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Abstract—Several defect prediction models have been pro-
posed to identify which entities in a software system are
likely to have defects before its release. This paper presents
a replication of one such study conducted by Zimmermann
and Nagappan [1] on Windows Server 2003 where the authors
leveraged dependency relationships between software entities
captured using social network metrics to predict whether
they are likely to have defects. They found that network
metrics perform significantly better than source code metrics
at predicting defects. In order to corroborate the generality of
their findings, we replicate their study on three open source
Java projects, viz., JRuby, ArgoUML, and Eclipse. Our results
are in agreement with the original study by Zimmermann and
Nagappan when using a similar experimental setup as them
(random sampling). However, when we evaluated the metrics
using setups more suited for industrial use – forward-release
and cross-project prediction – we found network metrics to
offer no vantage over code metrics. Moreover, code metrics
may be preferable to network metrics considering the data is
easier to collect and we used only 8 code metrics compared to
approximately 58 network metrics.

I. INTRODUCTION

Defects in software get increasingly expensive to fix as
the software progresses through its life-cycle [2]. Quality
assurance via rigorous testing before releasing the product
is crucial to keep such costs low. However, test managers
are often challenged by limited resources and other factors
such as the pressure of time to market the product (e.g., the
product must be launched in time for the holiday season
shopping). Such constraints put managers in a situation that
requires them to draw from their experience and prioritize
software entities such as components or source files that
should be tested first to increase the likelihood of finding
and resolving the most severe or most number of defects.
These entities prioritized by the managers are referred to as
defect-prone entities.

Several defect prediction models have been developed by
researchers in order to support managers in reliably identi-
fying defect-prone entities. The primary difference between
these models is the input data or simply the metrics used to
characterize the software entities. Code metrics such as age
and size of the software entity [3], code complexity [4], [5],
and code churn [6] have been used to predict defect-prone
entities in the past. More recently, socio-technical network

metrics have been shown to be promising too [1], [7], [8].
Network metrics treat software entities as nodes in a graph
and characterize them on the basis of their dependencies
with other entities. As opposed to code metrics, network
metrics take into account the interactions between entities,
thus modelling the flow of information in the software.

Network metrics are however new to the field of predict-
ing defect-prone entities and remain to be evaluated across
different types of software systems. In this paper, we investi-
gate the value of network metrics for use in defect prediction
models by running an external replication study [9] based
on the study conducted by Zimmermann and Nagappan [1]
(henceforth referred to as Z & N for sake of brevity). Our
study will allow us to appraise the generality of network
metrics for defect prediction. Such replication studies are
essential in empirical software engineering because they
serve as a critical verification step [9] and allow building
upon the body of knowledge by giving insights into the
conditions under which the results hold [10], [11].

In the original study, Z & N found that network metrics
outperform code metrics at predicting defect-prone entities
(albeit by a small yet statistically significant margin) in Win-
dows Server 2003, which is a large C++ product. Our focus
is to replicate the study on three open-source Java projects
of different sizes (Section III) and compare the performance
of prediction models trained on code and network metrics.
Additionally, we identify the most influential metrics (both
code and network) across the projects in order to investigate
which ones are most dominant.

More specifically, we seek to answer the following three
research questions in our study:

RQ1 Do code and network metrics predict defect-prone
software entities with comparable accuracy within
the same release of a project (Sections IV-B
and VI)?

RQ2 Do code and network metrics predict defect-
prone software entities with comparable accuracy
across different release in a project (Sections IV-C
and VII)?

RQ3 Do code and network metrics predict defect-prone
software entities with comparable accuracy across
different projects (Sections IV-D and VIII)?
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After addressing the above research questions, we present
the most influential metrics in Section IX. Thereafter, we
discuss our results (Section X) and threats to the validity
of our study (Section XI). Finally we conclude our paper in
Section XII. In the next section, we discuss previous research
closely related to our work Section II

II. RELATED WORK

The research area of predicting defect-prone software en-
tities has been a vibrant one over the last decade. One of
the earliest attempts made was by Basili et al. [12] who
validated object-oriented metrics to predict defect density.
Later, Subramanyam and Krishnan [13] conducted a survey
that also showed strong relationship between object-oriented
metrics and defects.

Thereafter, studies investigating the value of different
types of metrics for defect prediction began to emerge.
For instance, Ostrand et al. [3] used file status information
and code metrics such as lines of code, age, and prior
faults to predict defects. Nagappan et al. [14] proposed
evaluated code metrics on five Microsoft products; they
also described how to systematically build defect prediction
models. Zimmermann et al. [4] demonstrated that complex-
ity and code metrics together perform well at predicting
defects, suggesting that higher code complexity leads to
more defects.

Besides using code-related metrics such as complexity and
age, studies investigating the use of change-related metrics
also surfaced. Examples of such work include Moser et
al. [15] who used change metrics such as the number of
revisions or refactorings to predict defects in Eclipse classes.
Prinzger et al. [7] measured fragmentation of developer con-
tributions to predict failure proneness of software modules.
Recently, Hassan [16] used process complexity measures to
predict defects.

Leveraging dependencies between software entities has
also been explored for the purpose of defect prediction.
Schröter et al. [17] showed that dependencies attributed to
import statements in Java programs can be used to predict
defects. Shin et al. [18] and Naggappan and Ball [19]
also used dependency information for defect prediction.
Dependency relationships have been used by Zimmermann
et al. [20] to assess the quality of neighbouring entities.

Zimmermann et al. [1] (the original study of this replica-
tion) demonstrated that network metrics outperform source
code metrics at predicting defects by conducting an evalua-
tion on data from Windows Server 2003. Tosun et al. [21]
then replicated their study on three small closed source C++
projects and on Eclipse. Their results however showed that
network metrics have no significant predictive power for
small-scale projects. Bird et al. [8] validated also evaluated
network metrics on two more software projects: Windows
Vista and Eclipse. They extended the set of network metrics

Table I
SUMMARY OF SUBJECT PROJECTS

Project Release # Release date #files LOC

JRuby 1.0 Jun. 29, 2007 517 73,343
1.1 Mar. 29, 2008 550 95,008

ArgoUML 0.24 Feb. 15, 2007 1,480 155,547
0.26 Sep. 30, 2008 1,752 186,372

Eclipse 2.1 Jun. 27, 2003 7,900 975,292
3.0 Sep. 14, 2004 6,614 1,296,622

to include those that reflect cross-component developer con-
tributions. The results verified that network metrics increase
defect prediction accuracy not only for Microsoft products,
but also for open source projects like Eclipse.

Our replication study shares one commonality with the
studies by Tosun et al. [21] and Bird et al. [8] — Eclipse
is a common subject project. However, there are many
differences in our studies which warrant the work presented
in this paper. For instance, in comparison to Tosun et al. [21],
who used a tool called Prest to compute network metrics,
we used UCINET (same as Z & N) in order to have a closer
replication to the original study. Also, our experimental setup
to predict defects across different releases for a project has
been designed to be more suited (or accessible) for indus-
trial use in comparison to their work (see Section IV-C).
Additionally, the smaller projects used by Tosun et al. for
evaluations were closed source and C++ based, while ours
are open source and Java based. We believe that these
differences will increase our combined knowledge on the
worth of network metrics at predicting defects.

One of the key differences between our study and that by
Bird et al. [8] is the level of granularity at which we predict
defects for Eclipse. While Bird et al. chose to predict defects
at the plug-in level, we intently chose to work at a finer level
of granularity, i.e., source files. The latter is more useful
to developers because it suggests highly targeted defect-
prone entities as compared to plug-ins which comprise up
to several hundred source files.

III. DATA COLLECTION

This section presents the subject projects used for our
study and the relevant data that we collected, including our
methods, to conduct the experiments.

A. Subject projects

We selected three Java projects to perform the experiments
on: JRuby, ArgoUML, and Eclipse. The reason to choose
these projects is that they differ substantially in size ranging
from small (JRuby), medium (ArgoUML) to large (Eclipse).
The difference allows us to investigate whether the predic-
tion models trained using the code or network metrics are
sensitive to project size. Moreover, the research community



● ● ●● ● ●

● ● ●

#p
os

t-re
lea

se
 bu

gs

code metrics network metrics

co
de

 fi
le

s

file
 na

me

● ● ●● ● ●

combined metrics

Figure 1. Data collected from subject projects

is familiar with these projects from previous defect predic-
tion studies [4], [22]. A brief summary of the projects used
is presented in Table I.

B. Data collected

Our experiments required three sets of data from each
project release: post-release bug data, code metrics, and
socio-technical network metrics (see Figure 1). We ran our
experiments across three sets of metrics: (a) code metrics, (b)
network metrics, and (c) combined metrics including both
code and network metrics.

Z & N predicted defect-prone entities in their study at the
binary level, which is the smallest entity to which bugs
could be mapped. The closest equivalents of binaries in Java
projects are packages or jar files. We consider these entities
too course grained to predict defects for; hence chose to map
bugs to individual source files and predict defects in files.
All data for our study has been collected and aggregated at
the file level. The following sections present the methods
and tools used to compute the data.

C. Post-release bugs

We leveraged the publicly available bug databases of JRuby
and ArgoUML to compute the number of post-release failures
observed in the projects. In the case of Eclipse, we used
the post-release bug data set made available by Zimmer-
mann et al. [4] in the PROMISE repository. We followed
the steps outlined by Zimmermann et al. [4] to gather post-
release bugs for JRuby and ArgoUML too. These steps are
outlined below:

1) We first identified bug fixes in the projects’
history by analyzing their log entries from
their version control systems. Any commit
message in the log adhering to patterns such
as [bug|issue|fixed]:?\\s*#?\\s?(\\d+) or
http://[ˆ/]+/issues/show_bug.cgi?id=(\\d+)

(identified using regular expressions) were considered
a bug fix candidate.

2) Next, we extracted references to bug ids (identifiers
such as #14562) from the candidate commit messages
and verified them against the project’s bug tracking
system to confirm that they are indeed valid bug iden-
tifiers. Bug reports with valid matches to identifiers in
the commit messages and marked as either closed or
resolved were then linked to the corresponding commit.

3) In order to select only post-release bugs, we filtered
reports that were reported before the respective release
was made public and not reported after the release date
of the subsequent public release.

4) In the last step we associated the bug reports from the
above step to files by identifying the files changed in
the corresponding commit. Associating bug identifiers
to files and counting them as distinct per file gives us
the port-release bug data for each project’s release.

D. Code metrics

Next, we computed source code metrics for all files shipped
within each project release using a commercial tool called
Understand (Version 2.0, Build 505, http://www.scitools.
com/). Understand computes both classical and object-
oriented source code metrics for Java and C/C++ projects.
Z & N used an in-house Microsoft tool to compute metrics
on the products. We selected code metrics to compute using
Understand that were as close as possible to their metrics.
Table II presents the list of code metrics used in this study
including a small description of each.

Note that Understand computes source code metrics at
class and method level. Metrics marked in Table II as being
computed on method or class level were aggregated to file
level by taking the sum of the metric values for all entities
declared within the same file.

E. Network metrics

Network metrics essentially map the flow of information in
the software system by leveraging dependency relationships
between source code entities. That is which software entity
“relies on” which other entities by means of calling them
or being called by them. In Java projects, software entities
would typically refer to Java classes defined in files and
the task then is to detect information flow between objects.
Once informational flow dependencies between objects are
known, including the files in which the classes are defined,
it is straightforward to aggregate dependency relationships
between files (as needed for our study).

We used Java byte code analysis to detect outgoing
method calls and object usages. Collecting dependency data
on byte code profits from type resolution performed by the
Java compiler and thus, is more accurate than analyzing
source code [24]. But this gain in accuracy requires addi-
tional effort to map dependencies between files. Compiled
class files do not necessarily have the same name as the

http://www.scitools.com/
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Table II
LIST OF CODE AND NETWORK METRICS COMPUTED FOR OUR STUDTY. FOR A FULLER DESCRIPTION OF NETWORK METRICS, PLEASE REFER TO [23]

Code metrics Z&N Metric Description

At the class level:
NumInstVar GlobalVariables # instance variables
CountLineCode Lines # source code lines
NumDeclMethod ClassMethods # local methods
CountClassDerived SubClasses # immediate subclasses
MaxInheritanceTree InheritanceDepth inheritance tree depth
CountClassCoupled ClassCoupling # classes used as type, data, or member

At the method level:
CountInput FanIn # inputs a function uses. Inputs include parameters and global variables that are used in the function.
CountOutput FanOut # outputs that are SET. This can be parameters or global variables.
CyclomaticStrict Complexity Strict cyclomatic complexity.

Network metrics:

Ego-network metrics (computed each for incoming, outgoing, and undirected dependencies; descriptions adapted from Z & N [1]):
Size Size # nodes connected to the ego network
Ties Ties # directed ties corresponds to the number of edges
Pairs Pairs # ordered pairs is the maximal number of directed ties, i.e., Size × (Size - 1)
Density Density % of possible ties that are actually present, i.e., Ties/Pairs
WeakComp WeakComp # weak components in neighborhood
nWeakComp nWeakComp # weak components normalized by size, i.e., WeakComp/Size
TwoStepReach TwoStepReach % nodes that are two steps away
ReachEfficency ReachEfficency Normalizes TwoStepReach by size, i.e., TwoStepReach/Size. High reach efficiency indicates that egoÕs

primary contacts are influential in the network
Brokerage Brokerage # pairs not directly connected. The higher this number, the more paths go through ego, i.e., ego acts as

a “broker” in its network
nBrokerage nBrokerage Brokerage normalized by the number of pairs, i.e., Brokerage/Pairs
EgoBetween EgoBetween % shortest paths between neighbors that pass through ego
nEgoBetween nEgoBetween Betweenness normalized by the size of the ego network

Structural metrics (descriptions adapted from Z & N [1]):
EffSize EffSize # entities that are connected to an entity minus the average number of ties between these entities
Efficiency Efficiency Normalizes the effective size of a network to the total size of the network
Constraint Constraint Measures how strongly an entity is constrained by its neighbors
Hierarchy Hierarchy Measures how the constraint measure is distributed across neighbors. When most of the constraint comes

from a single neighbor, the value for hierarchy is higher

Centrality metrics (computed each for incoming, outgoing, and undirected dependencies; descriptions adapted from Z & N [1]):
Degree Degree # dependencies for an entity
nDegree (none) # dependencies for an entity normalized by number of entities
Closeness Closeness Sum of the lengths of the shortest paths from an entity (or to an entity) from all other entities
Reachability dwReach # entities that can be reached from a entity (or which can reach an entity)
Eigenvector Eigenvector assigns relative scores to all entities in the dependency graphs.
nEigenvector (none) assigns relative scores to all entities in the dependency graphs normalized by number of entities
Information Information Harmonic mean of the length of paths ending at an entity.
Betweenness Betweenness Measure for a entity on how many shortest paths between other entities it occurs
nBetweenness (none) Betweenness normalized by the number of entities

source file that the class was declared. Declaring two top-
level classes A and B in one source file A.java and
compiling it will result in two byte code files A.class
and B.class. Thus, analyzing byte code to get object
dependencies will result in class dependencies instead of
file dependencies. To map classes back to their source files,
we parsed the source code using the JDT framework to
determine the file in which a class was declared in. Having
class dependencies based on byte code analysis and knowing
which classes were declared in which source files allowed
us to merge the two data sets and then determine the
dependencies that exist between the source files.

Once the dependencies between files were known, we
computed several network metrics using the UCINET tool

(same as Z & N). The list of metrics computed is largely the
same as in the original study and they have been listed along
with a short description in Table II. Due to paucity of space
in this paper, we refer the reader to the original study to get
a fuller description of the network metrics. Note that in rare
cases, we were unable to compute the metrics using the tool.
For instance the tool crashed when computing information
centrality for Eclipse. Despite emails to the company for
support, we received none and hence we excluded the metric
in the Eclipse network data set.

IV. EXPERIMENTAL SETUPS

This section describes the three experimental setups used to
answer the research questions presented in the introduction.

http://www.analytictech.com/ucinet/


A. Classification and regression

Z & N built two types of prediction models: classification
and regression. Classification models predict whether a
software entity will have defects or not, i.e., classify them
as defect-prone or not defect-prone. The regression models,
on the other hand, predict the number of defects expected be
found in the software entity. Considering the wide scope of
our replication, we restricted ourselves to conducting only
classification in this paper. We believe that the general trend
in performance of code and network metrics at predicting
defects will emerge already using the classification models.
In the future, we plan to extend our replication to include
regression models too.

B. Stratified repeated holdout setup (RQ1)

In order to perform the experiments, the data available from
the projects must be sampled into two sets — training and
test sets. The former set is to be used to train the prediction
models and fine tune them; the latter set is set aside to
evaluate the performance of the trained prediction model.

Several possible experimental setups are available to sam-
ple the data. Zimmermann and Nagappan [1] used a setup
called random repeated holdout setup where a specified
proportion of the data (66% in their case) is randomly
sampled for training the model and the remainder is set aside
for testing the model. They repeatedly sampled their data
300 times in order to generate 300 independent training and
test sets, and 300 prediction models to evaluate the metrics.
The advantage of repeated random sampling is that it reduces
bias—a single “lucky” (or “unlucky”) sample may lead to a
good (or bad) result.

We adopted a similar setup called stratified repeated
holdout setup to sample our data. In this setup the data is
sampled to preserve the proportion of positive and negative
instances in the data in both training and test sets. Such a
split improves the representation of each type of instance in
the sets and is known to reduce sampling error. To exemplify,
suppose that 30% of files in a project were known to have
defects, then the data was sampled such that files with
defects comprised 30% of the data in both the training and
the test set.

Similar to Z & N, we sampled our data 300 times and
used 66% of the sampled data for training the models and
the remaining data for testing. Note that the data from a
single project and release is used in this experimental setup.
Hence, for each project and release, we sampled the data
separately and trained and evaluated the models.

C. Forward-release prediction setup (RQ2)

Forward prediction setup requires trained data from an older
release of a project to be evaluated on the next immediate
release. For instance, in the case of the Eclipse project,
data from release 2.1 will be trained to predict defect-prone
entities in release 3.0; likewise data from JRuby 1.0 will be

used to predict defects in JRuby 1.1 and so on. This setup
is closest to what can be deployed in the real world where
past project data is used to identify defect-prone entities in
on-going or future releases. It has been previously applied
in several papers [4], [25]. Note that this setup was not used
in the original study because the authors had access to data
from only one release of Windows Server 2003.

D. Cross-project prediction setup (RQ3)

The cross prediction setup entails using data from a release
of one project to identify defect-prone entities in a release
from another project. The rationale behind evaluating this
setup is to verify whether defect prediction models are
transferable from one project to another. If the results are
promising, it will suggest that projects with little or no
data from the past can leverage data from other projects for
prediction purposes. This setup has been previously used in
[5] and again, it has not been used in the original study.

V. EXPERIMENTAL STEPS (TO REPRODUCE)

With the availability of large data sets in software engineer-
ing and access to sophisticated prediction modelling tools,
quantitatively intensive empirical investigations are becom-
ing increasingly complex to validate and reproduce [26].
Similar observations have been made in other research
disciplines too [27]. Primary reasons cited for this inability
to validate and reproduce the experiments are that the data
and/or tools and scripts are not made publicly available.

In this section, we present the steps taken to execute
our experiments. Importantly, we complement the steps with
the statistical packages (and functions) used to perform the
experiments so as to allow independent validation and the
reproduction of our work, if needed. To support reproduction
and replication of this paper, our data and scripts have been
made available on the PROMISE website.

We conducted our experiments using R statistical soft-
ware [28], which is a popular open-source tool used amongst
statisticians and machine learners. Several user-contributed
packages exist to perform various modelling tasks — we
chose Max Kuhn’s R package caret [29] for our experiments
because it provides a wrapper function to several machine
learning algorithms available in other packages, thus pro-
viding us access to a multitude of models and keeping our
code smaller. Where applicable, we indicate the name of the
function used from the caret package at the beginning of the
step below.

For the sake of brevity, we present the steps below used to
perform classification of files as defect-prone or not defect-
prone (Section IV-A) using the stratified repeated hold-out
setup (Section IV-B). These steps can be easily adapted to
conform to other experimental setups presented earlier in the
paper or even regression. The steps were executed for each
project and each of the three metrics sets to arrive at the
results presented in the following sections of the paper.

http://promisedata.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/web/packages/caret/index.html


Step 1: createDataPartition(): Generate 300 train-
ing and test set from the data using stratified sam-
pling (note that the following steps were run on each
pair of training/test set).

Step 2: nearZeroVar(): Independently assess and re-
move numerical input attributes from the training
set that have near zero variance (essentially a single
value) to avoid any undue influence on the models.
The same attributes were then removed from the test
set.

Step 3: findCorrelation(): Remove input attributes
from the training set that correlate with other at-
tributes with ρ > .90 to avoid any undue influence
on the models. The attributes that were correlated
highly with more number of columns were picked to
be removed. The same attributes were then removed
from the test set.

Step 4: preProcess() and predict(): Rescale the
training data using the center and rescale to min-
imize the effect of large values on the prediction
model. We additionally experimented with perform-
ing principal component analysis on our data (sim-
ilar to Z & N), but this often led to inferior results.
Hence we restricted ourselves to normalize our data
by centering and rescaling it. The corresponding test
data was centered and rescaled accordingly using
the predict() function.

Step 5: train() We used several prediction models for
our experiments. These are listed in Table III. Each
model offers one or more parameters that can be
tuned to optimize performance. This is internally
handled by the train() function when the number
of values (tuneLength) to validate is specified.
We set this number to 5.

Step 6: extractPrediction() Each trained model
was evaluated against the test data. The evaluation
measures that we computed include precision, re-
call, and F-measure.

VI. STRATIFIED REPEATED HOLDOUT RESULTS (RQ1)

Results from the stratified repeated holdout experimental
setup (see Section IV-B) are presented in Figure 2 (plotted
using R package ggplot2 [31]). Panels across the x-axis in
the figure represent the subject projects. The six prediction
models listed in Table III were run on 300 stratified random
samples on the three metrics sets: code, network, and all
metrics for each project. Precision, recall, and F-measure
values from each run were recorded; their distributions have
been plotted as boxplots in the figure. Note that for a
given project and metrics set, we plotted values from the
model that gave the best result (i.e., the highest average of
the 300 values). The corresponding best performing model
is indicated at the bottom of each plot in parenthesis.
To exemplify, in the case of JRuby 1.0, rpart gave the

Table III
LIST OF MODELS USED FOR EXPERIMENTATION

Model∗ Description

k-nearest neighbour
(knn)

This model finds k training instances clos-
est in Euclidean distance to the given test
instance and predicts the class that is the
majority amongst these training instances.

Logistic regression
(multinom)

This is a generalized linear model using a
logit function and hence suited for binomial
regression, i.e. where the outcome class is
dichotomous.

Naı̈ve Bayes (nb) Applying Bayes’ theorem, this is a simple
probabilistic classifier assuming strong inde-
pendence.

Recursive partitioning
(rpart)

A variant of decision trees, this model can be
represented as a binomial tree and popularly
used for classification tasks.

Support vector ma-
chines (svmRadial)

This model classifies data by determining a
separator that distinguishes the data with the
largest margin. We used the radial kernel for
our experiments.

Tree Bagging (tree-
bag)

Another variant of decision trees, this model
uses bootstrapping to stabilize the decision
trees.

∗ For a fuller understanding of these models, we advise the reader to refer
to specialized machine learning texts such as by Wittig and Frank [30].

highest average F-measure using code metrics, while nb and
treebag performed best when using network and all metrics
respectively. Similarly, svmRadial gave the highest average
precision values using all three metrics sets for JRuby 1.0.

The black line in the middle of each boxplot indicates the
median value of the distribution; the mean is plotted as a red
dot on the boxplot. Larger median and mean values indicate
better performance of the metrics set for the project based on
the respective evaluation measure. Note that the red coloured
horizontal lines connecting the means across the boxplots do
not have any statistical meaning — they have been added to
aid visual comparison of the performance of the metrics set.
An upward sloping horizontal line between two boxplots
indicates that the metrics set on the right performs better
than the one of the left and vice versa.

Additionally, we performed a non-parametric statistical
test (Kruskal-Wallis) to statistically compare the results from
the use of two pairs of metrics sets: (a) code vs. network
and (b) network vs. combined. For each set, we used the
results from the best performing prediction model (same as
in Figure 2).

Observing Figure 2, it is apparent that results obtained
from using code metrics are inferior to those from using
network metrics. In fact, all statistical tests performed to
compare results from the two metrics sets showed a statis-
tically significant difference (p < .0001), thus confirming
that network metrics perform better than code metrics when
using the stratified holdout setup, irrespective of the project
or evaluation measure. Mean values of some evaluation
measures using network metrics were notably high: precision
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Figure 2. Results from the repeated holdout experimental setup. Note that the ‘All’ label refers to the combined metrics.

close to 0.8 for both releases of JRuby and approximately
0.6 for both releases of Eclipse. Recall values for JRuby
and ArgoUML also hovered around 0.6, but were relatively
lower for Eclipse.

Using combined metrics, on the other hand, gave no
advantage over using network metrics. In only 4 of the
18 cases in Figure 2, results from using combined metrics
performed statistically better than using network metrics
alone (p < .05); these cases include precision for JRuby 1.0,
F-measure for ArgoUML 0.26, and precision and F-measure
for Eclipse 2.1. It is important to note that the means differed
marginally in these cases. In all other cases, network metrics
either outperformed using all metrics or performed at least
as well (confirmed using statistical testing). The flat slopes
of the lines connecting the mean values of results from
network and all metrics also visually support this result. We
draw from these results that using solely network metrics
is a better option because the results are as good (or even
better) than using combined metrics and the time to build
these models is shorter because of smaller data sets.

Another noteworthy observation in Figure 2 is that differ-
ent models give best results for different projects, metrics
sets, and evaluation measures. Currently we cannot explain
what causes such marked differences in performance across
models, but this is a necessary area of future research, i.e.,

how to determine which model amongst a set of candidates
is likely to perform best on a given data set.

* Network metrics outperform code metrics at predicting
defects when using the stratified holdout setup.

* Using all metrics together offers no improvement in
prediction accuracy over using network metrics alone.

* Generally, higher accuracy can be observed for the
smaller projects in comparison to ECLIPSE.

VII. FORWARD-RELEASE PREDICTION RESULTS (RQ2)

A rather different picture can be seen in Figure 3 which
presents the results from the forward prediction setup (Sec-
tion IV-C). Each panel in the figure presents the value of
the evaluation measures derived from training the prediction
model on an older release of the project to predict defects
in the newer release.

In the case of JRuby, precision values from using all three
metrics sets are similar. But some differences can be seen
in recall values where network metrics outperform other
metrics sets. Overall, however, it appears that both code
and network metrics can be used to predict defects with
comparable performance in the case of JRuby. We performed
an ANOVA statistical test to independently compare the
precision, recall, and f-measure values derived from the
prediction models across the three data sets. The tests
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Figure 3. Results from forward prediction

showed no significant differences, in that the results from
using the three metrics sets are comparable.

Similar inferences can be drawn for both ArgoUML and
Eclipse. Minor differences can be seen in the precision,
recall, and F-measure values using the different metrics sets.
The only exception to this are the recall values in ArgoUML
where using all metrics performed notably better than the
other sets. The same test, as for JRuby, was performed for
these two projects; no statistically significant differences
were to be found.

Recall that this setup would be the most realistic scenario
if defect predictions models were to be applied in an
industrial setting, in that data and records about defects
from past project releases are used to predict defects in the
current release. Our results suggest that using either code or
network metrics would deliver comparable results, however
there may be a slight preference for code metrics because
code metrics are easier to collect, they are fewer in number
as compared to network metrics, and as a result, the time
required to train the models with them is shorter.

* All three metrics sets appear to have comparably
prediction accuracy.

* Using code metrics may be best given that the time to
train the prediction models is substantially lower than
the other sets because of fewer attributes in the data
set and they are easier to collect.

VIII. CROSS-PROJECT PREDICTION RESULTS (RQ3)

The results from our last experimental setup, i.e., predicting
defects across different projects, is presented in Figure 4.
The panels across the x-axis indicate the project used to train
the prediction models, while the panels across the y-axis
indicate the projects on which the models were evaluated.
For brevity sake, we only used the latest releases of the
projects to conduct these experiments.

Generally, results from using code and network metrics
can be again seen to be comparable. But in select cases,
there are noteworthy differences. For instance, the precision
value derived using network data from JRuby 1.1 to predict
defects in Eclipse 3.0 is substantially lower than that from
code metrics, but recall and F-measure are similar. On the
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Figure 4. Results from cross project prediction

contrary, using network data outperforms code data when
using ArgoUML to predict defects in Eclipse.

Surprisingly, using combined metrics are often seen to
lead to poorer results than using code or network metrics
alone. This suggests that using more number of metrics
to a data set should be done with caution after careful
investigation of their influence on the intended outcome.

Similar to the forward-release prediction setup, we used
ANOVA to test for statistical differences between the pre-
cision, recall, and f-measure values across the three metrics
sets. We found no statistical differences, except in the case
of using Eclipse to predict defects in JRuby— code metrics
gave significantly lower F-measures in comparison to the
other metrics sets. Hence, we observed no added advatage of
using one metrics set over the other. Note that this inference
is different from what we draw from Figure 4 because the
latter plots only the best accuracy value from across the
six models used while the statistical tests takes into account
values from all models.

* Statistically, all three metrics sets appear to have
comparably prediction accuracy, but when we select
and compare results using the best accuracy values,
code and network metrics sets appear to have an
advantage over combined metrics.

* Using code metrics may be best given that the time to
train the prediction models is substantially lower than
the other sets because of fewer attributes in the data
set and they are easier to collect.

IX. INFLUENTIAL METRICS

The R package caret allows computing the importance of
individual metrics using the filterVarImp function. The



function computes a ROC curve by first applying a series of
cutoffs for each metric and then computing the sensitivity
and specificity for each cutoff point. The importance of the
metric is then determined by computing the area under the
ROC curve.

We used the combined metrics set from each project
release to compute variable importance so as to be able
to compare the importance of code and network metrics
together. We considered the top-10 most influential metrics
for each metrics set for examination. The results show that
all top-10 most influential metrics were network metrics
for 3 out of the 6 metrics sets. Code metrics figured in
the list only for JRuby 1.0 (CountDeclFunction), ArgoUML
0.26 (CountDeclFunction) and Eclipse 2.1 (CountLineCode,
CountDeclFunction). For these projects, the remaining list
comprised of network metrics only, thus suggesting their
general dominance.

No patterns with respect to the presence or ranking of
network metrics were observed in the influential metrics
across the projects. For instance, while a network metric is
found to be most influential in one project, it may not even
be present in the top-10 list for another project. A more
detailed analysis to investigate the underlying reasons for
this is beyond the scope of this paper, however we intend to
examine this matter in our future work.

X. DISCUSSION

Our results portray a mixed picture of the value of network
metrics over code metrics at predicting defect-prone entities.
In the stratified random sampling method (similar to Z & N),
network metrics undoubtedly perform much better than code
metrics (see Figure 2). This result is in concordance with the
original study. In fact, the difference in accuracy between
the two metrics sets is more pronounced in our results
in comparison to Z & N— network metrics in our study
increased prediction accuracy in the order of 20–25%; this
increase was approximately 10% in the original study.

However, results from using the cross-release and cross-
prediction setups show no added value of using network
metrics, i.e., the performance was comparable to code met-
rics. Better performance in these setups is more crucial
because they are more likely to be applied for prediction
in industry. Moreover, our experience draws us to consider
code metrics preferable because they are easier to collect,
fewer in numbers, and faster to train prediction models with.
An important point to note is that in order to closely align
our study with Z & N, we used a similar (and small) set
of code metrics for our study. However, previous studies
(e.g. [4]) have used a larger set of code metrics for defect
prediction. Using such an elaborate set of code metrics in
our study may have affected our results; however this is only
a speculation and remains to be verified.

Tosun et al. [21] noted in their replication that network
metrics do not perform well for small sized projects. Our

results contradict their conclusions; we observed that the
network metrics performed especially well for our smaller
projects in comparison to Eclipse. We cannot compare our
results with Bird et al. [8] who used a similar cross-project
prediction setup as ours to predict defects in Eclipse, how-
ever they did so at the plug-in-level. We predicted defects
at the file level which is a finer granularity. We intently
chose this level because it pin-points which files to test first;
predicting defects at higher granularities increases recall, but
also lowers the worth of the prediction to some extent.

A noteworthy observation from our results is that gauging
the performance of a prediction model depends upon the
choice of evaluation measure. Hence the decision to choose
one prediction model as most desirable to use is not an easy
one. In the future, perhaps using an ensemble of models
to predict defects based on say, majority voting, may be a
viable alternative than using strictly one model.

XI. THREATS TO VALIDITY

Like any other empirical study of this kind, ours too has
threats to validity. We identified two noteworthy threats. First
and foremost, we had to apply heuristics to compute the
number of post-release bugs in a file. While we applied the
same technique as other contemporary studies to do so, there
is a chance that the count of bugs for some files may be an
approximation. Second, we restricted the number of code
metrics used in our study to align it closely with Z & N.
However, using a larger set of code metrics for comparison
may impact our results, but it is a speculation at this stage.

XII. CONCLUSIONS AND CONSEQUENCES

In this paper, we have presented a replication study based
on the work by Zimmermann and Naggappan to investigate
whether social network metrics computed on source code
can deliver better accuracy in identifying defect-prone enti-
ties than traditionally used source code metrics. We observe
mixed results in that using a setup similar to Zimmermann
and Naggappan to predict defects, we see a clear advantage
of using network metrics. However, when the setup was
changed to suit usage in an industrial environment, we
observed no added value in using network metrics over code
metrics. In fact, considering that code metrics are easier to
collect and fewer in number, they may be even preferable
to network metrics.

Given this sharp contrast in results across the different
experimental setups, it is clear that more investigation is
needed in this area to comment on the generality of the
findings of the original and our study. A serious challenge
to this end is to be able to align the studies to allow a close
replication. We hope that the open manner in which we share
our data and scripts on the PROMISE website will foster
such replication in the future by independent researchers.
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