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ABSTRACT
“Why does my program crash?”—This ever recurring ques-
tion of software debugging drives the developer during the
analysis of the failure. Complex defects are impossible to
automatically identify; this can only be left to human judg-
ment. But what we can do is empower the developer to
make an informed decision, by helping her understand the
failure. To fully comprehend a failure, one may need to con-
sider many different aspects such as the range of the input
parameters and the program’s structure and runtime be-
havior. I propose an approach that gathers a variety of such
facts from a given failing execution. To examine the cor-
relation of those facts to the failure, it produces additional
executions that differ in as few facts as possible. Then the
approach creates generalizations and abstractions over the
correlating facts. These explain different aspects of the fail-
ure and thus help the developer understand and eventually
fix the underlying defect.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Diagnostics, Symbolic execution, Testing tools

General Terms
Experimentation

Keywords
Automated debugging, test case generation, failure classifi-
cation, statistical debugging

1. INTRODUCTION
What is special about Brazil as a time zone in regard to

a particular date? And why does this make my program
crash? These are the questions a developer might ask in or-
der to understand the failure that is reproduced by the test
case shown in Figure 1. This test case produces a certain
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public class JodaTest extends TestCase {
public void testBrazil () {

DateTimeZone dtz =
DateTimeZone.forID("America/Sao_Paulo");

LocalDate date =
new LocalDate (2009, 10, 18);

Interval interval = date.toInterval(dtz);
}

}

Figure 1: JODA TIME bug 2487417: toInterval()

fails when processing October 18, 2009, Brazil time.

date and transforms this date to a time interval that repre-
sents the 24 hours of that date in the Brazilian time zone.
If a developer wants to write a fix for the underlying defect
or even only assess it, she has to investigate the code and
do some manual debugging to understand how the failure
comes into existence. And since this three lines long test
case invokes 367 methods and executes 1,465 lines of code
(ignoring JAVA system libraries), she might have a hard time
doing so.

The state of the art in automated debugging focuses on
defect localization—the reporting of individual faulty lines
of code. The evaluation of those approaches usually assumes
an “ideal user” [28], who immediately recognizes the defect
on sight. This convenient assumption allows for an easy
and objective evaluation. But this assumption is also very
questionable [25]: After some time has passed, developers
usually do not understand their own code, let alone someone
else’s. If only the problematic lines of code are presented
without explanation or context, developers won’t recognize
the defect. And even if the code is almost correct and the fix
is simple, without understand the failure developers cannot
write the fix. As for the example in Figure 1: in such a case
defect localization does not help at all. The fix involves an
API change with deprecation of several methods and classes,
and the development of new classes and methods to replace
them. For such cases most approaches to defect localization
do not even fail well—they are not designed to detect when
the fix involves more than a single line of code.

In contrast, little effort has been spent to help developers
understand a failure. And for an obvious reason: the eval-
uation depends on human feedback and thus is much more
laborious and much less objective. Yet this is a much better
indicator of the overall goal of developer productivity. In the
following, I will introduce an approach that is capable of ex-
tracting different facts: structural and behavioral runtime
information that helps the developer understand different
aspects of the failure.



2. EXPLANATORY FACTS
In previous work [29] the goal was to extract failure con-

ditions in the form of constraints on the input. These con-
straints are helpful when assessing the frequency and sever-
ity of the failure. Yet they do not suffice to explain the
failure in terms of the internals of the program. To fully
understand a failure, one has to take into account various
aspects, such as input, program structure and runtime be-
havior both in terms of control flow and data flow. Informa-
tion about these aspects is represented by facts of different
types that complement and confirm each other and are help-
ful in diverse scenarios. Such facts are:

Constraints on the input: The input-related path condi-
tions, as they are encountered during execution, form con-
straints on that input. The proposed approach tries to ex-
tract 1-minimal [35] failure conditions that explain the fail-
ure in terms of the input (as shown by previous work [29]).
For the initial example as given in Figure 1, these failure
conditions are

isDaylightCutDay() ∧ (cutoverTime = 00:00:00)

That is, the failure occurs whenever the chosen date is a
daylight cut day in the corresponding time zone and the
cutover time is midnight.

Variable values: The relations and abstractions of the val-
ues of variables may also point to the underlying problem.
For the initial example, the value of

dateTZ.nextTransition(date.getLocalMillis ())

has always the same relation to the chosen date: It is the
date of the next daylight savings time transition, whenever
that transition is at 00:00:00. That is in line with the con-
straints on the input as mentioned above.

Invariants: Program invariants [13] that hold for failing
runs, but never for passing runs or vice versa often reveal
some interesting properties. For the initial example, invari-
ants of passing runs that are violated by failing runs are:

millisLocal= millisUTC+getOffset(millisUTC)
millisUTC= millisLocal−getOffsetFromLocal(millisLocal)

This means that the local time is always the universal
time plus offset, where the universal time is always the local
time minus local offset. For the faulty runs, this mapping
is inconsistent, since the created local time maps to some
universal time, but this universal time in turn maps back to
a different local time.

Definition-usage pairs: The definition and later usage of
a variable in the code gives a good understanding of how the
data flows through an execution of the program and what
data dependencies exist. If the problematic definition and
later usage of a value are far away from each other, which
is especially common in object oriented programs, that con-
nection can be important to show. For the initial example,
such definition-usage pairs could be used to show the origin
of the invariant violation as given above:

getOffsetFromLocal(millisLocal) !=
getOffset(millisLocal -

getOffsetFromLocal(millisLocal ))

This is the guarding condition of an internal consistency
check which realizes that the start of the day (midnight) does
not exist in the chosen time zone and raises an exception.

Executed branches: The correlation between executed
branches (branch coverage) and defects is an often chosen
indicator to single out problematic code. Yet for the given
example, this shows a problem that arises when only consid-
ering a single aspect of the execution: the code has several
places where daylight savings time transitions are treated
differently, and due to the nature of the problem, all those
branches are highly correlated to the failure. Only when
also considering other aspects, it becomes clear which of
these branches are really relevant for the failure and which
are just coincidentally correlated.

Number of loop-iterations: When it comes to loops,
path conditions may not be enough information; the devel-
oper might also want to know how often a loop was executed.
For example, in JODA TIME, there is a piece of code where
two dates from different APIs are aligned:

while (date.getDate () == dom) {
date.setTime(date.getTime () - 1000);

}

In that situation, the developer wants to know whether the
number of loop iterations is correlated to the failure. For in-
stance, it would be interesting if the loop is always executed
3.600 times (representing one hour).

The facts are gathered during execution. Every execution
produces many facts of each type. As most of them are
irrelevant for the failure, the next step is to identify facts
that are related to the failure and discard facts that are
not. To achieve this, I propose an approach of systematic
experimentation that works for all types of facts: for each
fact it tries to come up with an execution that differs in only
the selected fact. If the failure still occurs, the fact is not
related; otherwise it is. Of course, for many cases such an
execution does not exist. The solution is to generate several
executions where each differs in as few facts as possible, but
those facts are as divers among the executions as possible.
These executions can be used to calculate the correlation of
the facts to the failure [2].

This approach is an extension of previous work [29]. The
idea to examine the constraints individually by generating
additional executions nicely generalizes to all types of facts.
Formerly this was done by changing the inputs to the pro-
gram under test using a constraint solver. Now the con-
straint solver is embedded into a genetic algorithm [24] to
also change the test. This approach partly explores the exe-
cution space. The alternative is to explore the complete exe-
cution space by applying symbolic execution [20]. Symbolic
execution suffers from the problem of state explosion [31].
For most real-life programs the execution space is infinite
and its complete exploration infeasible. Because of this,
concrete executions were chosen over symbolic execution.
But since the execution space is only partly explored, the
proposed approach is not complete. For instance it gener-
ates a set of constraints on the input that could possibly be
further reduced; thus it does not produce the weakest pre-
condition [12]. In return the approach scales much better
and is applicable to programs of any size. It starts with a
concrete failure and iteratively expands to additional execu-



tions, adding more information and increasing the precision
in the process. This allows to abort at any stage and still
get some results.

After identifying correlating facts, the approach general-
izes over them and tries to find abstractions. This is done
differently for every type of fact. In many cases, one can
leverage the names of the methods the facts are generated
in, as well as names of variables and constants. The idea is
to reuse as much domain specific semantic information from
the code as possible.

The less non-related facts there are to start with, the
faster and more precise are the results. Thus techniques
that reduce the size or the trace of the execution could
be applied to improve the approach. One way to do this
is to create the dynamic backward slice [33] of the failing
statement. Another approach as proposed by Burger and
Zeller [7] minimizes object interactions. After the general
applicability of the initial approach has been shown, such
techniques could be used to increase its efficiency and the
precision of the results.

3. RESEARCH HYPOTHESES
The overall goal is to extract different facts and abstrac-

tions thereof, that help the developer understand the failure.
Of course, helpfulness is not a measurable quantity so it is
not directly and objectively verifiable whether the approach
meets its goal. Perhaps this is one of the reasons, why this
goal has received so little attention in the past. For the pro-
posed approach, two things are done to remedy the problem:
A quantitative evaluation is performed on defects for which
the fix is available. And a qualitative evaluation is performed
manually on defects that are resolved and the reason for the
failure is filed.

The ground truth in automated debugging is always the
fix. All the facts that the approach reports are somehow re-
lated to the failure, meaning that they are part of the chain
of causation. The fix breaks this chain such that the failure
does not occur anymore. This leads to the first falsifiable
research hypothesis. RH1: Once the fix is applied, the
reported facts are not observable anymore. So the
strategy to quantitatively evaluate the proposed approach
is to apply it to some defects for which a fix is available.
Such defects are contained in the iBugs project [11], which
provides a benchmark of real-life subjects with real bugs.
When the approach is applied to the defects of that project,
the results and the generated executions are recorded. Then
the fixes are applied to the defects and the generated exe-
cutions are performed again. Now the previously reported
facts should not be observable anymore. However, this eval-
uation strategy has a problem: the reported facts might
stem from earlier in the chain of causation than where the
fix is later applied. This means that the chain is only broken
after the facts are observed. So even though the failure is
not observable anymore, the facts still are. It is yet unclear
how prevalent this problem is. Therefore it will be dealt
with when it occurs during evaluation.

Since the generalizations and abstractions produced in the
last step involve domain specific semantic information, they
cannot be verified automatically. Therefore, I perform a
manual and subjective investigation to confirm the last re-
search hypothesis. RH2: The generalizations and ab-
stractions over the facts are correct and helpful to
understand the failure. For a body of known faults, I

manually inspect the results of the approach and, only us-
ing that information, try to understand the failure. Then I
compare this understanding to the description of the defect
as I find it in the bug database and how it was fixed in the
code. This non-repeatable evaluation qualitatively indicates
the success of the approach.

4. RELATED WORK
Automated debugging is a very dense field and depending

on which aspects are emphasized, the proposed approach is
related or comparable to many others.

The intuition of informative facts about the runs that are
presented to the developer is comparable to the facts LaToza
and colleagues [22] observed when monitoring developers as
they tried to understand foreign code. This notion is mir-
rored in other contexts as “spectra”, “features” or “execu-
tion profiles”. Harrold and colleagues [16] give a very good
overview and classification of the different possible types of
program spectra. Santelices and colleagues [30] find that for
a set of lightweight fault-localization techniques, a combina-
tion of different types of program spectra (such as we use)
outperforms individual approaches.

Much work in the context of debugging is targeted at de-
fect localization. Since most of these approaches are evalu-
ated on the Siemens Suite [17] their performance and thus
the rising precision of the state of the art is easy to fol-
low. Agrawal and colleagues [3] created a tool termed χslice
that produces dices (set difference of dynamic slices) to lo-
calize defects. Renieris and Reiss [28] try to localize the
fault by comparing the coverage spectra of a failing run to
its “nearest” passing run (according to their distance met-
ric). Pytlik and colleagues [26] do preliminary work with
two types of simple variable invariants. Given a counterex-
ample trace of a model checker, Groce’s Explain tool [14]
creates a passing run with minimal distance and extracts a
specialized dynamic slice. Liblit and colleagues [23] do sta-
tistical debugging with remotely recorded predicate evalua-
tions. Chilimbi and colleagues [8] do the same, but use path
profiles instead. Dallmeier and colleagues [10] use method
call sequences to identify defective classes. Zeller [34] and
Cleve and Zeller [9] transfer data from a healthy to an in-
fected program state to extract cause-effect chains and cause
transitions. Jones and colleagues [18] changed their Taran-
tula tool to localize the defect according to the number of
passing and failing test cases a certain block of code par-
ticipates in. Abreu and colleagues [2] perfect this approach
by creating a detailed mathematical probabilistic model of
a component chain. Qi and colleagues [27] use the path
conditions of a correct and a faulty version of a program
to generate an additional execution path and present differ-
ences as possible locations of the defect. The Deputo tool
of Abreu and colleagues [1] combines a spectrum-based ap-
proach with model-based diagnosis. Baah and colleagues [6]
use a probabilistic program dependence graph whose prob-
abilities are based on observed executions and causal effect
estimation to rank executed statements. The approaches to
defect localization show an impressive advancement in the
field and many of the ideas can be reused in the context of
defect explanation.

Current research takes this idea even one step further:
Instead of only locating the failure, some approaches try to
automatically come up with fixes for it. For instance Weimer
and colleagues [32] use genetic programing to generate fixes



and Arcuri and Yao [4] try to co-evolve the program and
its test suite. Naturally these approaches suffer from the
same shortcomings as defect localization approaches. For a
developer to accept a proposed fix, he first has to understand
the underlying problem—which is not facilitated.

In contrast to the maturity of the defect localization disci-
pline, only few approaches try to help the developer under-
stand a failure. Originally, “Tarantula” should visualize test
information and highlight suspicious code [19], but without
further explanation. The cause-effect chains and cause tran-
sitions of Cleve and Zeller [9] explain a failure in terms of
how the data flows through a program execution but ignore
other important aspects. The probabilistic program depen-
dence graphs from Baah and colleagues [5] can also be used
to comprehend a fault but need further improvement in that
regard. Other techniques aim at the same goal, but take a
dialog-oriented approach, rendering them completely differ-
ent. Whyline is a tool from Ko and colleagues [21] that
allows developers to ask questions about the visual output
of the program based on a recorded execution. Hao and col-
leagues [15] implemented a tool that suggests breakpoints to
the developer for an interactive localization of the defect.

5. CONCLUSIONS
In this paper I argued for the need to help the developer

understand a failure, enabling her to make informed deci-
sions. The contribution of this paper is the proposal of a
new approach that, given a failing execution, gathers facts
that capture important aspects of the input, the structure
and the runtime behavior of the program. Additional ex-
ecutions are generated to examine the correlation of those
facts to the failure. The approach reuses semantic informa-
tion found in the source code of the program to abstract
and generalize over the correlating facts. Those abstrac-
tions and generalizations help the developer understand the
failure. The overall goal is an explanation rather than a
localization of the underlying defect.
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