
However, as some of the tests are only executed on the
server, based on past experience we expect students to be
interested in getting as much additional information about
these nightly tests as they can. Therefore, even if students
will cease to use the feedback of the given tests in favor of
conventional manual debugging, they will likely still want
to receive the feedback for the nightly tests. And this bears
another advantage: students might be reluctant to try and
become acquainted with an alternative debugging method.
But if they continue to use the feedback for the nightly tests,
this might help to overcome this inhibition and familiarize
them with the feedback from the system. As a downside,
since complexity of the tasks increases also over time, this
will mask whether automated debugging is more helpful for
more complex debugging tasks.

The proposed approach addresses all of the typical prob-
lems a user study faces: The study is performed with a large
group of developers and there is practically no boundary on
the time the developers may need to fulfill the programming
task. Also, the students will work with their own code. This
means that they already know the code sufficiently well and
that the code can be of arbitrary size and complexity (but,
of course, directed towards solving the given problem). Still
the results are comparable, as all participants work on the
same tasks. The tasks are mandatory to pass the course, so
the students have a strong motivation to complete them. And
because they cannot use conventional manual debugging on
the nightly tests, they have a strong intrinsic motivation to
use the alternative debugging approach.

To appropriately address the research questions formu-
lated in Section III, we are going to offer four different
options for feedback each participant can choose to receive.
After choosing an option and before being able to receive
the feedback of the next option, the participant will have
to complete a short survey. Additional to the survey results,
for each option we will continuously capture the number of
times users requested it. The four options are:

- OPT1 This option will be random feedback. It substi-
tutes a control group and allows us to check research
question RH1.

- OPT2 This option will be the feedback of a state-of-
the-art statistical debugging approach and establish the
ground truth that allows us to check research questions
RH2 and RH5.

- OPT3 This option will be the feedback of a state-
of-the-art statistical debugging approach, but the feed-
back will only contain a limited number of results.
This option allows us to check research question RH5.

- OPT4 This option will be the feedback from BUGEX
that will be compared to OPT1 and OPT2 to check
RH1 and RH2.

The options will be assigned neutral names and the assign-
ment of names to options will differ for each student. After
each project, the assignment of the names to the options
will be randomized (and this will be announced), so students
have to reevaluate all options at least once per project.

Additional to that, we collect the results from the surveys
after fixing individual bugs. The research questions RH3 and
RH4 will be addressed by these surveys about bug fixes the
students implemented.

Threats to Validity

One of the drawbacks we conceive for this user study is
that it will be conducted with students only, which introduces
a sampling bias. However, a short mandatory survey at the
beginning of the course about the programming skills and
experience of the participating students will allow us to draw
some conclusions about how the results may generalize.

One problem that may arise with the design of the study
is the introduction of a self-selection bias: by selecting an
option and respectively a system students want to receive
feedback from, they select themselves into a group. We
counter this thread by three measures:

1) The assignment of the system that generates the feed-
back to the neutral option name is kept secret.

2) The assignment is different for every student.
3) The assignment will be randomized after every project.
4) OPT1 serves a similar purpose as a control group.
Another risk comes from the Hawthorne-Effect. This

effect describes the phenomenon, that participants of an
intervention study in worklife will behave differently simply
because they know that they participate in a study. How-
ever, the very existence of this effect has been questioned

recently [9], and the results of the corresponding studies
have been attributed to other unmonitored factors. Generally,
it is impossible to conduct studies with human beings
where all possible factors are controlled or even monitored.
Observing effects that originate from factors that have been
(intentionally or unintentionally) ignored is a major thread
to every study on human beings.

V. CONCLUSIONS

To the best of our knowledge, the user study as proposed
in this paper is unprecedented in the field of automated
debugging. This makes it very promising in its ability to
counter issues we detected in earlier studies. But at the same
time, this causes many uncertainties and risks due to the lack
of experience with such a study.

ACKNOWLEDGMENTS

We would like to thank Sebastian Hack, Klaas Boesche
and Eva May for their support of our experiment during the
course Programmierung 2 at Saarland University as well as
feedback on earlier versions of this paper. We would also
like to thank Matthias Höschele for some inspiring ideas.

REFERENCES

[1] J. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of
the International Conference on Software Engineering (ICSE),
2002, pp. 467–477.

[2] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan, “Scalable statistical bug isolation,” in Proceedings
of the Conference on Programming Language Design and
Implementation (PLDI), 2005, pp. 15–26.

[3] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER:
Statistical model-based bug localization,” in Proceedings of
10th European Software Engineering Conference and 13th
Foundations on Software Engineering (ESEC/FSE), 2005, pp.
286–295.

[4] D. Hao, Y. Pan, L. Zhang, W. Zhao, H. Mei, and J. Sun, “A
similarity-aware approach to testing based fault localization,”
in Proceedings of the Conference on Automated Software
Engineering (ASE), 2005, pp. 291–294.

[5] C. Liu and J. Han, “Failure proximity: A fault localization-
based approach,” in Proceedings of the International Sympo-
sium on the Foundations of Software Engineering (FSE), 2006,
pp. 286–295.

[6] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “An
observation-based model for fault localization,” in Sixth Inter-
national Workshop on Dynamic Analysis (WODA), 2008, pp.
64–70.

[7] M. Renieris and S. P. Reiss, “Fault localization with nearest
neighbor queries,” in Proceedings of the Conference on Auto-
mated Software Engineering (ASE), 2003, pp. 30–39.

[8] C. Parnin and A. Orso, “Are Automated Debugging Techniques
Actually Helping Programmers?” in Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA),
2011, pp. 199–209.

[9] G. Wickström and T. Bendix, “The ”hawthorne effect”—what
did the original hawthorne studies actually show?” Scandina-
vian Journal of Work, Environment & Health, vol. 26, no. 4,
pp. 363–367, 2000.

