
Isolating Relevant Component Interactions with JINSI

Alessandro Orso · Shrinivas Joshi
College of Computing

Georgia Institute of Technology

{orso, sjoshi}@cc.gatech.edu

Martin Burger · Andreas Zeller
Computer Science
Saarland University

{mburger, zeller}@cs.uni-sb.de

ABSTRACT
When a component in a large system fails, developers encounter
two problems: (1) reproducing the failure, and (2) investigating the
causes of such a failure. OurJINSI tool lets developers capture and
replay the interactions between a component and its environment,
thus allowing for reproducing the failure at will. In addition,JINSI
uses delta debugging to automatically isolate the subset of the in-
teractions that is relevant for the failure. In a first study,JINSI has
successfully isolated the relevant interaction of aJAVA component:
“Out of the 32 interactions with theVendingMachine compo-
nent, seven interactions suffice to produce the failure.”

1. INTRODUCTION
Understanding why a program fails is a complex activity that usu-
ally encompasses two tasks. The first task consists ofreproduc-
ing the failure, so that the failing run can be repeated at will and
analyzed. The second task consists of discoveringwhat is rele-
vant in the failing run—which events caused the failure in ques-
tion, and which ones were instead irrelevant. Both of these tasks
are tricky and make debugging difficult. This is especially true for
modern software systems, which are often built through aggrega-
tion of components whose interactions with other components and
with the environment is increasingly dynamic.

In this paper, we propose anintegrated approachthat addresses
these issues and allows for automatically (1) reproducing failing
runs at the component level and (2) identifying events that are not
related to the failure and can be eliminated, thus simplifying the
run to be analyzed and, consequently, debugging. Our approach
consists of two main parts:

• We capture and replaythe interaction of a (failing) compo-
nent with its environment. The interaction is recorded as a se-
quence of incoming and outgoingevents.Such events can be
method calls, accesses to field values, and exceptions. This
sequence can be replayed at will on the component without
requiring a complete environment to be available. In this
way, we achieve a twofold advantage: we eliminate the need
to reproduce the entire failing run and exercise the compo-
nent exactly in the same way that led to its failure.

• A recorded interaction is a sequence that can easily consist of
thousands, even millions, of events. However, only a subset
of this sequence may be required to make the failure occur.
We usedelta debuggingto automaticallyisolate the failure-
inducing events.The idea is to systematically test subsets of
the initial sequence until a set is found where every remain-
ing call is relevant for producing the failure.

We have developed a prototype, calledJINSI, that implements the

above approach forJAVA programs. Given a system and a compo-
nent (expressed as a set of classes) within the system,JINSI records
interactions between such component and the rest of the system.
When an execution fails,JINSI performs delta debugging on the
recorded interactions and automatically isolates the subset of events
that were relevant for the failure.

To validate and evaluate our approach, we perform a case study
in which we useJINSI on a small example subject. Although pre-
liminary, our results are promising: They show thatJINSI can in-
deed isolate short sequences of interactions that make a component
fail. Such sequences ease the debugging task by considerably re-
ducing the amount of information that developers must consider.

In this paper, we make the following original contributions:

1. We present our technique for capturing, replaying, and mini-
mizing interactions between a failing component and the rest
of the system, so as to obtain a minimal, partial execution
that can reproduce the failure.

2. We introduceJINSI, our prototype tool that implements the
approach forJAVA software by integrating capture-replay and
delta debugging capabilities.

3. We provide a proof-of-concept empirical study that shows
how our approach can effectively isolate relevant interactions
for a component and so improve the efficiency of debugging.

The rest of the paper is organized as follows. Section 2 introduces
an example that we use to motivate and illustrate our approach.
Section 3 describesJINSI. Section 4 presents the case study that we
performed on an example subject. We discuss related work in Sec-
tion 5, followed by additional applications in Section 6. Finally,
Section 7 summarizes the paper and describes future research di-
rections.

2. MOTIVATING EXAMPLE
Before going into details, let us introduce a motivating example.
The example consists of a set of users that are running an appli-
cation on their machines. The application is a simple (imaginary)
figure editor, calledeasyDraw , that allows users to perform a va-
riety of graphic operations, such as adding and removing geometric
figures, coloring them, and moving them around. Assume that there
is a fault ineasyDraw , and one of the users reveals the fault by
performing the following actions (see Figure 1): create a canvas
c , add a numbern of circles,c1 , c2 , . . . , cn , to the canvas, and
layout the figure. This last operation results in an invocation of
c.layout() , throwing aDivisionByZeroException .

Typically, the user would be given the possibility to send back
some crash-related information to the application developer. In this
case, such information would be the exception that was thrown and

e: EasyDraw c: Canvasc1: Circle

<constructor>

setRadius(10)

add(c1)

c2: Circle

<constructor>

setRadius(0)

add(c2)

<constructor>
interact()

layout()

↯

layoutCanvas()

getRadius()

10

getRadius()

0

cn: Circle

<constructor>

setRadius(10)

add(cn)

<constructor>
setRadius(10)

add(...)

DivisionByZeroException

getRadius()

0

getRadius()
10

Figure 1: A faulty canvas. After addingn circles, layouting the
canvas throws an exception.

the stack trace at the time of the failure. The stack trace would
simply include the three methods that were last active:main() ,
EasyDraw.layoutCanvas() , andCanvas.layout() .

Assuming thateasyDraw is a non-trivial application, debug-
ging the problem with such a stack trace would be fairly difficult.
The programmer would need to (1) recreate a set of interactions
that cause an exception at that point in the program, and (2) trace
back the cause of the error, possibly restarting the failing applica-
tion over and over. What the developer would need is a trace of
all the interactions between the failing component and the rest of
the application. However, collecting and sending to the developer a
complete trace is typically impractical—there could be millions of
interactions to be recorded and transmitted. Besides creating prob-
lems in terms of storage, bandwidth, and even privacy, such traces
would likely contain too much noise and would not necessarily help
to improve the efficiency of the debugging activity.

In the next sections, we describe our approach that addresses
these issues by collecting and reporting a minimized execution trace
that contains only interactions that are relevant for the failure. Such
a trace would allow for a more efficient and effective debugging
than either a generic crash report or a complete execution trace.

3. THE JINSI APPROACH
We call our approach, and the tool that implements it,JINSI (for
“JINSI Isolates Noteworthy Software Interactions”).1 JINSI con-
sists of three main phases: instrumentation, capture, and isolation.
Figure 2 provides an overview of these three phases. In theinstru-
mentation phase, JINSI is invoked with an application and a compo-
nent (specified as a list of classes); it then produces a new version
of the application instrumented for recording the component’s in-
teraction. In thecapture phase, JINSI’s instrumentation intercepts,
captures, and records all of the interactions between the component

1“Jinsi” is also the Swahili word for “method,” which is the most
common interaction recorded by our approach.

Component

Environment

JINSI (Instrumentation)

Event
Log

Component

JINSI (Scaffolding and Delta Debugging)

Test

Interactions

Test outcome (pass/fail/unresolved)

Capture Phase

Isolation Phase

Application

User

Component

JINSI (Instrumentation)

Instrumentation Phase

Application

Application

Component

Figure 2: JINSI phases. After instrumentation,JINSI captures
events, to be minimized by delta debugging.

and the rest of the application while users are using the software.
The interactions captured include method calls, field accesses, and
exception flows. In theisolation phase, JINSI applies delta debug-
ging to systematically isolate those interactions that are relevant for
the failure.

In a possible scenario for the technique, the developer identifies
a componentc in an application that is failing for some input and
wants to identify a minimal set of stimuli for the component that
would reproduce the failure. To this end, the developer usesJINSI
on the application, specifyingc as the component of interest, while
rerunning the application against the input that caused the failure.
JINSI instruments the application, records the incoming and outgo-
ing events forc , and computes a minimized set of interactions that
is then reported to the developer. At this point, the developer can
use this minimized interaction set to efficiently debug the compo-
nent problem.

To illustrate howJINSI operates, we use the example introduced
in Section 2. Assume that the component instrumented byJINSI is
canvasc . The failing execution results in a trace containing3n + 3
interactions:

• one incoming call toc ’s constructor
• n incoming calls toadd(c1) , . . . ,add(cn)
• one incoming call tolayout()
• n pairs of interactions (one of which returns 0):

– outgoing call togetRadius()
– incoming return fromgetRadius()

• one outgoing exceptionDivisionByZeroException

WhenJINSI performs delta debugging to isolate those interactions
that are relevant for the failure, it finds that a sequence of five inter-
actions is sufficient to cause the failure:

1. an incoming call toc ’s constructor,
2. an incoming calladd(c2) , and
3. an incoming calllayout() as well as
4. oneoutgoing callto getRadius() , and
5. the corresponding return with value 0.

All the other interactions are completely irrelevant to the failure.
With such a short sequence of interactions, debugging is far eas-

ier than with a complete execution trace. In this example, the de-
veloper would easily infer that thelayout() method does not
handle circles with a radius of zero, thus causing the failure.

In the rest of this section, we discuss the three phases of our ap-
proach and the details of the technique. In the discussion of the
technique, we use the following terminology. We refer to the com-
ponent whose interactions must be recorded as theobserved com-
ponent(or simply component) and to the classes in the observed
component as theobserved classes(or code). Observed methods
and observed fieldsare methods and fields of observed classes.
In an analogous way, we define the termsexternal code, external
classes, external methods, andexternal fields. Basically, we indi-
cate asexternalanything that is either in the part of the application
that does not include the component or in the library code.

3.1 Instrumenting Code
To capture the interactions between the component of interest and
the rest of the application,JINSI leverages a capture/replay tech-
nique that (1) identifies all of the interactions between observed and
external code, (2) suitably instruments the application code, and (3)
efficiently captures interactions at runtime [6].JINSI’s instrumen-
tation is designed to capture all types of interactions between two
parts of the code: incoming and outgoing method calls, incoming
and outgoing return values, accesses to field, and exception flows.

The type of instrumentation inserted varies based on the type of
event to be captured. For example, to capture incoming calls and
corresponding returns,JINSI performs two steps:

1. In a first step,JINSI replaces each public methodm() in the
component with a proxy method and an actual method. The
actual methodhas the same body asm() (modulo some in-
strumentation), but has a different signature that takes an ad-
ditional parameter of a special type. Theproxy method, con-
versely, has exactly the same signature asm, but a different
implementation. The proxy method (1) creates and logs the
appropriate call event, (2) calls the actual method by speci-
fying the same parameters it received plus the parameter of
the special type, (3) collects the value returned by the actual
method (if any), logs a return event, and (4) returns to its
caller the collected value (if any).

2. In the second step,JINSI modifies all calls from observed
methods to other observed methods by adding the additional
parameter of the special type mentioned above. In this way,
we are guaranteed that calls that do not cross the boundaries
of the observed code invoke the actual (and not the proxy)
method and do not log any spurious incoming call or incom-
ing return (these calls and returns occur naturally during re-
play).

Due to lack of space, we do not describe how our instrumentation
technique operates for all types of events we capture. Complete
details about the instrumentation are provided in [6].

3.2 Capturing Events
The capture phase takes place while the application is running (e.g.,
in the field or during testing). At runtime, the probes added to the
code in the instrumentation phase suitably capture the interaction
between the component and the external code and record them in
the form of events with attributes. The events, together with their
attributes, are recorded in anevent log.

3.2.1 Capturing Execution Events
JINSI captures three main kinds of event: method calls, accesses to
field, and exceptions.

Method calls. The most common way for two parts of an applica-
tion to interact is through method calls. In our case, we must
account for both calls from the external code to the compo-
nent (incalls) and calls from the component to the external
code (outcalls). Note that the technique does not need to
record calls among observed methods because such calls oc-
cur naturally during replay.
Our technique records four kinds of events related to method
calls: (1)OUTCALL events, for calls from observed to unob-
served code; (2)INCALL events, for calls from unobserved
to observed code; (3)OUTCALLRET events, for returns from
outcalls; and (4)INCALLRET events, for returns from incalls.
These events contain enough information (i.e., attributes) to
be able to reproduce the event during replay. For example,
INCALL events have three attributes: the receiver object, the
signature of the method being called, and the list of parame-
ters.

Field accesses.Interactions between different parts of an applica-
tion also occur through accesses to fields. To account for
these interactions, our technique records accesses to observed
fields from external code and accesses from the component
to external fields. In the case of accesses from external code
to observed fields, we only record write accesses—read ac-
cesses do not affect the behavior of the component and, thus,
do not provide any useful information for replay.
Our technique records three kinds of events for accesses to
fields: (1)OUTREADevents, for read accesses from observed
code to external or library fields; (2)OUTWRITE events, for
write accesses from observed code to external or library fields;
and (3) INWRITE events, for modifications to an observed
field performed by external code. Also in this case, the events
contain enough information to be replayed (e.g., the object
containing the field, the field name, and the value being writ-
ten for INWRITE events).

Exceptions. Exceptions too can cause interactions between differ-
ent parts of an application. Moreover, interactions due to ex-
ceptions occur through implicit changes in the applications’
control flow and are typically harder to identify than other
types of interactions.
To capture interactions that occur due to exceptions, our tech-
nique records two types of events: (1)EXCIN, for exceptions
that propagate from external code to the component; and (2)
EXCOUT, for exceptions that propagate from the component
to external code.EXCIN andEXCOUT events have only one
attribute that consists of the type and objectID of the corre-
sponding exception.

3.2.2 Capturing Partial Information
When capturing data flowing through the boundary of a component
(e.g., values assigned to a field), a major issue is that the types of
such data range from simple scalar values to complex and compos-

boolean hasPositiveElement(Set set) {
boolean found = false;
Element e = null;
Iterator it = set.iterator();
while (it.hasNext()) {

e = it.next();
if (e.value > 0) {

found = true;
break;

}
}
return found;

}

Figure 3: The hasPositiveElement() method. Replaying
interaction requires only a minimum of recorded information.

ite objects. Whereas capturing scalar values can be done inexpen-
sively, collecting object values is computationally and space expen-
sive. A straightforward approach that captures all values through
the system (e.g., by serializing objects passed as parameters) would
incur in a tremendous overhead and would render the approach im-
practical. (In preliminary work, we measured time overhead of over
500% for a technique based on object serialization.) Our key intu-
ition to address this problem is that (1) we only need to capture the
subsets of those objects that affect the computation, and (2) we can
conservatively approximate such subset by capturing it incremen-
tally and on demand, without using sophisticated static analyses.

As an example, consider the code in Figure 3. The method
hasPositiveElement() takes a set as a parameter and returns
true if the set contains at least one positive element. Consider
now a call tohasPositiveElement() in which the third ele-
ment returned by the iterator is positive. In this case, even ifset
contains millions of elements, we only need to store the first three
elements accessed in order to replay the call. In fact, we do not need
to store objects at all. Ultimately, what affects the computation are
the scalar values stored in objects or returned by objects’ methods.
Therefore, as long as we can automatically identify and intercept
accesses to those values, we can disregard the objects’ state. For
instance, in the example considered, the only data we need to store
to replay the call tohasPositiveElement() are the boolean
values returned by the calls to the iterator’s methodhasNext() ,
which determine the value of thewhile predicate, and the values
associated with the three elements accessed.

Although it is in general not possible to identify in advance which
subset of the information being passed to a method is relevant for a
given call, we can conservatively approximate such subset by col-
lecting it incrementally. To this end, when logging data that crosses
the boundaries of the component, we record the actual value of the
data only for scalar values. For objects, we only record their unique
ID 2 and type. (We need to record the type to be able to recreate
the object during replay.) With this approach, objectIDs, types,
and scalar values are the only information required to replay exe-
cutions, which can dramatically reduce the space and time costs of
the capture phase.

3.3 Isolating Relevant Events
A common task in debugging is tosimplify the input—that is, to
find out which part of the input is relevant for the failure in question.

2Our technique associates a unique ID to every object by suitably
instrumenting constructors.

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

1 <SELECT NAME="priority" MULTIPLE SIZE=7> ✘
2 <SELECT NAME="priori ty" MULTIPLE SIZE=7> ✔
3 <SELECT NAME="priori ty" MULTIPLE SIZE=7> ✔
4 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔
5 <SELECT NAME="priori ty" MULTIPLE SIZE=7> ✘
6 <SELECT NAME="priority" MULTIPLE SIZE=7> ✘
7 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔
8 <SELECT NAME="priority" MULTIPLE SIZE=7> ✔

.

.

.
19 <SELECT NAME="priority" MULTIPLE SIZE=7 > ✔
20 <SELECT NAME="priority" MULTIPLE SIZE=7 > ✔
21 <SELECT NAME="priority" MULTIPLE SIZE=7 > ✔
22 <SELECT NAME="priority" MULTIPLE SIZE=7 > ✔
23 <SELECT NAME="priority" MULTIPLE SIZE=7 > ✔
24 <SELECT NAME="priority" MULTIPLE SIZE=7 > ✔
25 <SELECT NAME="priority" MULTIPLE SIZE=7 > ✔
26 <SELECT NAME="priority" MULTIPLE SIZE=7 > ✘

Figure 4: Simplifying failure-inducing HTML input (from [10]).
Delta debugging simplifies input by running systematic experi-
ments.

The benefits of a simplified input include cutting away irrelevant
information; it also normally results in shorter program runs which
cover less of the code.

In earlier work [10], Zeller and Hildebrandt had devised a method
called delta debugging,an automatic means to simplify failure-
inducing input. Delta debugging would repeat the failing test while
systematically suppressing parts of the input, eventually coming up
with a simplified input where every remaining part is relevant for
producing the failure. An excerpt from such a simplification pro-
cess is shown in Figure 4, where delta debugging minimized an
original 896-lineHTML input which caused the Mozilla browser to
crash. Each input was checked whether the failure still occurred (✘)
or whether the test passed (✔). Eventually, the input was reduced
to a single failure-inducingHTML tag; printing out this<SELECT>
tag would suffice to make Mozilla crash.

Unfortunately, what works nicely in a lab environment can still
have major problems in practice, especially when it comes to ap-
plying one method to a variety of scenarios. In fact, applying delta
debugging to input involves a number of nontrivial requirements:

We need a means toreproduce the run automatically.Correctly
reproducing a failure can be among the most time-consuming
tasks in debugging—especially if the application in ques-
tion is not prepared for automation. In the Mozilla example
above, reproducing the failure included setting up an envi-
ronment that simulated user interaction to load theHTML file
and attempt to print it.

We need a means tocontrol the input. Inputs are frequently pro-
duced by other components—in the case of Mozilla, anHTML
server—that may be hard to control. Again, one must hope
for the application to provide appropriate interfaces; Mozilla,
for example, can also readHTML input from a file.

We need knowledge aboutthe input structure. In Figure 4, the in-
put is simplified on a character-by-character basis. Yet,HTML
has its own syntactic structure, which should be exploited
when simplifying. Non-textual inputs can hardly be simpli-
fied effectively without knowledge of their structure.

JINSI overcomes all of these problems. Programmers can useJINSI
to record component interactions and replay them at will. Applied
to theeasyDraw application discussed earlier, for instance,JINSI
would capture interactions during an interactive (and possibly re-
mote) session, and then replay the recorded interactions—which

trivially implies complete control over the invoked method calls.
Thus,JINSI users have a means to reproduce the run, and a means
to control the input.

When it comes to simplifying the interactions,JINSI uses delta
debugging to suppress method calls rather than input. Applied to
the interactions shown in Figure 1, for instance,JINSI systemati-
cally suppresses subsets of events and assesses the result: if the
Canvas raises an exception, the test fails (meaning that the sup-
pressed interaction was not relevant); if it does not, the test suc-
ceeds (meaning that the suppressed interactionwasrelevant). This
process is repeated until only the relevant interaction remains—the
five interactions discussed in Section 2.

The benefit of minimizing interaction rather than input is that the
original input structure is reflected in the structure of method calls
and their arguments. For instance, the original user interactions,
adding circles to the canvas, are all reflected in individual method
calls. As these are systematically suppressed duringJINSI’s isola-
tion phase, the process can often be equivalent to appropriate trans-
formations/reductions of the original input.

One possible downside ofJINSI is that the programmer must
choose aboundaryat which interaction is to be recorded and re-
played. However, if this boundary is well-chosen,JINSI can totally
replace simplification of input. Moreover, because the size of the
component that we capture can ideally range from one class to the
whole program,JINSI can also be used to record and replay entire
applications. For example, consider a program that uses a standard
parser to process its input. Assume that, whenever some syntac-
tic entity is read, the parser invokes a method to process the entity.
If the programmer chooses this point as the boundary between ob-
served and external code,JINSI will effectively record and replay
the application input. Even better: AsJINSI suppresses the method
calls associated with the processing of some entity, the application
will act as if the entity was missing in the input—that is, it will act
as if the input had been simplified according to its syntactic struc-
ture. This makesJINSI not only more general, but also far more
versatile than simplifying input. (In Section 6, we provide more
examples of possible usage scenarios forJINSI.)

4. CASE STUDY
To assess the feasibility of our approach, we performed a case study
on an example subject: an implementation of avending machine.
We picked this example because it is simple enough to be explained
in a paper, yet not entirely trivial. Moreover, it is a pre-existent
example that was not created by any of the authors and has been
used in a number of papers.

The vending machine example consists of three classes. The
Coin class represents coins of various values, such as nickels,
dimes, and quarters. ClassUI is the user interface for the overall
application. Through the interface, users can insert coins (Coin
instances), ask for having their coins back, and buy an item. The
VendingMachine class implements the actual functionality of
the vending machine and is operated through the user interface (i.e.,
an instance ofUI drives theVendingMachine based on the in-
puts received from the user).

This application, and more precisely theVendingMachine
class, contains a defect. In Figure 5, we see a part of the source
code of theVendingMachine class, illustrating the error. Every
time a coin is inserted, through a call to methodinsert() , its
value is added to the current credit (variablecurrVal). When the
credit reaches the cost of an item (75 cents), theenabled flag is
set to true. However, after a sale, theenabled flag is reset only if
the credit is 0. In other words, if there is any credit residue after the
sale, the machine erroneously stays in the enabled state, and a fol-

class VendingMachine {
private int currValue;
private boolean enabled;

public VendingMachine() {...}

public void insert(Coin coin) {
int value = coin.getValue();
currValue += value;
if (currValue >= COST)

enabled = true;
}

public void returnCoins() {...}

public void vend() throws IllegalCreditException {
if (enabled) {

System.out.println("Get your drink");
currValue -= COST;
if (currValue == 0)

enabled = false;
}
else {...}
// invariant
if (currValue < 0)

throw new IllegalCreditException();
}

}

Figure 5: A VendingMachine Component. The vend()
method has a defect, causing an exception being thrown.

lowing request to vend is successful even if the credit is insufficient,
which is a defect.

For example, if a user adds 80 cents, requests an item and then
requests a second item, he or she would receive both of them. At
this point, the execution would terminate with an exception because
the class invariant that the credit must be≥ 0 has been violated (the
credit would be−70 after the second sale).

Figure 6 shows parts of a possible sequence of interactions be-
tween theVendingMachine and the rest of the application that
may lead to a failure. For our case study, we generated random user
inputs and kept providing such inputs to the application, through
theUI , until we generated a failure.

We repeated the operation ten times and kept the longest se-
quence, which consisted in 28 user operations (inserts, coin re-
turns, andvends). We then invokedJINSI on the application, spec-
ifying VendingMachine as the component of interest, and then
re-run the instrumented application.

In its capture phase,JINSI produced an event log that contained
32 interactions. In its isolation phase,JINSI reduced these 32 inter-
actions to seven, listed in Figure 7.

These seven events are indeed the minimal set of interactions
necessary to reproduce the fault in theVendingMachine com-
ponent. They create an instance of the component, add 85 cents by
inserting appropriate coins, and invokevend() twice. After the
second call tovend() , theVendingMachine object would fail
with an IllegalCreditException . Removing any of these
events would result in a sequence that does not cause the failure
to occur—that is, each single event is relevant for producing the
failure.3

AlthoughJINSI’s performance is not an issue at this stage of the
research, we measured how long it took to isolate the relevant inter-

3To simplify the presentation, the list above does not show the
outgoing events, which correspond toOUTCALL events from
VendingMachine to Coin.getValue() and corresponding
OUTCALLRET events. Such events are not stimuli for the com-
ponent, but rather events from the component thatJINSI suitably
consumes by providing the appropriate scalar values for theOUT-
CALLRET events.

user
interaction

vm: VendingMachinec1, ..., cn: CoinUI

<<Create>>
object #x

<<Coin(QUARTER)>>

insert(object #x+1)
object #x+1

returnCoins()

vend()

IllegalCreditException

value
<int value>

<<Coin(QUARTER)>>

insert(object #x+1)
object #y

value
<int value>

vend()

vend()

↯

user
interaction

user
interaction

user
interaction

user
interaction

Figure 6: Event flow within the vending machine. After some
interactions, the vending machine throws an exception.

actions and how many iterations of the delta debugging algorithm
were performed.JINSI minimized the sequence in 11 seconds, per-
forming 388 iterations, on a dedicated Pentium III machine with
1GB of memory running the GNU/Linux Operating System (Ker-
nel version 2.4.26).

These results are promising and motivate further research. In
terms of the effectiveness of the technique, the results support an
“existence argument”: cases exist in which our technique can pro-
duce benefits in generating minimal failing executions for debug-
ging. In terms of efficiency, the performance ofJINSI is acceptable,
if not good, especially considering that it is still an initial prototype
completely unoptimized.

5. RELATED WORK
This paper contains two core ideas: recording and replaying com-
ponent interactions, and isolating relevant method calls. Earlier
work has explored each of these ideas in isolation. However, the
present paper is the first to combine both.

Test Case Minimization. The work closest to ours in spirit is the
minimization approach of Lei and Andrews [4]. Just like us,
they apply delta debugging to isolate the set of method calls
that is relevant for a failure. As their approach is based on
random unit testing, though, they minimize a set ofrandom
method callsrather than a set of previously recorded interac-
tion, as inJINSI.

Omniscient Debugging.Bil Lewis’ ODB debugger records all
states of aJAVA program run. It then allows the programmer
to interactively explore the recorded states, thus accessing
all aspects of a run [5]. AsJINSI reduces the recorded run to
the relevant calls, the remaining run could easily be observed
usingODB-like techniques.

1. INCALL 〈init 〉()
2. INCALL insert(Coin(25))
3. INCALL insert(Coin(10))
4. INCALL insert(Coin(25))
5. INCALL insert(Coin(25))
6. INCALL vend()
7. INCALL vend()

Figure 7: Relevant calls.Out of 32 recorded interactions with the
VendingMachine component,JINSI has isolated seven which
suffice to reproduce the failure.

Mock Objects. In [7], Saff and colleagues introduce the idea of
usingmock objects, which automatically reproduce part of
the environment, to improve the efficiency of re-testing—
JINSIalso relies on mock objects to allow for replaying with-
out a complete environment, but for different goals.

Delta Debugging. Besides minimizing a set of method calls, as
in [4] and this paper, delta debugging has been used to iso-
late various failure-inducing circumstances [9]. As discussed
above, we findJINSI more general and more versatile than
simplifying input; we also find it more light-weight and more
robust than isolating state differences.

Selective Capture-Replay.SCARPE[6] is a technique and a tool
for selective capture/replay. Given an application, the tech-
nique allows for capturing and replaying a part of the ap-
plication specified by the user.JINSI leverages some of the
technology behindSCARPE.

6. POTENTIAL APPLICATIONS
We believe that the combination of capture/replay with delta de-
bugging, all applied on component interactions, has the potential
to greatly improve debugging. We describe why the proposed idea
might succeed and also why it might fail.

6.1 Why JINSI Could Succeed
In recent years, research in dynamic analysis and debugging has
made considerable advances, promising to make programmers more
effective when debugging programs. However, being able torepro-
ducea run is still the basic requirement for any debugging method—
if we cannot reproduce a run, there is no way to tell whether we
have actually fixed the defect.

This is whereJINSI becomes valuable. The obvious scenario of
use for our approach consists of applying it in-house, when devel-
opers are testing their code. In this case, developers could ran their
system tests while capturing the interactions of one or more compo-
nents (e.g., modified or newly created components). When one of
the monitored components fails, the approach saves the recorded
interactions and starts performing the delta debugging step until
the failure-inducing events have been identified. At this point, this
set of events would be provided to the developers in the form of
a test case. The test case can be used as a minimal test cases that
reproduces the component failure and lets developers investigate
its causes to eliminate them. For best integration with current test
practices,JINSI could even produce aJINSI test, reproducing the
failure at will.

However,JINSI can also be applied todeployed software.There
are different possible instances of this scenario. For example, de-
velopers could configure the deployed system so that the interac-
tions of different components are captured at different deployment

sites. In this case, when a component that is being monitored fails,
the minimal test case generated byJINSI could be packaged and
sent back to the developers for further investigation. This sce-
nario (although it introduces privacy issues that will have to be
addressed) is very compelling because it would allow developers
for effectively investigating field failures whose resolution could
greatly benefit users.

Finally, we want to point out thatJINSI is a very general, ver-
satile, and lightweight approach. In particular, it requires no do-
main knowledge about the structure of the input (as in other delta-
debugging approaches) and does not rely on any special operat-
ing system or library support for capture/replay (as in other cap-
ture/replay approaches). Overall, we believe thatJINSI has the po-
tential to become a valuable tool for everyday’s debugging tasks.

6.2 Why JINSI Could Fail
There are several ways in whichJINSI may not work as expected.

First, although capture/replay approaches using mock objects
have been shown to scale to large and complex applications [7]
and to suitably capture and replay events [6], it is possible that spe-
cific aspects of a component’s interactions may not be adequately
captured, especially if real-time aspects or thread schedules are rel-
evant for the failure.

Second, our approach can easily minimize allincomingevents
that are controlled by the environment, such as method calls and
direct modifications to the observed component’s state (i.e., field
accesses);JINSI’s replay infrastructure can control which of these
events to replay and which ones to skip. However,incomingreturn
events depend on the occurrence of correspondingoutgoingcalls,
which cannot be controlled because they originate in the observed
component. Currently, we simply let suchoutgoingevents occur
and produce the correspondingincomingevents. We are working
on better ways to control and manipulate the values returned by
outgoing calls, in order to minimize this information as well.

Finally, choosing an appropriate boundary between observed com-
ponents and environment may not always be easy; unfortunately,
JINSI provides no specific support for this task. To address this is-
sue, we are considering the possibility of applyingJINSI in a recur-
sive fashion, by capturing the interactions of lower-level (“inner”)
components while higher-level (“outer”) components are being re-
played. In this way, it may be possible to eventually isolateinter-
action chainsfrom the external input down to low-level objects.

7. CONCLUSION AND FUTURE WORK
JINSI provides a combined solution for two nontrivial debugging
tasks: (1) reproducing the failure, and (2) understanding what is
relevant for the failure to occur. The approach is versatile and has
few special requirements; it has been demonstrated to work on a
simple, yet non-trivialJAVA application. We expect the approach to
scale to larger programs, and to be applicable in a large number
of debugging scenarios, including capturing data from deployed
programs.

Although we have a working prototype, our work is still in its
early stages. Besides addressing the risks as discussed in Sec-
tion 6.2, our future work will focus on the following topics:

More events. Right now,JINSI is best at minimizing incoming calls
and field accesses. We would like to improveJINSI’s con-
trol on outgoingcalls and return values, as discussed in Sec-
tion 6.2. We would also like to applyJINSI to failures involv-
ing inter-thread and inter-process communications.

Better diagnoses.We are currently working on extendingJINSI
to isolate not only the relevant interactions between the ob-

served components and their environment, but also the in-
teractions within the observed components. This extension
may lead to the identification ofchains of relevant interac-
tions that reveal which parts of the program execution were
actually relevant for a failure.

Isolating vs. simplifying. Besides simplifying relevant interactions,
as described in this paper, delta debugging can also be used
to isolate relevantdifferencesbetween a passing and a fail-
ing execution. In such a setting,JINSI would tell the relevant
differences between two recorded sets of interactions: one
where the failure occurred and one where it did not.

More case studies.Finally, we are investing a considerable effort
in making JINSI usable for more and larger programs, as
well as in generally improving its usability and performance.
These improvements shall allow us to conduct large-scale
case studies and better evaluateJINSI’s usefulness. Even-
tually, we plan to turnJINSI into a publicly available plug-in
for theECLIPSEprogramming environment.

Acknowledgments
This work was supported by grant Ze509/2-1 from Deutsche For-
schungsgemeinschaft to Saarland University as well as by NSF
awards CCR-0205422, CCR-0306372, and CCR-0209322 to Geor-
gia Tech. Our work was greatly facilitated by recent open-source
JAVA programming frameworks, such asBCEL [1], EASYMOCK [2],
andJAVASSIST[3]. Valentin Dallmeier, Christian Lindig, and An-
drzej Wasylkowski provided valuable comments on earlier revi-
sions of this paper.

8. REFERENCES
[1] Byte-Code Engineering Library (BCEL).

http://jakarta.apache.org/bcel/ .
[2] EasyMock home page.http://www.easymock.org/ .
[3] Javassist home page.http://www.csg.is.titech.

ac.jp/˜chiba/javassist/ .
[4] Y. Lei and J. H. Andrews. Minimization of randomized unit

test cases. InProc. 16th IEEE International Symposium on
Software Reliability Engineering (ISSRE’05), pages
267–276, Chicago, Illinois, Nov. 2005.

[5] B. Lewis. Debugging backwards in time. In M. Ronsse,
editor,Proc. Fifth Int. Workshop on Automated and
Algorithmic Debugging (AADEBUG), Sept. 2003.

[6] A. Orso and B. Kennedy. Selective Capture and Replay of
Program Executions. InProceedings of the Third
International ICSE Workshop on Dynamic Analysis (WODA
2005), pages 29–35, St. Louis, MO, USA, May 2005.

[7] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
Test Factoring for Java. InProceedings of the 20th
IEEE/ACM international Conference on Automated Software
Engineering (ASE 2005), pages 114–123, November 2005.

[8] D. Saff and M. D. Ernst. Automatic mock object creation for
test factoring. InACM SIGPLAN/SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering
(PASTE’04), pages 49–51, June 2004.

[9] A. Zeller.Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, 1st edition, 2005.

[10] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input.IEEE Trans. Softw. Eng.,
28(2):183–200, 2002.

