
When does my program fail?
Jeremias Rößler

Department of Computer Science
Saarland University

Saarbrücken, Germany
roessler@cs.uni-saarland.de

Alessandro Orso
College of Computing

Georgia Institute of Technology
Atlanta, Georgia

orso@cc.gatech.edu

Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany

zeller@cs.uni-saarland.de

Abstract—Oops! My program fails. Which are the circum-
stances under which this failure occurs? Answering this question
is one of the first steps in debugging—and a crucial one,
as it helps characterizing, understanding, and classifying the
problem. In this paper, we propose a technique to identify failure
circumstances automatically. Given a concrete failure, we first
compute the path condition leading to the failure and then use a
constraint solver to identify, from the constraints in the path
condition, the general failure conditions: “The program fails
whenever the credit card number begins with 6, 5, and a non-
zero digit.” A preliminary evaluation of the approach on real
programs demonstrates its potential usefulness.

Index Terms—automated debugging; symbolic execution; con-
straint solving;

I. INTRODUCTION

When a program fails, one of the first steps in debugging
the problem is to identify the exact circumstances under
which the failure occurs. These circumstances not only help
understanding the problem for the actual debugging work; they
also are important to assess the severity of the problem and
help in identifying related or duplicate problems.

In a recent study at Microsoft [1], knowing “in what
situations a failure occurred” was the third most frequent
unsatisfied information need of developers, and by far the most
time-consuming of all. Why is this so difficult? As a sim-
ple real-life example, consider the processCard program,
which takes as input a credit card number to be processed,
checks whether the number is valid using the Luhn formula
(a simple checksumming algorithm), and identifies the card
type. Unfortunately, processCard contains a bug, whose
effects are shown in Figure 1. The credit card number given
as input is a valid Discover card number, but it is rejected by
the application:

$./processCard ’6510 2556 8418 3585’
InaccurateCardType: Discover 6510 2556 8418 3585
$ _

Fig. 1. processCard erroneously rejects a valid credit card number

At this point, we have everything in place to start our
investigation. We have a failing application and a test input that
allows us to reproduce the failure at will, but we do not know
under which circumstances the program fails. We do not know
whether the failure would occur for other credit card numbers
and, if so, for which ones. It is also possible, although unlikely,

that the failure may occur for this very specific number only,
in which case we might focus on more prevalent issues first.
Therefore, even before we start the actual debugging, we need
to understand the failure circumstances.

In this paper, we present an approach to derive such failure
circumstances automatically. Given a concrete failing run, we
compute the path condition leading to the failure—a conjunct
of constraints on the inputs under which the control flow
reaches the location where the specific failure occurs with
the right state. This conjunction of constraints provides the
conditions for the failure to occur.

As this conjunction can become arbitrary complex, it
is necessary to simplify and generalize the collected path
conditions, which is a challenging endeavor. In our current
approach, we perform this simplification and generalization
using a combination of systematic experimentation, constraint
solving, and constraint abstraction. (We are also experimenting
with alternative techniques to gain further insights into the
problem.) For relatively simple programs, our approach can
already produce a short and crisp description of the failure
circumstances. For the failure in Figure 1, for instance, the
computed failure condition is

isValidCardNumber(v) ∧ v0 = ’6’ ∧ v1 = ’5’ ∧ v2 6= ’0’

which means that the failure occurs whenever the card number
(1) is valid according to the Luhn formula, (2) starts with
65, and (3) has the third digit different from zero. Note that
this is a realistic example. On October 2006, the prefix for
Discover credit cards changed from “650” to “65”. Because the
processCard code was not updated to reflect this change,
valid Discover card numbers that start with “65[1–9]”, such as
the number in our test input, are not correctly processed and
result in an exception being thrown. The predicate that our
approach computes accurately reflects this failure condition.

In the remainder of this paper, we first state the prob-
lem we target, introducing a set of basic definitions (Sec-
tion II). We then illustrate our approach in more detail on
the processCard example (Section III). In Section IV, we
provide details on how to simplify constraints. Section V gives
insights into an additional real bug and directly leads to the
discussion of current challenges and future work (Section VI).
Finally, Section VII discusses related work, and Section VIII
presents conclusions and consequences.

II. DEFINITIONS AND TERMINOLOGY

Before illustrating our approach, we define the terminology
that we use in the rest of the paper.

We define a program: I → O as a function from I (the
program domain) to O (the program co-domain). An oracle:
I → O for a program p is also a function from I to O that
defines, for each i ∈ I , which o ∈ O should be produced by
p. Given a program p, I and O for p, and a corresponding
oracle orac, we can define a failure as a pair 〈i, o〉 such that
i ∈ I , o ∈ O, p(i) = o, and orac(i) 6= o.

A constraint is a predicate defined over a set of variables,
where each variable is defined over a specific domain. In our
specific context, the variables within the condition correspond
to program inputs, and constraints correspond to predicates
used in conditional statements (e.g., the predicate of an if-
statement) within the program.

A path condition (PC) is a conjunction of constraints, where
the constraints correspond to predicates encountered while
following a specific path. A PC, by defining a set of constraints
on the inputs of a program, identifies a (possibly empty)
subdomain of the program with the following property: each
input in that subdomain causes the program to follow the path
that corresponds to the PC.

A solution for a PC (i.e., for the corresponding conjunction
of constraints) is an assignment of a single value from its
domain to each variable in the constraints such that no
constraint is violated. In our context, a solution is therefore
a set of values for the inputs of the program that satisfy all
constraints in the PC, that is, that cause the program to follow
the path corresponding to the PC. A PC may have one, many,
or no solutions. In the first two cases, the PC is said to be
satisfiable (or consistent). In the latter case (i.e., if there is no
possible assignment of values to variables that satisfies all the
constraints), the PC is said to be unsatisfiable or inconsistent.

We now state our goal in more formal terms using the above
definitions. Given a program p, an oracle orac, and an input
if that results in a failure f = 〈if , of 〉, we first want to find
a set of constraints Cmin with the following two properties:

1) ∀i ∈ I that satisfies Cmin : p(i) 6= orac(i), p(i) = of
2) ∀c ∈ Cmin : Cmin − {c} does not satisfy Property 1.
Property 1 guarantees that any input that satisfy the con-

ditions in Cmin is going to result in a failure, and the failure
is going to be the failure of interest f . Property 2 states that
Cmin is 1-minimal [2], that is, every single constraint c in Cmin

is relevant (i.e., necessary for reproducing the failure).
We further consider Cmin as consisting of two types of

conditions: enabling conditions and failure conditions. That
is, Cmin = Cenabling ∪Cfail. Cenabling is the set of all constraints
in Cmin that are necessary to make the input valid and reach
the point of failure, but are not necessary for triggering the
fault of interest f . More formally:

∀c ∈ Cenabling,∀i ∈ I that satisfies Cmin − {c} :
p(i) 6= orac(i), p(i) 6= of

Failing input i Program p

(2)
Constraints

classification

Failure
conditions (p, i)

Developer

(1)
Constraints
collection

Failure(p, i) Constraints
(p, i)

x = 5;
y = 12;
z = -231;

Fig. 2. Intuitive view of our approach.

Cfail, the set of constraints that are actually necessary to
trigger the failure of interest f is then simply defined as the
difference between the two sets of minimal conditions and
enabling conditions: Cfail = Cmin − Cenabling

The goal of our technique is therefore the following: given
a program p, an oracle orac, and a failure producing input if ,
compute the set of enabling conditions Cenabling and failure
conditions Cfail. In the next section, we present our approach
and show how it would work for the failure of the credit card
example discussed in the Introduction.

III. OUR APPROACH

As stated in the Introduction, the basic idea behind our
approach is to automatically infer the conditions under which
a program fails. Intuitively, such conditions would represent
an explanation of the failure and could help developers under-
stand, locate, and fix the fault(s) causing the failure. Figure 2
provides an overview of the approach.

As the figure shows, our technique takes two inputs—a
program p and an input i that makes the program fail—and
produces one output—a set of failure conditions that can be
examined by the developer. To produce such conditions, the
technique performs two steps: (1) constraints collection and
(2) constraints classification. In the rest of this section, we
first provide more details on the motivating example that we
presented in the Introduction and then describe the two steps
of the technique in detail using the example.

A. Motivating Example

As a motivating example, we use the processCard
application from the Introduction, a program previously used

Program p:

 boolean isValidCardNumber(String ccn) {
 1. if(ccn.length() != 16) return false;
 2. int sum = 0;
 3. boolean alternate = false;
 4. int i = ccn.length() - 1;
 5. for (; i >= 0; i--) {
 6. int n = mapChar(ccn.charAt(i));
 7. if (alternate) {
 8. n *= 2;
 9. if (n > 9) n = (n % 10) + 1;
10. }
11. sum += n;
12. alternate = !alternate;
13. }
14. return (sum % 10) == 0;
 }

 void prettyPrintCardNumber(String ccn) {
15. //pretty print card number
 }

 void processCard(String ccn) {
16. if(ccn.startsWith("4"))
17. //process Visa and exit
18. else if(ccn.charAt(0) == '3')
19. if(ccn.charAt(1) == '4')
20. if(ccn.charAt(2) == '7')
21. //process American Express and exit
22. else
23. throw new InaccurateCardType("AmEx:" + ccn);
24. else if(ccn.charAt(0) == '6')
25. if(ccn.charAt(1) == '5')
26. if(ccn.charAt(2) == '0')
27. //process Discover and exit
28. else
29. throw new InaccurateCardType("Discover:" + ccn);
30. throw new UnknownCardType(ccn);
 }

 int mapChar(char c) {
31. return (c >= '0' && c <= '9') ? c-'0' : c-'A'+10;
 }

 void main(String[] args) {
32. if(isValidCardNumber(args[0])) {
33. prettyPrintCardNumber(args[0]);
34. processCard(args[0]);
 }
 }

Input used by test t: 6510 2556 8418 3585

Fig. 3. Code excerpt and input for our motivating example.

by one of the authors in related work [3], whose source code is
shown in Figure 3. The credit card number given as argument
is first passed to isValidCardNumber(), which checks
whether the number is valid. If the credit card number is valid,
the program calls function prettyPrintCardNumber(),
not shown in the figure, which performs some formatting
of the card number based on the value and position of the
digits. The main function then invokes processCard(),
which checks the number’s prefix to determine the type of
the credit card number (i.e., Visa, American Express, or
Discover) and processes the card accordingly. If the prefix
does not correspond to any of the supported cards, the
program throws an UnknownCardType exception. If the
prefix is similar, but not identical, to that of a supported card,
the program throws an InaccurateCardType exception,
which contains information on the card with a similar prefix.
(Note that, in the example, we have made explicit the nested
ifs that would appear when the code is compiled, which
helps understanding how the constraints are generated by our
approach.) Figure 3 also shows a test input that makes the
program fail: 6521 2556 8414 3585.

Constraints (p,t):
; constraints from mapChar
v0 ≥ '0' ∧ v0 ≤ '9' ∧
...
v15 ≥ '0' ∧ v15 ≤ '9'
; constraints from prettyPrintCardNumber
...
; constraints from isValidCardNumber
((v0 - '0') * 2) > 9 ∧ ((v2 - '0') * 2) ≤ 9 ∧
((v4 - '0') * 2) ≤ 9 ∧ ((v6 - '0') * 2) > 9 ∧
((v8 - '0') * 2) > 9 ∧ ((v10 - '0') * 2) ≤ 9 ∧
((v12 - '0') * 2) ≤ 9 ∧ ((v14 - '0') * 2) > 9 ∧
((((((v0 - '0') * 2) % 10) + 1) + ((v1 - '0') + (((v2 - '0')
* 2) + ((v3 - '0') + (((v4 - '0') * 2) + ((v5 - '0') +
(((((v6 - '0') * 2) % 10) + 1) + ((v7 - '0') + (((((v8 - '0')
* 2) % 10) + 1) + ((v9 - '0') + (((v10 - '0') * 2) + ((v11 -
'0') + (((v12 - '0') * 2) + ((v13 - '0') + (((((v14 - '0') *
2) % 10) + 1) + (v15 - '0')))))))))))))))) % 10) = 0
; constraints from processCard
v0 ≠ '4' ∧ v0 ≠ '3' ∧ v0 = '6' ∧ v1 = '5' ∧ v2 ≠ '0'

Fig. 4. Constraints computed for our motivating example.

B. Phase 1: Constraints collection
Phase 1 of our technique first runs the given test to detect

the specific failure under investigation and collect the PC
corresponding to the failure. As stated in Section II, the PC
consists of a set of constraints on the input parameters. In
the pseudocode shown in Figure 5, which depicts the main
steps of our technique, Phase 1 is summarized by lines 1–3 of
the algorithm, where executeConSym is the function that
executes the program concretely and symbolically at the same
time. The constraints that would be gathered for our motivating
example are shown in Figure 4. As the figure shows, the
constraints can be fairly complex even for a relatively simple
and short fragment of code.

C. Phase 2: Constraints classification

After collecting the PC for the failing execution of interest,
in Phase 2 our technique iterates over the set of constraints
in the PC to classify them as irrelevant, enabling, or failure
conditions (see Section II). As shown in the pseudocode in
Figure 5, for each constraint c, the technique (a) creates a PC’
where c is replaced with its negation and (b) tries to get a
solution for PC’ (i.e., a set of input values that satisfy PC’)
using a constraint solver.

If PC’ is unsatisfiable, or the constraint solver timeouts
trying to find a solution for it, the algorithm delays the
classification of c (not shown in the pseudocode for simplicity)
until some other constraints are dropped. (In future work,
we will also consider the possibility of having the constraint
solver return the minimal unsatisfiable core and negate all
related constraints at once.) Conversely, if PC’ is satisfiable,
our technique reruns the program using the newly computed
input values, which can result in one of three outcomes:

1) The new inputs still cause the original failure (line 8),
which means that c did not affect the outcome of the
execution. In this case, the technique classifies c as
irrelevant and drops it.

Parameters: program p, failing input i
Result: failure conditions Cfail, enabling conditions Cenabling
1: Cfail := true;Cenabling := true;
2: o := p(i);
3: PC := executeConSym(p, i);
4: for all c ∈ PC do
5: PC′ := PC − {c}+ {¬c};
6: i′ := solve(PC′);
7: o′ := p(i′);
8: if o = o′ then
9: PC := PC − {c};

10: else if orac(i′) 6= o′ then
11: Cenabling := Cenabling ∧ {c};
12: else
13: Cfail := Cfail ∧ {c};
14: end if
15: summarizeConstraints(Cenabling, Cfail);
16: end for

Fig. 5. Simplified pseudocode that depicts our approach.

2) The new inputs cause a failure different from the original
one (line 10). In this case, we assume that the constraint
represents a precondition that the inputs must satisfy to
be valid and reach the point of the original failure. Thus,
our technique classifies c as an enabling condition.

3) The new inputs trigger neither the original nor a different
failure (line 12). In this case, our technique classifies c as
a failure condition, that is, a conditions that is necessary
to trigger the failure of interest.

At the end of Phase 2, our technique has identified a subset
of the original PC divided into two sets of constraints: en-
abling and failure conditions. For our motivating example, the
classified constraints are shown in Figure 6. In the figure, the
constraints produced by prettyPrintCardNumber() are
missing, as they are identified as irrelevant by our approach.

Finally, to summarize the constraints, our technique uses
information collected during dynamic symbolic execution
to (a) identify and factor out recurring expressions within
constraints and (b) identify methods that return a boolean
value and can be used to summarize subsets of con-
straints they generate (line 15). For our example, the tech-
nique would identify the constraints created while execut-
ing isValidCardNumber() as constraints generated by
a boolean method and would suitably replace them with the
name of the method. The result of such substitution would be
the short and crisp description of the failure that we showed
in the Introduction and repeat here:

isValidCardNumber(v) ∧ v0 = ’6’ ∧ v1 = ’5’ ∧ v2 6= ’0’

As this description would be generated in a fully automated
way, it could be provided to the developers at no additional
(human) cost to help them understand and eliminate the failure.

IV. SIMPLIFYING CONSTRAINTS

To illustrate constraint simplification in more depth, con-
sider the code in Figure 7. Assume we also have a test case
that calls method doSomething() with a value 4 for pa-
rameter x. The initial step of our algorithm of Figure 5 would
execute the test and observe an IllegalStateException

being thrown. The corresponding PC would consist of the
following set of constraints: (x ≥ 0) ∧ (x ≤ 5) ∧ (x < 7).

Enabling conditions (p, t):
; constraints from mapChar
v0 ≥ '0' ∧ v0 ≤ '9' ∧
...
v15 ≥ '0' ∧ v15 ≤ '9'

Failure conditions (p, t):
; constraints from isValidCardNumber
((v0 - '0') * 2) > 9 ∧ ((v2 - '0') * 2) ≤ 9 ∧
((v4 - '0') * 2) ≤ 9 ∧ ((v6 - '0') * 2) > 9 ∧
((v8 - '0') * 2) > 9 ∧ ((v10 - '0') * 2) ≤ 9 ∧
((v12 - '0') * 2) ≤ 9 ∧ ((v14 - '0') * 2) > 9 ∧
((((((v0 - '0') * 2) % 10) + 1) + ((v1 - '0') + (((v2 - '0')
* 2) + ((v3 - '0') + (((v4 - '0') * 2) + ((v5 - '0') +
(((((v6 - '0') * 2) % 10) + 1) + ((v7 - '0') + (((((v8 - '0')
* 2) % 10) + 1) + ((v9 - '0') + (((v10 - '0') * 2) + ((v11 -
'0') + (((v12 - '0') * 2) + ((v13 - '0') + (((((v14 - '0') *
2) % 10) + 1) + (v15 - '0')))))))))))))))) % 10) = 0
; constraints from processCard
v0 ≠ '4' ∧ v0 ≠ '3' ∧ v0 = '6' ∧ v1 = '5' ∧ v2 ≠ '0'

Fig. 6. Classified constraints for our motivating example.

The technique would then iterate over the constraints to
classify them. Assume that the algorithm arbitrarily choses
(x ≥ 0) to be classified first. Negating it yields the following
PC’: (x < 0) ∧ (x < 5) ∧ (x < 7). A constraint solver fed
with these constraints would return a value of x that satisfies
the constraints, such as x = −1. The technique would then
execute the test again with parameter x being −1, which would
result in an IllegalArgumentException being thrown.
Because this failure is different from the initial one, our
algorithm would classify the constraint that was negated as an
enabling condition and keep it in the PC. In fact, this constraint
encodes the condition for an input to be valid and, although
it does not trigger the failure, it is necessary to reproduce it.

Assume now that the next constraint the algorithm choses
to negate is (x ≤ 5), which results in the PC’ be-
ing (x ≥ 0) ∧ (x > 5) ∧ (x < 7). Given these constraints, the
constraint solver would return x = 6. Again, the tech-
nique would rerun the program, this time setting parame-
ter x to 6. The outcome of this execution would be an
IllegalStateException, which is the original failure we
are analyzing. The technique would therefore conclude that
the constraint is irrelevant for reproducing the failure and
would drop it, leaving only (x ≥ 0) ∧ (x < 7) in the set of

public void doSomething(int x){
if (x < 0) {

throw new IllegalArgumentException(...);
}
if (x <= 5) {

System.out.println("x is " + x);
}
if (x < 7) {

throw new IllegalStateException(...);
}

}

Fig. 7. Simple example to further illustrate our approach.

constraints. Again, it is clear from the code that this is the
right course of action, as the condition guards a statement that
writes to the console; for the failure to occur, it is irrelevant,
whether that statement is executed or not.

The next and last constraint the algorithm choses to
negate would be (x < 7), which results in PC’ being
(x ≥ 0) ∧ (x ≥ 7). In this case, any value for x greater or
equal to 7 would satisfy the constraints, so let us just assume
that the constraint solver produces the solution x = 7. When
the technique reruns the program with x being 7, the result is
a normal execution of the program that does not produce any
failure. The algorithm would therefore classify the constraint
as a failure condition, a constraint that is necessary for the
failure of interest to be triggered.

At the end, the technique would present the developer
with two constraints: constraint (x ≥ 0), marked as an
enabling condition, and constraint (x < 7), marked as a failure
condition. The developer could then use this information to
understand and correct the fault in the code.

V. A REAL-WORLD FAULT

We have developed a prototype tool that implements our
technique and are currently using it on a set of real-world
subjects. The prototype is built on top of Java PathFinder
(JPF) [4], a symbolic execution engine for Java programs, and
leverages JPF’s extensions for dynamic symbolic execution
and the CVC3 constraint solver [5]. In this section, we share
some of our initial experiences with the tool.

As a real-world example, consider Figure 8, which de-
picts a failing test case for the JODA TIME date and
time library. This test case illustrates an issue with the
toInterval() method. When invoked for the date October
18th, 2009, toInterval() abruptly terminates and raises
an IllegalArgumentException.

An investigation of the failure revealed that the problem oc-
curs on days on which the daylight savings time starts or ends
(i.e., cutover days) if the cutover time is midnight. This is also
why the failure occurs in the Brazilian timezone, as in Brazil,
such cutover time happens to be midnight. (The underlying
reason for this failure is that method toInterval() should
convert the LocalDate object to an interval representing
the whole day. If for a daylight cut day the cutover time is
midnight, the time 00:00:00 does not exist, and an internal con-
sistency check raises the IllegalArgumentException

public class JodaTest extends TestCase {

public void testBrazil() {
DateTimeZone dtz =

DateTimeZone.forID("America/Sao_Paulo");
LocalDate date =

new LocalDate(2009, 10, 18);
Interval interval = date.toInterval(dtz);

}
}

Fig. 8. JODA TIME bug 2487417: toInterval() fails when processing
18th of October, 2009 Brazil time.

we observe.) For this failure, our approach would ideally return
the following failure condition:

isDaylightCutDay() ∧ (cutoverTime = 00:00:00)

This is a good example for illustrating the complexity of the
problem we are tackling and the relevance of our approach.
Although the test case in Figure 8 is fairly small and compact,
it executes 367 methods and a total of 5,711 individual
statements. (Note that these figures consider only code that
belongs to JODA TIME and ignore the execution of code in the
JAVA system libraries.) When we apply our approach to the
test case, the approach generates 89 initial constraints, some
of which contain around 2,000 subexpressions. In general no
human could read and understand this amount of information.

Although our prototype cannot currently fully analyze this
failure, due to limitations in its implementation, we were able
to get some initial evidence of the potential usefulness of
the approach. For example, the analysis of the constraints for
identifying (a) recurring expressions and (b) boolean methods
that can be used to abstract away subsets of conditions was
able to dramatically reduce the complexity of the constraints
(e.g., some expression appeared hundreds of times in the PC).
The main reason why we cannot yet completely analyze this
program is the presence of mathematical operators that are
not supported by CVC3, the constraint solver we use. We are
currently considering the use of a different solver and also the
replacement of constraints that the constraint solver cannot
handle with concrete values produced during the previous
execution (see Section VI).

VI. CHALLENGES AND FUTURE WORK

In this section, we discuss the main challenges we must
address to improve our technique and tool.

1) Hard-to-solve Constraints: Some generated constraints
go beyond the solving capabilities of existing constraint
solvers (e.g., constraints generated by caching and hashing
functions that make use of bit-wise operators). As discussed
above, we are considering two (possibly complementary)
directions: the use of solvers that operate on formulas defined
over the theory of bit-vectors and arrays, such as STP [6];
and the replacement of constraints that go beyond the theories
supported by the solver with their concrete values from a
previous execution. Our future investigation will allow us to
assess how relevant and common these issues are and how to
best address them.

2) Disjunctions: One problem we encountered for the ini-
tial formulation of our approach is related to the presence of
predicates containing OR operators in the code. Since Java
short-circuits OR operators (i.e., if the first condition is true,
the other conditions are not evaluated), our technique may only
observe a subset of a disjunctive predicate at runtime. This is
an issue because, as discussed in Section III, our technique
negates constraints and drops them if the failure still occurs
for inputs that satisfy the negated constraints. Consider, for
instance, the code snippet shown in Figure 9, and assume that
the original value of x is smaller than that of y.

public void do(int x, int y) {
if (x < y || x > 10) { fail(); }

}

Fig. 9. Example of predicate that contains an OR condition.

When executing the code, the second part of the predicate
would not be evaluated, and our technique would only add
to the PC constraint (x < y). Then, when it negates that
constraint and solves the modified PC, the technique might
by chance obtain from the constraint solver a value for x that
is greater than 10 (e.g., due to additional conditions on y). In
such a case, although the constraint is violated, the predicate
it belongs to (i.e., (x < y)∨ (x > 10)) would still evaluate to
true. The technique would therefore erroneously classify the
constraint as irrelevant and drop it. We are currently evaluating
different alternative solutions to this issue.

3) Limitations of Symbolic Execution: Because our ap-
proach relies on symbolic execution, and more specifically
on dynamic symbolic execution, it also suffers from some of
the limitations of this type of techniques. In particular, there
may be cases where the inputs that cause the failure involve
complex interactions with the environment, such as access to
the network, the file system, and external databases. These
types of interactions are notoriously problematic for symbolic
execution techniques and may limit the general applicability
of our approach.

VII. RELATED WORK

Because debugging is a vast and active research area, due to
space reason we only focus on the approaches that are mostly
related to ours.

Delta Debugging [2] automatically simplifies failure-
inducing circumstances by means of systematic experiments.
Applied to a program input, it retains only those parts of
the input necessary for producing the failure. In a way, our
approach can be seen as a generalization of delta debugging, as
it generalizes (or “simplifies”) the constraints that govern the
failure-inducing input; in fact, we are currently investigating
the use of delta debugging as an additional way to simplify
constraints.

Groce and colleagues [7] research the hypothesis that the
comparison of a failing execution with minimally different
successful executions provides information on the location and
causes of an error. Based on the results of this comparison,
their technique creates a dynamic slice and presents the corre-
sponding code to the developers as the point where the defect
is likely to be located. The main limitation of their approach is
that it needs manual guidance by someone with knowledge of
the program and its functionality. Our approach, conversely, is
automated and aims more at providing an explanation of the
failure than the location for the corresponding fault(s).

Clause and colleagues [3] use dynamic symbolic execution
on field failures to generate failure-inducing inputs that cause
the same failures while preserving user privacy. Their approach
is similar to ours, as they also gather PCs and solve them
to produce alternative inputs. However, while for them this
alternative input is the overall goal, for us it is only an

intermediate result, used to further analyze the execution and
classify the resulting constraints in order to reduce them.

The approach of Qi and colleagues [8] focuses on programs
that undergo a modification, such that they have two versions
of the same program that differ at some points in the code.
Given a failure that occurs in one of the two versions, but not
in the other, they gather the PCs for the failure-inducing input
in both versions of the program. Using these PCs, they then
generate new inputs that follow the same execution path in
the correct version and a different path in the failing version.
Finally, they compare the two execution paths and present dif-
ferences as possible locations of the defect. Although related,
our technique operates on a single version of the program
and focuses on characterizing failure circumstances rather than
localizing defects.

VIII. CONCLUSION AND CONSEQUENCES

When a program fails, it is crucial to identify the circum-
stances under which the failure occurs. In this paper, we have
illustrated this problem and presented an initial approach that
aims to identify these circumstances automatically. Our ap-
proach operates by collecting the path condition of the failing
execution of interest and simplifying and abstracting them
using a combination of constraint manipulation and test input
generation. Although we are still at the early stages of this
research, we believe our preliminary results are encouraging;
in the future, whenever a test fails, the programmer may not
only know that it failed, but also under which circumstances it
failed. These failure circumstances would give precious hints
on why the failure occurred and how to avoid or eliminate it,
and would represent another promising step towards reducing
the burden of debugging.

ACKNOWLEDGMENTS

This work was supported in part by NSF awards CCF-
0725202 and CCR-0209322 to Georgia Tech.

REFERENCES

[1] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the 29th international
conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 344–353. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.45

[2] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Softw. Eng., vol. 28, pp. 183–200, February 2002.
[Online]. Available: http://portal.acm.org/citation.cfm?id=506201.506206

[3] J. Clause and A. Orso, “Camouflage: Automated anonymization of
field data,” in Proceedings of the Intenational Conference on Software
Engineering (ICSE 2011), May 2011, to appear.

[4] K. Havelund and T. Pressburger, “Java pathfinder, a translator from java
to promela,” in Theoretical and Practical of SPIN Model-Checking, 1999.

[5] C. Barrett and C. Tinelli, “Cvc: A cooperating validity checker,” in
Proceedings of the 14th International Conference on Computer Aided
Verification, 2002, pp. 500– 504.

[6] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Computer Aided Verification (CAV ’07). Berlin, Germany:
Springer-Verlag, July 2007.

[7] A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error explanation
with distance metrics,” International Journal on Software Tools for
Technology Transfer, vol. 8, no. 3, pp. 229–247, 2006.

[8] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani, “Darwin: an approach
for debugging evolving programs,” in ESEC/SIGSOFT FSE, H. van Vliet
and V. Issarny, Eds. ACM, 2009, pp. 33–42.

http://dx.doi.org/10.1109/ICSE.2007.45
http://portal.acm.org/citation.cfm?id=506201.506206

