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ABSTRACT
Manual debugging is driven by experiments—test runs that nar-
row down failure causes by systematically confirming or excluding
individual factors. The BUGEX approach leverages test case gen-
eration to systematically isolate such causes from a single failing
test run—causes such as properties of execution states or branches
taken that correlate with the failure. Identifying these causes al-
lows for deriving conclusions as: “The failure occurs whenever the
daylight savings time starts at midnight local time.” In our evalua-
tion, a prototype of BUGEX precisely pinpointed important failure
explaining facts for six out of seven real-life bugs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Diag-
nostics, Testing tools

General Terms
Experimentation

Keywords
Automated debugging, test case generation, failure classification,
statistical debugging

1. INTRODUCTION
In the past decade, the field of automated debugging has made

tremendous advances. Most publications in the field focus on sta-
tistical approaches to defect localization [24, 26, 27, 29, 18, 28,
7]. These techniques effectively rank the lines of code according to
their likelihood of containing the defect. Given a sufficiently high
number of executions, one can expect a statistical approach to nar-
row down the search space to less than 5% of the code. While these
numbers are impressive, the result is still not necessarily helpful
for the programmer, as 5% of the code may still encompass thou-
sands of lines of code. Additionally, as recent research has shown,
developers are unwilling to proceed through long lists of unrelated
suspicious locations, with small chances of spotting the defect [34].
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The second line of research in automated debugging is formed
by experimental approaches—techniques that systematically alter
applied changes [38], input [41], or object interaction [11] in or-
der to narrow down failure causes to a small fraction of the search
space. The most recent work in the field [11], for instance, mini-
mizes a failing execution to a test case encompassing a mere 0.2%
of the source code. While such experimental techniques can pre-
cisely pinpoint failure causes, they can also alter program behavior
in a way that is impossible to achieve in the original setting. Ap-
plying delta debugging on program states [39], for instance, easily
produces states that are infeasible, and relies on the run-time sys-
tem (or the programmer’s intelligence) to detect inconsistencies.

In this paper, we present a novel approach to automated debug-
ging that combines the mutual benefits of experimental and sta-
tistical approaches, yet avoids their respective shortcomings. Our
BUGEX prototype

1. provides a generic automated debugging scheme that can be pa-
rameterized with arbitrary runtime facts (now: branches and val-
ues; future: data-flow relations, thread schedules, and more);

2. requires a single failing run, generating test cases as needed, un-
like statistical debugging, which requires an existing test suite;

3. ensures that every run is real and reproducible, unlike state- or
code-changing techniques such as delta debugging.

Our BUGEX results, as detailed in this paper, show that it can
pinpoint central facts with outstanding precision and quality. As an
example, consider the code in Figure 1. This test uses the JODA-
TIME date and time library to convert a local date (October 18,
2009) into a time interval in the Brazilian time zone. This test
makes the program fail, but if we change the date or the time zone,
everything works fine. What is so special about October 18, 2009
in Brazil?

BUGEX needs nothing more than this test case to start work-
ing; indeed, it would ideally be set up to start automatically after a
failure, for instance on a build server. Given this test, after a few
minutes BUGEX would report a single branch in the JODATIME
code—a branch that is taken only by failing runs and never by pass-
ing runs (Figure 2). The comment preceding such branch explains

public void testBrazil() {
LocalDate date =
new LocalDate(2009, 10, 18);

DateTimeZone dtz =
DateTimeZone.forID("America/Sao_Paulo");

Interval interval = date.toInterval(dtz);
}

Figure 1: JODATIME bug 2487417: toInterval() fails
when processing October 18, 2009, Brazil time.



Figure 3: BUGEX in a nutshell. Starting with a failing run (a), BUGEX generates additional runs (b). BUGEX establishes the
differences between passing and failing runs (c) in terms of runtime facts (d)—right now, branches taken and state predicates. It
statistically ranks these differences and generates more runs (b) to focus on and further minimize these differences. Eventually,
BUGEX produces a ranked list of minimal fact differences (e), where the top-ranked facts reveal failure causes.

// if the offsets differ,
// we must be near a DST boundary
if (offsetLocal != offsetAdjusted) {

// ...
}

Figure 2: org.joda.time.DateTimeZone, lines 863–864.

the cause of the failure: October 18, 2009 is the last day of daylight
savings time (DST) in Brazil, a condition that is improperly han-
dled by JODATIME due to an inconsistent mapping between UTC
time (the internal intermediate format) and local time. In princi-
ple, such a diagnostic quality could also be achieved by a statistical
approach, if we had a sufficient number of appropriate executions
to analyze. Systematically generating these executions is the first
advantage of BUGEX over purely statistical approaches.

The basic steps of BUGEX are illustrated by Figure 3. BUGEX
starts with a single failure and generates additional runs that are
similar to the failing one and either fail or pass. Any difference
between these runs in terms of the facts observed during such runs
(e.g., the fact that a specific branch was taken) would be linked to
the pass/fail outcome. BUGEX statistically ranks these differences,
producing a ranked list of facts that are strongly correlated with the
failure. It then systematically generates more runs that can either
further confirm or refute the relevance of a fact. BUGEX is a gen-
eral approach that could work with any fact that can (1) be either
true or false at runtime and (2) be observed. In our current imple-
mentation of BUGEX, we considered two kinds of facts: branches
covered and properties of the program state. In our experiments
we show that BUGEX can pinpoint the failure cause in most cases.
In particular, when focusing on branches, BUGEX can pinpoint the
failure cause for six out of the seven bugs targeted.

The remainder of this paper is organized as follows. Section 2
starts with an overview on the state of the art. Section 3 describes
the BUGEX approach in detail. Section 4 discusses the implemen-
tation, in particular the isolation of failure-related branches and
state predicates. Section 5 evaluates the approach on seven real-
life bugs, both quantitatively and qualitatively. Section 6 closes
with conclusion and future work.

2. BACKGROUND
Over the years, researchers have defined increasingly sophisti-

cated debugging techniques, so the body of related work is broad.
For the sake of space, here we focus on representative techniques
and on the work that is most related to BUGEX.

2.1 Statistical Debugging
Statistical debugging techniques are a family of techniques that

identify potentially faulty code by observing the characteristics of
a large number of failing and passing program executions. Intu-
itively, entities that are exercised mostly by failing executions are
more likely to be faulty than entities that are exercised mostly by
passing executions. The first statistical debugging approach, Taran-
tula, uses statement coverage information to assign suspiciousness
values to statements and rank them accordingly [24]. Liblit and col-
leagues extended Tarantula by defining a more general approach
that focuses on predicate values instead of statements [26, 27].
Since then, a large number of statistical debugging approaches have
been presented in the literature (e.g. [29, 18, 28, 7]). These ap-
proaches differ from one another in the type of entities they con-
sider (e.g., statements, predicates, data values) and in the type of
statistical analysis performed on the information collected for such
entities.

There are two main issues with this general class of techniques.
The first issue is that they require a large number of test cases to
work well. Given the right heuristics, a small number of test cases
can be sufficient to narrow down the potential culprits to, say, 5–
10% of the code [37], but this can still be hundreds of unrelated
code lines. To pinpoint a bug to a handful of lines, one may need
hundreds or thousands of additional test cases, which unfortunately
are rarely available in practice. Even if an extensive test suite were
to exist, the test in it might not have the right characteristics (e.g.,
they might not have enough discriminating power). In most prac-
tical cases, in fact, the starting point of a debugging session is a
single failing test case.

The second issue with statistical debugging techniques is that
they provide no explanation or context for why a given statement
is ranked as suspicious. These techniques simply assume perfect
bug understanding, that is, that simply examining a faulty state-
ment in isolation is enough for a developer to detect, understand,
and fix the corresponding bug. Unfortunately, perfect bug under-
standing rarely occurs in practice, as developers need additional
information to recognize and correct bugs [34]. To the best of our
knowledge, there are only two statistical debugging techniques that
try to address this issue: Rapid, by Hsu and colleagues [20], and
Context-Aware Statistical Debugging, by Jang and Su [23]. The
former uses a string matching algorithm to identify common seg-
ments in the traces of failing executions, whereas the latter com-
bines statistical debugging, clustering, and control-flow analysis to
identify relevant control flow paths that may contain bug locations.



Although both techniques mitigate the issue of lack of explanation
and context for the statements reported as suspicious, both of them
still require large (and adequate) test suites to work.

BUGEX leverages the strength of statistical debugging, while ad-
dressing both of its shortcomings. First, it needs only a single fail-
ing test to operate: starting from a failing run, BUGEX systemati-
cally generates both failing and passing tests whose executions are
used to confirm or refute possible correlations between observed
facts and the failure at hand. In addition, BUGEX can steer the test
generation so as to target interesting facts and further accentuate
differences. Second, BUGEX investigates many more runtime facts
than just statements executed, namely, branches taken (subsuming
statement execution) and predicates on the program state. These
additional facts can provide a richer explanation of why and how
an execution leads to the failure.

2.2 Experimental Debugging
The second line of automated debugging techniques is charac-

terized by their experimental approach. Rather than assuming a
set of executions, these techniques generate additional executions
whose outcome guides the systematic isolation of failure causes.
The first representative of these techniques is delta debugging, an
approach starting with only one failing and one passing run and
isolating minimal failure-inducing differences in inputs [41], code
changes [38], or program states [39]. Most related to our work is
the concept of predicate switching, an approach that flips branch
outcomes [43] during execution in order to identify defect-related
branches.

As they operate on a potentially unlimited number of executions,
experimental approaches can narrow down failure causes with high
precision. However, they manipulate executions in a way that may
be unsound and may thus raise infeasibility issues. Such infea-
sibility may in turn compromise diagnoses and make it harder to
understand the results when they involve state or branch manipula-
tion.

BUGEX is inherently experimental in nature, as it systematically
generates test cases to isolate failure causes and uses the outcome
of previous tests to generate new ones. BUGEX therefore also as-
sumes the presence of an oracle—that is, an automated means to
distinguish passing from failing runs. This can be as simple as a
single assertion or even the null oracle (no oracle at all) in case of
errors detected by the runtime system. However, in contrast to tech-
niques such as delta debugging or predicate switching, it is sound,
and the executions it generates and uses for its diagnosis are always
feasible.

2.3 Test Case Generation
Automated test generation has made significant progress in the

recent past, making it possible to derive test inputs that in many
cases can reach large parts of the code. A straightforward and often
used approach is to simply generate these test inputs randomly; as
this is computationally cheap, large numbers of tests can be pro-
duced in a short time (e.g., Randoop [33]). As random tests are
unlikely to reach parts of the code that require the traversal of com-
plex predicates, more systematic approaches have been presented.
In this space, dynamic symbolic execution (DSE) (e.g., [16]) is a
prominent solution. DSE collects, during a concrete execution e,
path constraints that encode the subdomain of inputs that will fol-
low the same program path as e. By systematically negating indi-
vidual clauses in these path conditions, one can theoretically ex-
plore all possible paths. DSE has been integrated in popular tools,
such as Pex [35] and Sage [17]. An alternative approach is to cast
the test generation problem as a search problem and use efficient

meta-heuristic search algorithms to produce solutions, that is, test
cases [31]. This has been shown to be particularly useful if individ-
ual test cases are not just primitive input values to a function, but
rather complex sequences of method calls. For example, our recent
EVOSUITE prototype [13] evolves test suites towards satisfying a
coverage criterion using a genetic algorithm and is applicable to
any Java library that requires no user input. A promising avenue of
research in this direction considers combinations of the individual
techniques (e.g., [22, 30]).

So far, there has been surprisingly little work leveraging test case
generation for debugging purposes (unless one qualifies delta de-
bugging as a test case generator). Baudry and colleagues [10] sug-
gest to improve test suites for defect localization by adding mutated
tests; they specifically aim for diversity in defect-diagnosing distin-
guishing statements. Artzi et al. [9] do not assume the presence of
an existing test suite, but rather generate tests from scratch that aim
for diversity in the attributes relevant for statistical debugging, such
as statements covered, branches taken, or function return values.

Both approaches generate general test suites to facilitate arbi-
trary debugging tasks and have been shown to be effective at that.
In contrast, BUGEX generates tests to provide a precise diagno-
sis for a single given failure and follows an experimental approach
that uses feedback from test outcomes to guide test generation. Be-
cause BUGEX generates and executes tests for a specific debugging
problem, it might overall generate many more tests than these al-
ternative techniques. However, this additional cost is offset by the
ability to specifically isolate very precise failure causes.

2.4 Programmer Support
Most automated debugging techniques discussed so far focus

on getting good quantitative results in predicting defect locations
and are often evaluated using unrealistic benchmarks, such as the
Siemens suite [21]. (The Siemens suite is unrealistic due to the
small size of its programs, manually crafted one-line bugs, and the
excessive size of its test suite, which favors statistical approaches).

Only a few approaches explicitly try to help the developer under-
stand a failure. Tarantula, for instance, visualizes test information
and highlights suspicious code [24], but provides no further expla-
nation. The cause-effect chains and cause transitions of Cleve and
Zeller [12] explain a failure in terms of how variable values cause
each other through a program execution. Zhang et al. [42] generate
comments for a given failing test case by changing variable values
of the test and associating these values with the execution outcome.
They then generalize over these values using a rules based invariant
detection engine. In contrast, BUGEX allows for arbitrary runtime
facts to correlate with failure, including branches taken (implying
the statements executed) or variables taking specific values.

Dialog-oriented approaches also explicitly support failure under-
standing. Whyline is a tool from Ko and colleagues [25] that allows
developers to ask questions about the visual output of a program
based on a recorded execution. The tool by Hao and colleagues [19]
suggests breakpoints to the developer for an interactive localization
of the defect. BUGEX could also be used in such an interactive set-
ting. However, our evaluation results suggest that its precision is
high enough to render further interaction unnecessary.

3. THE BUGEX APPROACH
We now discuss the BUGEX approach in detail. In the following

sections, we discuss the individual steps, as shown in Figure 3; in
addition, the pseudocode in Figure 4 presents a schematic view of
our approach.

Note that this approach can be implemented with any kind of
fact that one deems of interest. The only requirements are that (1)



Parameters: program p, failing test tfail
Result: relevant facts Fcorrelating
1: blast := getFailurePredicate(tfail);
2: Tfail := {tfail};
3: Tpass := ∅;
4: F := getFacts(tfail);
5: Fexplored := ∅;
6: Fcorrelating := correlateToFailure(F, Tfail, Tpass);
7: Funexplored := Fcorrelating \ Fexplored;
8: while Funexplored 6= ∅ do
9: f := getRandom(Fcorrelating);

10: t′fail := generateSimilarFailingRun(f, tfail, blast);
11: Tfail := Tfail ∪ {t′fail};
12: tpass := generateSimilarPassingRun(f, tfail, blast);
13: Tpass := Tpass ∪ {tpass};
14: F := F ∪ getFacts(t′fail) ∪ getFacts(tpass);
15: Fexplored := Fexplored ∪ {f};
16: Fcorrelating := correlateToFailure(F, Tfail, Tpass);
17: Funexplored := Fcorrelating \ Fexplored;
18: end while

Figure 4: Simplified pseudocode that depicts our approach.

there is a way to observe whether the facts are true or false for an
execution and (2) it must be possible to generate new test cases that
evaluate a certain fact differently and reach the failure conditions
(without necessarily failing).

3.1 The Failing Run
We start with Step (a) in Figure 3, namely, the input to BUGEX.

As detailed in Figure 4, BUGEX requires a program p and a failing
test tfail. (The BUGEX implementation runs on JAVA programs and
requires a JUNIT test case.) Like other experimental approaches,
such as delta debugging, BUGEX requires an oracle—a predicate
that distinguishes passing from failing runs. As discussed in Sec-
tion 2.2, this oracle typically is a failing assertion, either in the
test, in the code, or in the run time system. All run time excep-
tions (null pointers, array indexes, abnormal termination, etc.) can
be debugged with BUGEX instantly, without any effort by the pro-
grammer.

By default, BUGEX uses the last branch before the failure oc-
curs as oracle (Line 1 in Figure 4). All generated test cases must
evaluate this last branch blast;

1 those that do not are ignored for cor-
relation and discarded. This last branch blast encodes the oracle on
the lowest abstraction level; as taking it correlates with failure and
success by construction, this branch is excluded from the search.

3.2 Generating Runs

3.2.1 Test Case Generation
In principle, our approach can use any test generation technique

that can be geared towards generating tests for different types of
facts (and thus, in theory, could select the most appropriate ones
for the program and failure at hand). For our current implemen-
tation, we use our recent EVOSUITE tool, which implements an
evolutionary search approach enhanced with dynamic symbolic ex-
ecution (see Section 2.3). Search-based testing is well-suited for
our approach, as different optimization targets can conveniently be
encoded in fitness functions. To extend EVOSUITE to support a
new type of facts, one needs to (1) add a means to collect such
1Technically, one should differentiate between a branch and the
branch predicate that determines whether that branch is executed.
For simplicity, and unless otherwise stated, in this paper we use the
term branch with both meanings.

facts for existing and newly generated test cases (e.g., via bytecode
transformation) and (2) specify a fitness function that can guide test
generation based on the facts of interest. In the current version of
BUGEX, we extended EVOSUITE to support two kinds of facts:
branches and state predicates.

Intuitively, the aim of test case generation is to produce tests that
(1) are as similar to the failing test case as possible, but (2) differ
with respect to specific individual facts. The general underlying
motivation for this approach is the notion of counterfactual causal-
ity, as detailed in [40]. We want an actual cause to be a minimal
difference: if the cause is present, the failure is present; if the cause
is absent, so is the failure. In practice, however, it is difficult to
generate test cases that differ in only one fact. As a proxy for that,
for each fact BUGEX tries to generate both a passing and a failing
test case that differ with respect to that fact, but possibly with re-
spect to others as well. If the generation is successful, this is a good
indicator (depending on what other facts changed), that this fact is
irrelevant to the failure. Therefore, in contrast to the intuitive ideal
approach described above, we do not try to logically deduce the
failure cause, but rather create a probability correlation for which
we aim to generate helpful inputs (i.e., executions). This means
that the approach is applicable even if test generation does not suc-
ceed in all cases, and for practical reasons we therefore apply a time
limit to the test generation.

3.2.2 Test Case Requirements
During operation, BUGEX iteratively chooses a fact (Line 9 in

Figure 4) and attempts to derive first a failing test (Line 10) and
then a passing one (Line 12) that satisfy the following three re-
quirements:

1. The tests must reach the failure oracle blast. If a test does not
reach the failure oracle, the resulting facts are irrelevant.

2. The tests must evaluate the chosen fact f differently than the
original test case. This ensures that it is possible to assess the
correlation of the fact to the overall test outcome.

3. If several test cases fulfill the above criteria, the one most
similar to the original test case is selected. As stated above,
the optimal result would be a failing and passing test cases that
only differ in f , which rarely occurs in practice.

The fitness function for a fact type guides the search towards sat-
isfying these three conditions. How this guidance is implemented
generally depends on the chosen type of fact, and will be illustrated
in Sections 4.1 and 4.2. Given such a fitness function, EVOSUITE
takes care of deriving test cases that satisfy the above requirements
(see [13] for details).

3.2.3 Search Optimizations
To improve the search process, we apply several optimizations:

1. When choosing the next fact to consider for test generation,
BUGEX ranks the facts (see Section 3.3) and chooses one of the
facts that is highly correlated to the failure (Line 9 in Figure 4).
This realizes the feedback loop between test case assessment and
test case generation (from (d) to (b) in Figure 3). In addition, in
this way we can achieve the quick response times shown later
in Section 5 because we ensure to spend the effort where it is
most needed: by assessing (and attempting to refute) the high
correlation of a fact to the failure. In practice, our results show
that even just a few failing and passing tests are sufficient for
dramatically reducing the number of relevant facts.

2. BUGEX uses seeeding [14], which in evolutionary testing refers
to techniques that exploit previous related knowledge to help



solve the test generation problem at hand. The initial population
of the search in EVOSUITE is seeded with the original failing
test, as well as relevant tests collected during previous runs. In
particular, a pair of test suites (Tfail and Tpass) with tests that re-
ceived the highest fitness for different facts is continuously main-
tained (Lines 10 and 12 in Figure 4) and used to seed the initial
population each time the test generation process is restarted. To
make better use of the pool of available tests, we use a timeout
when searching for tests for a fact, and repeat the search several
times for every highly correlated fact f . The statistical correla-
tion, in turn, is calculated only on the maintained body of tests
with the highest fitness value.

3. Although EVOSUITE is capable to evolve tests into completely
new ones, to speed up the search we restrict it to only change the
input values used within the tests, without changing the sequence
of calls to the system that the tests perform.

3.3 Ranking Facts
The retrieval of runtime facts as indicated by the getFacts func-

tion in Figure 4 (Lines 4 and 14) needs to be implemented for each
type of facts. Our implementation for branches and state predi-
cates works by instrumenting the bytecode of the system under test.
When ranking branches, during execution of a test case, for each
branch it is recorded whether the branching condition was executed
and, if so, whether the branch was taken or not (or both, in case of
multiple executions). When creating state predicates for a method,
the values of all variables, fields and parameters are recorded on
entering that method, and state predicates are created as binary re-
lations between these values.

The generated failing and passing executions (Tfail and Tpass)
are used to create a correlation between all executed facts and the
failure (Lines 6 and 16). Since BUGEX’s goal is to explain the
fault, rather than localizing it, this correlation also considers all
facts in the passing executions. By doing so, the explanation of the
failure might also be a missing fact (e.g., the execution of a branch
in which a variable is set to a value other than null to avoid a
NullPointerException).

BUGEX computes the correlation of the relevant facts to the fail-
ure using an implementation of the approach by Abreu and col-
leagues [7]. In their approach, every branch is treated as an inde-
pendent component of the system. A diagnosis dk, as well as an
observation obs, are sets of such components. Specifically, an ob-
servation is a set of components that participated in a certain execu-
tion. The components in a diagnosis dk represent possible causes
for the failure, and thus the diagnosis has a certain probability to
explain a set of observations. Intuitively, this approach produces a
ranking using the sum of the conditional probability, according to
Bayes’ theorem, of the diagnosis dk, given the observation obs, for
all such observations. Finally, our approach normalizes to one these
probabilities over all diagnoses and obtains a list of facts, ranked by
their normalized probability to be responsible for the failure.

Using this approach, BUGEX calculates the probability that a
given diagnosis is correct. Currently, BUGEX generates diagnoses
by considering a single component (i.e., fact) at a time. This ap-
proach showed to produce good results and has the additional ben-
efit that it is computationally cheap.2

In our experiments, we usually found the ranking produced by
BUGEX to be unambiguous, with top-ranked facts being ranked

2A minor drawback of this approach is that it only correlates sin-
gle facts with the failure. In situations where multiple facts are,
together, relevant for a failure, their high correlation would be split
among them, which would result in lower individual rankings (as
further discussed in Section 6).

higher than the rest by orders of magnitudes. In order to decrease
noise, BUGEX only returns the top-ranked facts and cuts the result
off where the difference in ranking between two successive facts
exceeds an order of magnitude.

As an example, consider the list of ranked branches for the JODA-
TIME Brazilian Date bug introduced in Section 1. The topmost
branch at line 864, shown in Figure 2, has a normalized probability
of 0.99924, whereas the second highest ranked branch (at line 867)
has a probability of 0.000043. As the difference exceeds an order
of magnitude (many orders of magnitude, actually), BUGEX only
reports the first branch in this case.

4. IMPLEMENTATION
As detailed above, BUGEX is an approach that is applicable to

any kind of fact that one deems of interest. To demonstrate and
evaluate the approach, we implemented it for two types of facts:
executed branches and state predicates.

4.1 Isolating Branches
In general, the similarity between two tests in our context is de-

fined by the number of facts on which they differ. In the case of
program branches, we consider the executed branches up to the fail-
ure predicate blast; execution after the failure predicate is ignored.
Because a passing run by definition does not contain a failure, and
blast may be executed multiple times in such execution, we need
to determine which execution of blast matches the execution in the
corresponding failing run. To do this, we use dynamic time warp-
ing [32], a technique originally defined for the alignment of audio
tracks. Time warping lets us (1) align the traces of the passing and
the original failing run and (2) cut the passing execution at the point
that matches the last occurrence of the branch corresponding to blast
in the failing execution.

To guide the search towards evaluating the branches such that
the similarity is increased, we use the branch distance [31] mea-
surement, which is commonly applied in search-based testing. The
branch distance estimates how close a predicate of a branch was to
being evaluated in a certain way. For example, if the branch predi-
cate (arg < 0) is evaluated with arg = 3, the branch distance
to false is 0, and the branch distance to true is −4. (Note that, as
EVOSUITE works on Java bytecode, branching conditions are al-
ways atomic, such that there are no conjunctions or disjunctions.
Programs written in other languages can easily be transformed in
the same way.) Overall, the fitness of a test consists of three parts:

1. Branch distance to evaluating blast as either failing or passing,
2. Branch distance to evaluating the predicate of the target branch

b differently than in the original failing run,
3. Sum of the branch distances (normalized in the range [0, 1]) of

all remaining branches to evaluating as in the original failing run.

Each of these three components is normalized in the range [0, 1],
and the overall fitness is the weighted sum of the three. The experi-
mentally determined weights (4:2:1) reflect the priority of the three
requirements.

4.2 Isolating State Predicates
This type of fact considers state predicates: predicates that can

be expressed on the program state and the inputs at method entry.
(In the rest of the paper, for simplicity and when not ambiguous, we
use the term predicates to refer to state predicates.) The retrieval
of these predicates is based on earlier work [15]: On entry of the
currently investigated method, the values of all variables, fields, pa-
rameters and constants that are in scope are recorded; complex ob-
jects are recursively resolved to accessible inspector methods and



primitive values. Then, all collected values are compared with each
other, using all sensible comparison operators that apply to the type
of values (excluding some insensible comparisons, such as constant
with constant). The resulting set of predicates represents the con-
crete predicates that hold for the values at method entry for one par-
ticular execution of the method. This can clearly result in a large
amount of predicates to consider. For the JODATIME Brazilian bug
introduced in Section 1, for instance, on individual methods this
results in well more than ten thousand predicates to be correlated
with the failure.

Intuitively, the set of methods to be considered consists of all
methods in the dynamic slice for blast in the failing execution. In
other words, all methods that contain at least one statement that
was relevant for the execution path to reach blast should be consid-
ered. Note that, although considering only methods in the dynamic
slice often tremendously reduces the amount of relevant statements,
such statements are scattered throughout the code, so the number
of relevant methods is only slightly reduced in some cases. There-
fore, for some programs this approach can lead to an insensibly
large number of predicates, given that the developer would have
to investigate the predicates for each method separately. For the
JODATIME Brazilian bug introduced in Section 1, for instance, this
would mean we would have to investigate the predicates generated
for 82 methods. As each predicate for each method represents a
fact, we thus needed to further reduce the number of methods for
the approach to be practical. To do this, we focus only on methods
that a) contain highly ranked branches or b) are on the stack trace
of the failure.

The distance function for an individual fact can again be calcu-
lated using a metric similar to the one used for the branch distance.
For example, consider the predicate (x > CONST_5), with x be-
ing any variable, field, or parameter, and CONST_5 being a con-
stant from the source code whose value is 5. If x has value 7 in a
test case, the distance to negating this predicate is 2. As in the case
of branches, the overall fitness is calculated as the weighted sum of
the normalized distances.

Before presenting the result to the user, the set of highly corre-
lated predicates is checked for implications. If one predicate im-
plies another, the implied predicate is removed from the resulting
set of predicates.

4.3 First Branches, then State Predicates
The implementation of BUGEX produces two independent lists:

One of failure-related branches, and one of failure-related state
predicates; the programmer can choose which one to focus upon
first. Branches refer to conditions that not only are domain-specific,
but also induce a change in control flow (and thus a likely change in
behavior). In our experience, we found branches to be better fail-
ure indicators than the more generic state predicates. Hence, we as-
sume that programmers would first consult failure-related branches,
and only later examine failure-related state predicates—either as
an alternative to branches, if the branches are not helpful, or in ad-
dition to branches, to gain more information about the conditions
under which the failure occurs. This is the approach we followed
in our qualitative evaluation (Section 5).

5. EVALUATION

5.1 Real-Life Case Study
To assess how well BUGEX works in practice, we implemented

it for the two types of facts that we discussed earlier in the paper—
branches and state predicates—and conducted a case study on four

Table 1: BUGEX evaluation subjects
Lines Given

ID Section Subject of code tests
JOD1 5.4.1 Brazilian Date bug 62,326 3,497
VM1 5.4.2 Vending Machine bug 68 1
MAT1 5.4.3 Sparse Iterator bug 53,496 1,580
COD1 5.4.4 Base64 Decoder bug 8,147 1,149
JOD2 5.4.5 Western Hemisphere bug 62,326 3,497
COD2 5.4.6 Base64 Lookup bug 6,154 185
JOD3 5.4.7 Parse French Date bug 53,845 3,392

Table 2: Number of facts reported by BUGEX
ID Branches Duration Predicates Duration
JOD1 1 2,380 s 25 13,55 s
VM1 1 19 s 1 56 s
MAT1 8 216 s 9 10,267 s
COD1 1 214 s 23 1,339 s
JOD2 7 8,422 s 9 30,937 s
COD2 1 38 s 2 737 s
JOD3 15 1,577 s n/a n/a

programs and seven defects. Our selection of programs and defects
was driven by the following requirements:

1. The underlying test case generation technique (EVOSUITE, in
our case) must be able to handle the program and defect.

2. The failure must not depend on artifacts other than the program
and the corresponding test case.

3. The defect must be well explained, documented and must come
with a patch/fix, such that we can validate the output of BUGEX.

Note that these are fairly lightweight requirements. The first one
only requires that (a) the test case that reveals the defect can be en-
coded in EVOSUITE’s internal format and (b) EVOSUITE can gen-
erate inputs for the program. (Because BUGEX is not defined in
terms of EVOSUITE, these are mainly requirements due to our cur-
rent implementation.) The second and third ones are fairly standard
requirements.

We deliberately chose to evaluate a small number of defects only,
as to be able to report and discuss the BUGEX results for every
single defect. Table 1 provides an overview on the program and
defect characteristics.

5.2 Evaluation Setup
When conducting our study, we focused on the following re-

search questions:

RQ1. Is the number of relevant facts identified by BUGEX small
enough for a developer to examine?

In order to answer RQ1, we ran BUGEX on each of the seven de-
fects and checked whether there would be a small set of branches
(ideally one branch) and a small set of state predicates that would
set themselves apart from the crowd.

RQ2. Do the facts identified by BUGEX help the developer under-
stand the failure?

Obviously, bug understanding is not a directly measurable quan-
tity. To answer this question, we present BUGEX’s results for
each of the seven defects considered and discuss how they relate
to the actual defects based on our own experiences in fixing it.
We then compare our understanding to the “official” fix from the
change history.



5.3 Quantitative Results

5.3.1 Numbers of Facts Reported
Let us start with RQ1. The results produced by BUGEX can be

found in Table 2: The columns “Branches” and “Predicates” show
the number of branches and state predicates reported by BUGEX as
being related to the failure.

As discussed in Section 4.3, we expect developers to focus on
branches first, whose number is usually in the single digits. In every
case, this is a low absolute number of branches, and thus the answer
to RQ1 is clearly “yes”.

For all seven defects examined, BUGEX reports a small number
of branches as the failure cause; in four defects, in particular, it

reports a single branch.

In terms of predicates, we also obtain a strong reduction, as
BUGEX isolates less than 1% of all predicates to be relevant for
the failure. Yet, the absolute number is not as low as for branches.
As we detail in Section 5.4, however, the results fall in one of two
cases: in one case, we can ignore the predicates altogether because
the single branch reported already pinpoints the failure; in the other
case, the top-most ranked predicates suffice to fully characterize the
failure conditions.

5.3.2 Time Required
One may assume that a search-based approach, where a large

number of test cases have to be generated and executed, would
take a considerable amount of time. Indeed, the BUGEX runtime
reported in Table 2 ranges from a handful of seconds to multiple
hours.3

In practice, however, developers do not have to wait this long for
their results. In Figure 5, we have traced the number of failure-
related branches over the runtime of BUGEX. It is clear to see that
for six out of seven subjects, after only 20 seconds, the number of
branches (and actually, also the set of branches itself) stays stable
for the remainder of the runtime. Developers may thus go for the
BUGEX results after a few seconds and get all the relevant facts.
Most importantly, BUGEX is not an interactive tool, so developers
could simply run it overnight on the failures they need to investigate
and look at the results in the morning.

In six out of seven defects examined,
BUGEX was able to isolate the relevant branches after

20 seconds.

5.3.3 Statistical Debugging with Supplied Test Suites
3All experiments were conducted on a non-dedicated Mac-
Book Pro, 2.53 GHz Intel Core 2 Duo, 4 GB 1067 MHz DDR3
RAM. The approach is multi-threaded.

Table 3: Number of branches reported by statistical debugging
ID Branches Duration
JOD1 24 25,223 s
VM1 n/a n/a
MAT1 14 1901 s
COD1 51 496 s
JOD2 28 25,341 s
COD2 17 512 s
JOD3 26 25,542 s
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Figure 5: Number of branches remaining over time. The X axis
reports time in seconds, the Y axis the number of branches.
Note the logarithmic scale on both axes.

To put these numbers into context, we applied the statistical de-
bugging approach on which BUGEX relies (see 3.3) on the branches
executed using the test cases that were supplied with the applica-
tion. These results are summarized in Table 3.

The first thing to note is that statistical debugging takes more
time. However, this time is due to the supplied test cases being
set up to generically detect errors, in contrast to the test suites gen-
erated by BUGEX to specifically target the bug at hand. In prac-
tice, the automated test suite would be run in regular intervals any-
way, and statistical debugging would incur only a small overhead
on these runs.

The more important difference is the number of branches that
statistical debugging can isolate. In all seven cases, the number
is considerably larger—from a factor of 1.73 in JOD3, the Parse
French Date bug, to a factor of 51 in COD1, the Base64 Decoder
bug.

In all seven defects examined, BUGEX focuses on a far smaller
number of branches than statistical approaches.

5.4 Qualitative Results
Let us now discuss RQ2 by assessing whether and to what extent

the results help developers in understanding the failure. To do this,
we discuss each failure from Table 1, starting with the BUGEX
report and relating it to the defect in the code.

5.4.1 JODATIME Brazilian Date Bug
This is the failure discussed in Section 1. Bug report 2487417

for JODATIME [1] manifests itself with an exception thrown in the
code in Figure 1.

Branches. BUGEX’s result (Figure 2) shows that the failure is due
to the mapping of the internal and local time being inconsistent,
a condition which is only true (as the comment above the branch
shows) if we are near a daylight savings time boundary.

How does this branch lead to the defect? It turns out there is
no defect in the code to be simply fixed; the actual fix involves
a redesign of the API with deprecation of several classes and
methods and creation of new classes and methods to replace



them. Suggesting new code to write is beyond the capabili-
ties of any automated debugging tool; however, BUGEX was
able to pinpoint the failure condition to be addressed by the new
code. (This case raises an interesting point. State-of-the-art ap-
proaches to defect localization try to identify defect locations in
the code, which makes little sense if a large-scale refactoring and
extension is required. By focusing on execution features instead,
BUGEX can better guide such refactorings.)

Predicates. Since the isolated branch already pinpoints the failure,
there is no need to explore the predicates.

5.4.2 Vending Machine Bug
This is a small artificial example of a vending machine that serves

as a proof-of-concept, and that we already used in earlier studies
on automated debugging [11]. It consists of two classes: the class
VendingMachine is where the simple business logic is located;
whereas the class Coin is a mere enumeration of possible inputs.
The machine only handles a single price, and thus vending is en-
abled or disabled depending on the remaining amount of credit after
insertion or retrieval of coins and after vending.

Branches. BUGEX returns a problematic if-clause as its sole re-
sult:

if (this.currValue == 0) {
this.enabled = false;

}

The vending machine fails when the branch is not taken, that
is, this.currValue is non-zero. This causes the machine to
stay in enabled state, allowing for a second vending operation,
which will bring the credit below zero and cause an exception.
This point is precisely the point where the defect is, which means
that BUGEX perfectly pinpoints the failure cause in this case.

Predicates. Since the branch already pinpoints the failure cause,
there is no need to explore predicates.

5.4.3 Commons Math Sparse Iterator Bug
Apache Commons Math is a library of lightweight, self-contained

mathematics and statistics components. Defect number 367 [2] is
revealed by the following test:

public void test() {
double[] vdata = { 0.0, 1.0, 0.0 };
RealVector vector =

new ArrayRealVector(vdata);
Iterator<RealVector.Entry> iter =

vector.sparseIterator();
iter.next().getValue();
iter.next().getValue(); // throws exception

}

In this test, iter is a sparse iterator, which should iterate over
the non-zero values in vdata. The second call to next() throws
a NullPointerException.

Branches. For this failure, BUGEX reports eight related branches.
All these branches refer to two references in the iterator, namely
current and next, and either compare them against null or
check the index field of the referenced Entry against value
-1. It turns out that the code uses both these concepts (being
null or having an Entry of -1) to indicate a non-existing
entry, which causes the failure when their values are inconsistent.
The official fix uses only the -1 marker to detect non-existing
entries, thus eliminating the inconsistency.

This example demonstrates that BUGEX minimizes the number
of branches to the absolute minimum—but not further. If the
failure can be reached through different paths, BUGEX can re-
port them all (as long as the underlying test generation technique
is able to exercise those alternative paths).

Predicates. For this failure, the developer may chose to examine
the reported failure-related predicates. The predicates with the
topmost ranking are index == 1 (again referring to an itera-
tor attribute), hasNext() == true, and getIndex() ==
1. In this setting, index == 1 means that the iterator already
is at the last non-zero element; yet, hasNext() is true, sug-
gesting that there would be more elements. This pinpoints the
inconsistency in the iterator, which is the cause of the failure of
the call to next().
The reason why BUGEX does not report current == null
as a failure predicate is that current == null is a valid
state that frequently occurs in passing generated tests. Hence,
current == null is a necessary, but not sufficient, condi-
tion for the failure.

5.4.4 Commons Codec Base64 Decoder Bug
The Apache Commons Codec library provides implementations

of common encoders and decoders such as Base64, Hex, Phonetic
and URLs. Bug report 98 [3] provides predicates under which the
failure arises:

Certain (malformed?) input to Base64InputStream causes a
NullPointerException in Base64.decode(). The
exception occurs when Base64.decode() is entered with the
following conditions:

• [The field] buffer is null.
• [The field] modulus is 3 from a previous entry.
• [The parameter] inAvail is −1 because
Base64InputStream.read() reaches EOF on line 150.

Under these conditions, Base64.decode() reaches line 581 with
buffer still null and throws a NullPointerException.

Branches. BUGEX reports a single branch as the culprit, namely
buffer != null in Base64.readResults():

int readResults(...) {
if (buffer != null) {
// ...
if (...) {
// ...
buffer = null;

}
// ...

}
return eof ? -1 : 0;

}

This method and method decode(), in which the exception is
raised, are called in turns several times in every run. The method
decode() fills an internal buffer with decoded input, while the
method readResults() empties that buffer and copies the
results into the target array.
For all passing runs, in the last call to readResults() the
buffer is already null, eof is true, and thus −1 is re-
turned. For all failing runs, conversely, in the last call buffer
is set to null, and the number of bytes read is returned. The
developers decided to fix the issue elsewhere in the code, closely
to where the exception was raised. Although this is a possible
fix, based on our analysis we believe that the one reported by
BUGEX is the actual cause, and not just a symptom, of the fail-
ure, and we would have fixed the problem there.



Predicates. While the branch isolated by BUGEX is sufficient to
understand and fix the failure, the isolated predicates provide ad-
ditional information on the failure conditions. The top-ranked
predicate is modulus == 3, as described in the bug report.
The other conditions listed in the bug report are not reported by
BUGEX because it can generate passing runs where each of these
conditions hold. Therefore, in this case, not only can BUGEX
provide additional details over the facts stated in the bug report;
it can also show that some reported facts are irrelevant.

5.4.5 JODATIME Western Hemisphere Bug
JODATIME bug report 2889499 [4] reads as follows:

DateTimeZoneBuilder# toDateTimeZone(String,
boolean) creates Period in
PeriodType.yearMonthDay() for inner purposes. This
period is created using DateTimeZone.getDefault() and
started on java’s beginning of the times. Period fields are calculated
as difference of (minuendInstant + offset) and
(subtrahendInstant + offset). offset is a default zone
offset for subtrahendInstant, and is negative on Western
semi-sphere. But subtrahendInstant is already minimal
possible value and can’t be increased by negative value without
arithmetic overflow, which was converted to
ArithmeticException in
ZonedChronology.ZonedDurationField#
getOffsetToAdd(long).

Branches. For this bug, BUGEX identifies seven branches that are
highly correlated to the failure. Six of the seven branches are
related to initializations and set fields to default values if no spe-
cific values are specified. BUGEX reports these branches since
the failure requires these default values to be used. The seventh
branch is where the actual fix was applied.
This result shows that, as expected, BUGEX cannot distinguish
between conditions for the failure to occur and errors that need
to be fixed. Nevertheless, the number of branches reported is
still low enough that a developer could inspect them to find the
one actually responsible for the failure. Moreover, the number of
state properties is also small and can help understand the defect.

Predicates. BUGEX reports nine different predicates on five meth-
ods. Among these predicates is the very fact that is given in the
bug report as the reason for the failure: subtrahendInstant is
already minimal possible value. Another predicate points to the fact
that the error occurs on the calculation of the year value. The
remaining seven facts are artifacts of the test generation process,
such as the number of transitions used in the test case. Currently
BUGEX cannot find that offset is always negative as stated
in the bug description, because predicates are only checked on
method entry, and not within method bodies or at method exit—
where this value is calculated.

5.4.6 Commons Codec Base64 Lookup Bug
Issue number 22 in the apache commons codec library [5] is a

failure due to an ArrayIndexOutOfBoundsException.

Branches. When we apply BUGEX to this test case, it returns a
single branch as the result: the branch from the loop header
of the for-loop that iterates over the input. What BUGEX has
isolated is that the failure occurs only if the loop body is taken at
least once—without input, there is no failure.

Predicates. While execution of the for branch is necessary for
the failure to occur, it is by no means sufficient. The for loop
is entered also by passing runs (but with much lower probabil-
ity). Leveraging its generated test cases, BUGEX isolates two
predicates related to the failure:

• The first predicate is arrayOctect.length() == 3.
This is an artifact that stems from the fact that EVOSUITE
did not alter the length of the input array.

• The second predicate is octect <= 0. The value of
octect depends on the input and is used directly to ac-
cess a lookup table, an operation that fails whenever the
input is negative.

Considering also the predicates, BUGEX provides enough infor-
mation to capture the failure condition—that it suffices to have
one negative number in the (non-empty) input for the program to
fail.

5.4.7 JODATIME Parse French Date Bug
JODATIME’s bug report 1788282 says that parsing a valid french

date fails with an IllegalArgumentException [6].

Branches. For this issue, BUGEX produces 16 relevant branches.
Upon inspection, we found that all branches are necessary for
the failure to occur. However, none of them provides a direct
explanation of the problem.

Predicates. BUGEX is unable in this case to identify sensible pred-
icates that can explain the failure. The main reason is that, for
this failure, the number of predicates is too large and causes
BUGEX’s analysis to timeout or run out of memory.

The reason why BUGEX does not work for this example is that
it uses the exception as the failure detector. That is, we assume that
the defect is triggered whenever the exception is being raised. For
many of the executions BUGEX generates, however, the exception
is raised for actually incorrect inputs, which is the right behavior.
Therefore, to be able to successfully apply BUGEX to the given
example, we would have to use a more accurate oracle.

This is a manifestation of the well known oracle problem [36], a
general issue that affects many software testing activities. From a
methodological point of view, it would clearly be highly desirable
to have a formal specifications for the code that would allow for
creating perfectly accurate oracles. Unfortunately, this is rarely the
case, and the absence of specifications can hurt not only implemen-
tation and documentation, but also testing, verification, and (as we
see) automated debugging.

5.4.8 Summary
After examining the BUGEX results for the seven failures in Ta-

ble 1, we can draw two main conclusions. First, the facts reported
by BUGEX provided immediate help in pinpointing the bug in six
out of seven cases: either the single branch reported directly led to
the defect, or the additional state predicates highlighted important
conditions for the failure to occur.

For six out of the seven failures considered, the facts reported by
BUGEX effectively led to the failure cause.

Second, the analysis of the seven failures provide initial, but
clear, evidence that much of the research in automated debugging
has been misguided in pointing to quantitative results alone (“5% of
the code”), without actually investigating the qualitative value of
the approaches. Our discussion of actual defects shows that, as
also discussed by Parnin and Orso [34], helping debugging tasks
involves more than producing a list of source code lines—in par-
ticular, the whole concept of locating a defect in the code becomes
questionable if the fix requires refactorings and extensions.

Failure-related facts, as produced by BUGEX, can provide
effective assistance in isolating and understanding defects.



5.4.9 Statistical Debugging
To have a baseline for our results, we also examined the topmost

ranked branches reported by statistical debugging (Table 3). We
performed statistical debugging using the test suites supplied with
the programs considered. The assumption in statistical debugging
is that developers would process the ranked list of facts one by one,
in order; more realistically, we assumed that developers would do
so for at most ten unhelpful diagnoses (see Reference[34] for sup-
porting evidence). In all but one case, the top ten branches did
not contain the branches reported by BUGEX, nor would they have
been as helpful; the only exception is the Commons Math Iterator
bug, where the top ten branches reported by statistical debugging
contained many of the branches reported by BUGEX.

Statistical debugging using existing test suites does not produce
as helpful results as BUGEX.

We conclude that statistical debugging works best when used in
conjunction with a tailored test suite, as also observed by Artzi et
al. [9]. However, if such a test suite is to be generated, one may
just as well guide its generation based on the bug at hand—which
is precisely what BUGEX does.

5.5 Threats to Validity
Threats to construct validity have to do with how we measured

the performance of our debugging technique, by assuming that The
number of branches that need to be analyzed is directly correlated
with the effort needed for this examination. However, this assumes
that branches are suitable to explain faults, whereas in practice dif-
ferent or additional information might be needed.

Threats to internal validity might come from how the study was
performed. To reduce the probability of defects in our framework,
we carefully tested it. To counter the issue of randomized algo-
rithms being affected by chance, we ran each experiment multiple
times; the results were the same for each run. The running time is
the average over all runs.

Threats to external validity concern the generalization to soft-
ware and faults other than the ones we studied, which is common
for any empirical analysis. Our sample size is small; only seven
different programs and bugs were used in the study. The reason
for this is that it is time consuming to find and reproduce real bugs
by manually analyzing bug reports. This produces a bias towards
well documented and easy to reproduce issues. However, the set
of subjects used represents the entire set of problems BUGEX was
used on, and by choosing different subjects, rather than applying
BUGEX to many issues on the same subject, we increase the het-
erogeneity of the sample set.

There are many parameters in BUGEX and the underlying tech-
niques (i.e., EVOSUITE) that we needed to define, such as weights,
timeouts, thresholds, and so on. Where applicable, we picked pa-
rameters as used in other studies; still, other choices could possibly
affect our results [8]. Given that we had close to optimal results
in six out of seven cases, however, we believe that changing the
parameters could affect the time it takes to search for these results,
but not necessarily their final quality.

6. CONCLUSION AND CONSEQUENCES
When developers debug programs manually, they run tests and

experiments to systematically narrow down failure causes. BUGEX
is the first approach to automate this process for generic run-time
facts. By systematically generating test cases, BUGEX can isolate
execution features that precisely characterize when and how the
failure occurs. Unlike traditional statistical debugging approaches,

BUGEX requires only a single failing run, which is the starting
point for any debugging activity. The results of our preliminary
evaluation of BUGEX are encouraging: in six out of seven cases,
the features isolated by BUGEX pinpointed the failure cause.

Despite these initial successes, the combination of test case gen-
eration and automated debugging is still in its infancy. Our future
work will focus on the following topics:

More runtime facts. Besides branches taken and state conditions,
there are several other runtime facts that may characterize fail-
ures. We are currently exploring the wide range of test criteria
for this purpose: sub-conditions fulfilled, definition-use relation-
ships, number of loop iterations, and others. We believe that
considering a richer set of fact will help with even better diag-
noses (e.g., “the failure occurs whenever this loop is taken only
once”). One challenge, when considering a new type of facts, is
how to define an appropriate fitness functions, as well as how to
integrate the findings in a single ranking.

Multiple facts. BUGEX currently only associates individual facts
with failures. An obvious extension would be to check for the
correlation of multiple facts (e.g., “the failure occurs only when
current == null and hasNext() == true hold”).

Test suites and multiple failures. In case an existing test suite with
multiple failing tests relating to the same failure (defined by blast)
exists, these tests can be used as seeds for EVOSUITE. We will
investigate to what extent this can improve the effectiveness of
the approach. This would also allow us to extend BUGEX so
that it can search for multiple causes (and their interferences) in
parallel, rather than treating each failure individually.

Integration with minimization. JINSI [11] minimizes failing ex-
ecutions to a fraction of their size, using a combination of dy-
namic slicing and delta debugging. We are currently integrating
JINSI’s minimization and BUGEX’s isolation capabilities, which
should allow us to decrease the search space while further in-
creasing precision.

User studies. So far, studies in debugging have focused far too
much on quantitative aspects, widely ignoring the usefulness of
the results for developers. We plan to run an extended user study
on BUGEX in the Summer of 2012, which will aim to asses what
developers need for efficient debugging, and how well automated
debugging tools like BUGEX meet these expectations.

More material on BUGEX is available at

http://www.st.cs.uni-saarland.de/bugex/
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