Staged Allocation: A Compositional Technique for
Specifying and Implementing Procedure Calling Conventios

Reuben Olinsky

Division of Engineering
and Applied Sciences
Harvard University

olinsky@post.harvard.edu

Abstract

We presentstaged allocationa technique for specifying calling
conventions by composing tiny allocators calktdges A speci-
fication written using staged allocation has a precise, &ree-
mantics, and it can be executed directly inside a compifeeci-
cations of nine standard C calling conventions range in s
15 to 30 lines each. An implementation of staged allocatakes
about 250 lines of ML or 650 lines of C++. Each specification ca
be used not only to help a compiler implement the calling eonv
tion but also to generate a test suite.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—Retargetable compilers

General Terms Algorithms, Design, Standardization, Languages

Keywords Calling conventions

1. Introduction

Calling conventions are tricky to specify precisely. Sfieations
found in architecture manuals are written in informal Esiglibut
such specifications can be long, self-contradictory, ingete, and
misunderstood. Using informal specifications, even a neatom-
piler can fail (Lindig 2005), and a compiler can fail even am a
example found in a manual (Bailey and Davidson 1995).

Informal specifications also make implementation difficDif-
ficulties mount when a compiler supports multiple convergio
as it must if it supports multiple machines. Many compilers i
plement more than one convention per machine, e.g., a lgegua
specific calling convention and the C calling conventionptac-
tice, each of these conventions is coded by hand, and theisode
often error-prone and unsatisfying to write.

An alternative to hand coding is to specify the calling con-
vention concisely using a domain-specific language, theergte
an implementation (Bailey and Davidson 1995). This altévea
seems attractive, but no suitable language exists. Baildyoavid-
son’s language, CCL, is concise, but it is defined only by eplam
and by an implementation that is no longer maintained.

Permission to make digital or hard copies of all or part o thrk for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11-13, 2006, Charleston, South Carolina, USA.
Copyright(© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

Christian Lindig

Division of Engineering
and Applied Sciences
Harvard University

lindig@eecs.harvard.edu

Norman Ramsey

Division of Engineering
and Applied Sciences
Harvard University

nr@eecs.harvard.edu

We propose a hew alternative: to specify and implementrzalli
conventions usingtaged allocationThe name comes from the two
insights that drive the design:

e The convention’s placement of parameters in registers and
memory can be viewed as an allocation problem.

e We can build an allocator by composing smstihges Each
stage may satisfy an allocation request or may pass a (fppssib
modified) request to a subsequent stage.

By passing each allocation request through a sequence gessta
we keep individual stages small and simple. For example, one
stage can allocate registers while another allocates statk And
by making stages composable, we enable specification of many
different conventions using relatively few primitive sesg
Staged allocation makes the following contributions:
e Specifications written using staged allocation are concise

e Staged allocation specifies register-use conventions mgus
countersto “skip past” registers that should not be used. This
technique is simple and can express complex calling conven-
tions more easily than CCL'’s alternative of using logicdesu
to exclude registers.

Staged allocation is lightweight. A specification writtesing
staged allocation can be executed directly in a compilerpse
figuration and installation are simpler than with a prograan-g
erator. And it is easy to create a specialized calling caotimen
for a single use, e.g., to call a garbage collector or to farkwa
thread.

Staged allocation has a precise, formal semantics, so ifiged

to implement it yourself, you can. The implementation sHoul
be small and simple: our implementations, in the QuickC
and Machine SUIF compilers, are about 250 lines of ML and
650 lines of C++, respectively.

We have specified and tested standard calling conventiofizen
machines, all of which are shown in this paper.

2. Calling-convention background

A calling convention is a contract among four parties: aicgll
procedure (thealler), a called procedure (thealleg, a run-time
system, and an operating system. All four parties must agree
how space will be allocated from the stack and how that spate w
be used: each procedure needs stack space for saved register
private data, the operating system may need stack spacddo ho
state when a signal is delivered, and the run-time systerdsnee
to walk a stack to inspect and modify the state of a suspended
computation. In addition to sharing the stack with the otfvew
parties, a caller and callee must agree on how to pass pa@met
and results. This paper focuses on passing values betwdlen ca

and callee; we consider run-time system or operating systayn
when they impose constraints on a procedure. A companioerpap

addresses the complementary issues of how to share the stack

among all parties and how to lay out stack frames (Lindig and
Ramsey 2004).

2.1 The difficulty of calling conventions

It is surprising that a contract so central to the implemioia

of programming languages is so hard to get right. Evidence of

difficulty is primarily anecdotal: many compiler writers dirthe

implementation of calling conventions tricky and unpleds@here

is also some hard evidence that calling conventions areraesof

bugs: Bailey and Davidson (2003) report 23 faults in proidunct

quality C compilers for the MIPS and SPARC, and Lindig (2005)

reports 13 new bugs in more mature C compilers for four ptatfo
Why do such bugs linger even in widely used compilers? Our

best guess is that because the specifications of callingeotions

are written in informal English, it is very hard to get all tberner

cases right. Certainly common test and benchmark suitesotio n

exercise corner cases; for example, in the “torture” teite dor

gece 4.0, 90% of arguments have type pointer, integer, or charact

and 90% of functions returroid or int. Very few tests pass

compound §truct orunion) or floating-point values. As another

example, in the SPEC CPU 2000 benchmark, over 95% of values

passed have simple types, and most functions have at most two

arguments. Although the contract between caller and caflest
cover all cases, bugs in corner cases can go undetecteddaga |
time.

2.2 Underlying assumptions

The contract embodied by a calling convention must say where
to place the value of each parameter or result. In a C calling
convention, a parameter is typically passed either in asstegor

in memory, but a large parameter may be split, passing part in
registers and part in memory. As in prior work, we assumedHat
but finitely many parameters are passed in contiguous, atglig
allocated locations in memory. Intuitively, these parameare the
parameters that don't fit in registers. We call the area framclv
they are allocated theverflow block The assumption may seem
restrictive, but it is satisfied by all calling conventions know of,

and it could easily be relaxed to accommodate multiple awerfl
blocks.

with the leftmost parameter in the source code. A single paks
fices if the location in which parametéris passed depends only
on thetypes(including sizes) of parameters k. Because of vari-
adic procedures (varargs), a single pass suffices for evergllC
ing convention: it must be possible to extract variadic paters
one at a time using thea_arg macro. More ambitious conventions
might require multiple passes; for example, a first pass tgbk
64-bit floating-point parameters into aligned registerpdiefore
allowing a second pass to put 32-hit parameters in singléripa
point registers. Or in another convention, a first pass npgih@all
32-hit integer parameters into integer registers befdosvalg later
passes to use integer registers for larger or smaller paeasne

2.3 Formal modeling

Bailey and Davidson (1995) first studied formal models oficgl
conventions, making these contributions:
¢ Given a calling convention, they use a Mealy (1955) automato
to allocate a location for each parameter. The parametgés t

is presented to the automaton, and the automaton makega stat

S
We also assume that parameters can be placed by a sequence Qg
passeseach of which considers one parameter at a time, starting fi

transition and emits a location for that parameter. Bec#huse
automaton must be capable of allocating arbitrarily many pa
rameters, it must have infinitely many states. Bailey anddav

son invented a clever mapping of this infinite-state automat
onto a finite-state automaton they call a P-FSA. The finiest
P-FSA can't be used to place parameters, but because the map-
ping is homomorphic (preserving the structure of the ttaonss

of the original automaton), the P-FSA can be used to analyze
the convention.

e They use the P-FSA to detect inconsistency and incomplete-
ness in calling conventions. (A convention is inconsisiéitt
allocates a single location to carry more than one parameter
A convention is incomplete if there is a sequence of pararsete
for which no location is specified.)

They present a domain-specif@alling Convention Language
(CCL) for describing calling conventions.

They present an enumeration procedure that can be used to cre
ate a P-FSA fronany executable specification of a calling con-
vention, even one without a formal semantics. The enumera-
tion procedure repeatedly executes the specification with d
ferent parameter lists, exhaustively finding the P-FS/Addest

and transitions. An enumerated P-FSA can be represented as a
set of tables, which can be interpreted to place parameters a
compile time.

They use enumerated P-FSAs to develop target-specific test
suites for calling conventions (Bailey and Davidson 199éi-B
ley and Davidson 2003).

Because a P-FSA can be analyzed for incompleteness andiscon
tency, and because it can also be used to generate a tesPsEBEA
models should be attractive to any compiler writer. But lsesit

is defined only by example (and by its implementation), COhds
so attractive. By contrast with CCL, staged allocation iscigely
defined, simpler, and easier to engineer into a compilerti@es).
And staged allocation, like any other deterministic altyori for
placing parameters, fully supports P-FSAs and the autahsatal-
ysis and testing techniques that have been developed f&A2:F

3. Specifying automata for passing parameters

To specify an automaton, we must formalize three thingstybes
of parameters presented to the automaton, the locatiomiped
by the automaton, and the behavior of the automaton itsedf. W
art with types, then present two examples before movingoon
cations and automata. But before we can do any of this, wa mu
rst explain how staged allocation fits into a surroundingtest.

By itself, staged allocation is not a complete formal fraragky
It is a specification and implementation technique that tended
to be embedded in a surrounding formal language or progragmi
language. The surrounding language must represent aimstisac
such as machine locations, and it must also describe or imgpie
simple computations involving integers, strings, Bookand se-
guences. In this paper, we use a surrounding formal langtirage
borrows notation from functional programming languagasd-
tions are written using\ notation, and literal integers, strings,
and Booleans use standard notations. An empty sequende is
and a nonempty sequence with first elemernd remaining el-
ementsss is s :: ss. We also use syntactic sugar: a finite sequence
is [x1,...,Ts], and one sequence followed by anothessis+ ss’.
Machine registers are written using typewriter fonteas or £16,
for example.

We have implemented staged allocation using three language
Objective Caml (Leroy et al. 2004), Lua (lerusalimschy 2003
Ramsey 2005), and C++ (Stroustrup 1997). Although weluse-
tation in this paper, first-class functions are not requfcgdan im-
plementation; neither our C++ code nor our Lua code uses.them

3.1 Formalizing types

A calling convention is normally specified in terms of a pautar
high-level language, and the convention decides where aoepl
parameters based on their types. Staged allocation atsseraay
from the high-level language and its type system. Instéadpiects
each high-level type to be mapped to a triplevidth, akind, and
analignment

¢ The width is the size in bits of a value of the type.

e The kind is a string that indicates what kind of location aueal
of the type might be passed in. For example, 'theoat" kind
might indicate a floating-point register while theddress"
kind indicates an address register. The empty Kindypically
indicates a general-purpose or integer register. Anotiesv of
a kind is that a kind encapsulates just enough informati@utb
a high-level type to tell us in what sort of location a value of
that type should be passed.

The alignment is an integer that constrains the address af-wh

ever memory location a parameter might occupy: the address

must be a multiple of the alignment. The units of alignmest ar
the addressing units of the target machine: normally 8y
but larger units on word-addressed machines.
Mappings of high-level types are straightforward. For eghm
on many platforms a @ouble maps to a 64-bit parameter with

kind "float", aligned on an 8-byte boundary. As another example,

most conventions map C structures and unions to the emptly kin
but when structures and unions must be treated differentiy f
integers of the same size, we use the kisdruct" to indicate a

C structure or union.

In many cases a parameter’s alignment is determined by its

width and kind, but the alignment is not superfluous. For golam
different struct types may have the same width and kind Ltetreli
ent alignments: a struct containing twats may have width 64,
the empty kind, and alignment 4; and a struct containing glein
double may have width 64, the empty kind, and alignment 8.

parms =
[WIDEN(Aw.round_up(w, 32)), OVERFLOW(co, UP, 4)]

results =
[CHOICE(
Mw, k, o
[WIDEN
yMNw, ko
[WIDEN
)
]

~

.k = "float",

Aw.80), USEREGE[fp_stack_top])]

.true,

Aw.round_up(w, 32)), USEREG$[EAX, EDX])]

~——

Figure 1. Pentium calling conventions

parms =
[WIDEN(Aw.round_up(w, 64))
,BITCOUNTER("bits")

, CHOICE(
[Mw, k,0).k = "float",
REGSBY_BITS("bits", [f16,...,£21])
;M w, k,0).true,
REGSBY_BITS("bits",[r16,...,r21])

1)

, OVERFLOW(c,, UP, 16)
]

results =
[WIDEN(Aw.round_up(w, 64))
, CHOICE(
[Mw, k, o).k = "float", USEREGS[£0, £1])
, Mw, k, o).true, USEREGE[r0])
)
]

Figure 2. Alpha calling conventions

These appear in Figure 1 as the ligig'-ms and results. When

Type mapping has one fine point: staged allocation passes pa-a parameter is placed, it is first widened to a multiple of 32,bi

rameters by value. If a parameter should be passed by reteren
or by value-result, it is the front end’s job to generaterimtediate
code that passes, e.g., the address of that parametera®ntte
C convention may require that a function returning a stmectake
the address of that structure as an extra, hidden paraniesi@rthe
front end must add the parameter before running stagedsiboc
Width, kind, and alignment correspond to representati@esiu
in typical compilers. Width and alignment are often represd
directly, as they are in Machine SUIF (Smith and Holloway @00
and 1cc (Fraser and Hanson 1995), for example. A kind often
corresponds to an internal enumeration or abstractioxfample,
it corresponds to the “type suffix” used irc version 4 and to the
“type id” used in Machine SUIF.

3.2 Example specifications

Given width, kind, and alignment, let us temporarily takedtions
for granted in order to look at some example specificatioigs. F
ures 1 and 2 present specifications of standard C callingecenv
tions on the Pentium and the Alpha. Each convention requives
automata: one to pass parameters and one to receive résuéts-
tomaton is specified by composistages which are defined pre-
cisely and discussed in detail in Section 3.4 below—herehegs
examples.

Figure 1 shows the standard C calling convention for a Pentiu
running Linux. A specification is a list of stages; it is cehtus-
ing the facilities of the surrounding language and the djmra of
staged allocation, which are shown in small caps. Everyeation
requires two specifications: one for parameters and onefaits.

so for example, a Ghar is promoted to arint. Then, space for

the parameter is allocated on the stack (in the overflow hldadke
overflow block grows upwardJ)p), so earlier parameters are placed

at lower addresses, and an address in the overflow block may be
aligned on at most a 4-byte boundary. Thein the OVERFLOW
stage is a counter that tracks how many bytes have been taitbca

in the overflow block; in our implementations, this countembt
exposed to the client, but because it is needed for the fasemahn-

tics, we show it here.

The results automaton makes a choice based on the kind of the
result. ThecHOICE stage begins with a predicate that receives the
triple (w, k, al) and makes a decision based on the value of the
kind k. A floating-point result is widened to 80 bits and placed
on the top of the floating-point stack, which consists of &0-b
registers. Any other result is widened to a multiple of 32 bit
then placed either in general-purpose regigtéror in the register
pair EAX:EDX, depending on width. (For example, al6ng long
result is placed in the pair.) If the result is wider than 6t bihe
automaton halts with an error message. The C conventiorr neve
returns a result on the stack, so there is no overflow block.

Figure 2 gives another example: the C calling convention for
an Alpha running OSF/1. The Alpha is a 64-bit machine, and
up to six words of parameters may be placed in registers; the
remaining parameters are placed on the stack, in the overflow
block. A floating-point parameter may be placed in one of the
floating-point register€16 to £21; any other type of parameter
may be placed in general-purpose registesto r21. If a floating-
point parameter is placed L6, the next integer parameter must
go inr17; that is, it is necessary to leave a gap. We specify this

gap by using a counter namedlts to count the number of bits of
parameters placed so far; ea®bhGSBY_BITS stage skips as many
registers as account for that number of bits.

At the bottom of Figure 2, a floating-point result is returried
registerf0 (registerst0 and£1 if it is complex). Any other result
is returned in register0.

More examples appear in Section 4 and Appendix A.

3.3 Formalizing locations

In any calling convention, each parameter or result shodd b

passed in a distindbcation Ideally locations would be simple, but

in practice they aren’t. For example, although a machinésteg

or a block of memory is obviously a location, calling convens

require more complex locations as well:

e The least significank bits of ann-bit register could be a

location. For example, a byte-sized parameter could beegass
in the least significant 8 bits of a 32-bit register.

e A pair of registers could be a location. For example, a dou-

bleword floating-point parameter could be passed in the MIPS

floating-point register paif12—£13 (also calledi12).

e More generally, a combination of registers and memory kdock
could be a location. For example, a large structure coul@ hav
its first 16 bytes passed in registers—=7 and the remaining
bytes in memory.

The many kinds of locations account for a significant fractid
the complexity in calling conventions.
We formalize a location as an abstraction that has a width

and can be read or written. For purposes of this paper, we form

locations using the grammar in Figure 3. A location notated

a machine register, and a location notatathrt + n is a slot
in the overflow block. These locations are atomic, have nmachi
defined read and write operations, and have widths that depen
the machine. There are also composite locations, whichateted
“combine(¢, £')" or “narrow(¢, w, k),” wherew is the width of the
narrow location and: is the kind of narrowing done. The meaning
of composite locations is given by the equations in Figur&hk
bottom part of the figure lists the functions and operatoedus
the equations.

3.4 Specifying and formalizing automata

In staged allocation, we specify an automaton as a sequence o

stageswritten ss. A sequence of stages is formed according to the
grammar in Figure 5. In the rest of this section, we show hoshsu
a sequence is used to compute the location of a parameter.

In a sequences, each stage can respond to a reqyestk, al),
which asks for a location of widthy bits with kind £ and align-

£ =17 | start + n | combine(¢, ') | narrow (¢, w, k)

Figure 3. Ways to form a locatiord

read(combine(¢, £))
write(combine(¢, '), v)

= read({) << ¢ .width + read(¢")

= write(¢, v >> ¢/ .width);
write(£', lobitsg wiam (V)

read(narrow (¢, w, "float")) = f2f, viqenw (read(£))

write(narrow (¢, w, "float"),v) = write(?, f2f ,,— s wiaen (V)

read (narrow (¢, w, _)) = lobits (read(?))

write(narrow (¢, w, _), v) = write({, STw—¢.wiatn (V))

combine(?, ¢').width = f.width + ¢ .width
narrow (¢, w, k).width = w

lobits., Extract least significant bits

STww Sign extend fromw bits tow’ bits

f2f . Float-to-float conversion (change width)
< Shift left

>> Shift right

Figure 4. Reading and writing composite locations

=suss|]]

8§

OVERFLOW (¢, g, maz_align)
WIDTHS(ws)

WIDEN(f)

ALIGN_TO(f)
ARGCOUNTER)
BITCOUNTER(c)

PAD(c)

REGSBY_ARGS(c, s)
REGSBY_BITS(c,rs)
CHOICE([p1, S1,- - -, P, Sn))
FIRST.CHOICE(c, [p1, $1, - - -

8§
S

s Pny Sn])

USEREG$7s) = [BITCOUNTER(c), REGSBY_BITS(c, 7s)],
wherec is a fresh counter.

Figure 5. Abstract syntax of stages

mental. The stage may satisfy the request or pass the (possibly its state tar’. Figure 6 uses notation and auxiliary functions which

modified) request on to the next stage. A stage may also ceunt r
quests or bits allocated by usingstate variableor counter writ-
tenc. In a specification, such a variable is referred to by its name
Its value is kept in atore written o; in the initial store, the value
of every variable is zero. The store and the specificatioettuy
form an automator{ss, o). The state variables are private to the
automaton and are hidden from clients.

An automaton is used to place parameters by giving it an al-
location request for each parameter. When automéierv) gets
a request{w, k, al), it responds with a locatiod. The automa-
ton may also update counters, producing a new stdreWe
specify the automaton’s behavior formally as a set of infeee
rules, which are shown in Figure 6. These rules use the judgme
(ss,0)@(w, k, al) = o', which says that automatdpas, o) re-
sponds to requestv, k, al) by producing locatiorf and changing

are summarized in Figures 7 and 8.

In principle, an allocation request could lead to a situafio
which no rule in Figure 6 applies. This situation would iratie
either an error in the mapping from high-level types(ta &, al)
or an error in the specificatioss. In practice, we use Bailey and
Davidson’s (1995) enumeration procedure to guaranteathstich
errors occur. The enumeration requires a specificaticand a set
of high-level types, and it ensures at compile-compile tinadss is
complete

In the rest of this section, we explain the rules in Figure 6,
working from the top down.

Overflow An overflow stageOVERFLOW(c, g, maz_align) sat-
isfies every request by allocating from the overflow blockiever
passes a request to its successor. Countaunts the number of
bytes allocated in the block; directignsays which way the over-

al divides maz_align w is a multiple ofmem_size

n=o(c)

n’ = round.up(n, al) (OVERFLOW-UP)

(OVERFLOW(¢, UP, maz_align) :: ss,o)@{w, k, al)

al divides maz_align

start+n’

w is a multiple ofnem_size n=o(c)

o{c+—n' 4+ w/mem_size}

n' = round_up(n, al) + w/mem_size

(OVERFLOW(¢, DOWN, maz_align) :: ss,c)@(w, k, al)

(WIDTHSOK) w € ws (ss,0)Q(w, k, al) = o
(WIDTHS(ws) :: ss,0)Q@{w, k, al) = o/
w < f(w) (ss,0)@(f(w), k,al) = o’ ¢ = narrow({, w, k)
(WIDEN(f) :: ss,0)Q(w, k, al) £ 5
(WIDEN)
(ALIGNTO) (s3,0)@(w, k. f(w)) = o’

(ALIGN _TO(f) :: s5,0)Q(w, k, al) = o/

ss,0)Q(w, k, al) = o o'(c)=n
(ss,0)

(ARGCOUNTER(C) :: ss,0)@(w, k, al) == o' {c — n + 1}
(ARGCOUNTER

(ss,0)Q(w, k, al) = o a(c)=n

(BITCOUNTER(c) :: ss,0)@(w, k, al) . o'{c— n+w}
(BITCOUNTER)

n=o(c) n' = round_up(n, al X mem_size)
(PAD) (ss,o{c— n'}YQ(w,k, al) = o
(PAD(c) :: ss,0)@(w, k, al) = o
olc)=n drop(n, rs) =[] (ss,0)Q(w, k, al) =0

start —n/’

=" o{c—n'}
(OVERFLOW-DOWN)
C =[p1,81,---,Dn,Sn] 1<i<n
pi(w, k, o) Vi:1<j<i:—pj(wk,o)

4 ’
(8531 85,0)Q(w, k, al) = o (CHOICE)

(CHOICE(C) :: ss,0)Q(w, k, al) = o

o(c)=0
C = [p1,51,---,Pn, Sn] 1<i<n
piw, ko) Vji1<j<iiops(wk o)

(s 12 88,0)Q(w, k, al) = o

(FIRST_CHOICE(c, C) :: ss,0)@(w, k, al) = o'{cw i}
(FIRSTCHOICE-INIT)
o(c) =1 1>0
= [p17817 s ,pnysn]
(s 11 88,0)Q(w, k, al) = o

(FIRST.CHOICE(c, C) : ss,0)@(w, k, al) == o
(FIRSTCHOICE-LATER)

(ss' ++ s5,0)@(w, k, al) = o’

z (STAGES)
(ss" iz ss,0)Q(w, k, al) => o’

olc)=n drop_bits(n, rs) = [] (ss,0)@(w, k, al) = o

(REGSBY_ARGS(c, 15) :: ss,0)Q(w, k, al) = o/
(REGSBYARGS-NONE)
fwidth = w

olc)=n drop(n,rs) = £ :: ls

(REGSBY_ARGS(c, 7s) =2 s5,0)@(w, k, al) = o
(REGSBYARGSFITS)

o(c)=n

(REGSBY_BITS(c, rs) :: 85,0{c +— n + L.width})Q@(w — L.width, k, al) £ o

drop_bits(n, rs) = £ :: Ls

(REGSBY_BITS(c, rs) :: ss,0)Q(w, k, al) = o
(REGSBYBITS-NONE)
fwidth = w

o(c)=n drop_bits(n, rs) = £ :: Ls

(REGSBY_BITS(c, 7s) =: ss,0)@(w, k, al) = o
(REGSBYBITS-FITS)

{width < w

¢" = combine(, ") o'(c)=n'

(REGSBY_BITS(c, 1s) :: ss,0)@(w, k, al) AN o'{c+— n' — L.width}

(REGSBYBITS-SOME)

Figure 6. Rules for allocating from an automaton

ss sequence of stages £,¢s location(s)

c counter (state variable) f function

k kind P predicate

al alignment in bytes o state

w,ws width(s) in bits n integer

TS register(s) C list of choices

Figure 7. Summary of notation

drop_bits(0, rs) = s
drop_bits(n, []) =[]
drop_bits(n, r :: rs) = drop_bits(n — r.width, rs)
whenn > r.width
drop(0, rs) = rs

drop(n, [1) =[]
drop(n,r :: rs) = drop(n — 1, rs)

Figure 8. Auxiliary functions

flow block should grow; andnax_align specifies the maximum
alignment supported by the calling convention. As shownhia t
OverrFLow-Up and OverFLow-DowN rules at the top of Figure 6,
the OVERFLOW stage allocates locations in contiguous memory,
padding as needed to satisfy alignment requirements. atiloc
starts at addressart, which is a symbolic address that is resolved
later, when the stack frame is frozen (Lindig and Ramsey 2004
When the overflow block grows uptart refers to the bottom of
the block; when the block grows dowstart refers to the top. The
constantem_size is the number of bits in the addressable unit of
the target machine, so for a byte-addressed machéresize is 8.

The direction of growth determines the order in which param-
eters appear on the stack. If the overflow block grows up, then
parameters that are allocated earlier—which are normadypia-
rameters that appear on the left in the source code—have kuve
dresses. We wamiotto characterize such parameters being “first on
the stack,” because even though they appear at lower address
some machines they will have bepaushedast. By separating the
placement of the parameters from the instructions usedhiese
that placement, we hope to avoid confusion.

Selection and modification of width We use two width-related
stages that satisfy no requests themselves, but only chretkd-

ify requests before passing the requests to their sucaestbe
WIDTHS(ws) stage restricts the automaton to satisfy only requests
for a width on the listws. It is useful for detecting internal errors

in the compiler, e.g., passing a 16-bit value when the caimen
supports only wider values.

Instead of halting with an error message, we can ask for arwide
location. For example, we might embed a 16-bit value insidg-a
bit location. The stage/IDEN(f) modifies a request for a width
so it has a widthf(w), which must be at least as large as
Common cases fof include Aw.n, to widen a value to exactly
n bits; and\w.round_up(w, n), to widen a value to the nearest
multiple of n bits. Our C++ and Lua implementations provide some
syntactic sugar for these cases.

As Figure 6 shows, theviDEN(f) stage requests a locatidn
of width f(w) from its successor. Theiden stage builds a new,
narrower location!’ = narrow (¢, w, k), which it returns to its
client. As shown in Figure 4, a read frofh is implemented by
reading the wide value i and narrowing the value ta bits.

A write to ¢’ is implemented by widening the value written and
writing it into £. Widening and narrowing are done using either
integer or floating-point operations, depending farthe kind of
the allocation request.

Modification of alignment The alignment of a request can be
modified by the stageLIGN_TO(f), which uses the new alignment
f(w), wherew is the width of the request. The modified request is
then passed to the successorbfGN _TO(f).

Perhaps the functions used Mm.IGN_TO and WIDEN stages
should be generalized to use a request’s kind, not just gwio
make their modifications. We have not yet needed such gétyeral

Allocation of registers The most interesting stages are those that
place arguments in registers. We have identified two pdlitiat
are used by common calling conventions: “the fitsarguments
go in the firstn registers” and “the first. bits of arguments go
in the firstn bits of registers.” We use separate stages to ceunt
and to allocate. TheRRGCOUNTER¢) andBITCOUNTER(c) stages
count arguments and bits, respectively. In our implemantaf
a counterc is specified by giving its name; we allocate memory
for each named counter and initialize each counter to zero.

Each of these stages simply passes each request to itssutces
as shown in thé&rccounTERANdBITcounTERTUlES in the middle
left of Figure 6. Once the request is satisfied, the stageinents

its counter. AMARGCOUNTERStage increments its counter lbya
BITCOUNTERStage increments its counter by the width of the re-
guest. Counters are incrementaftier successor stages have run;
when a stage is run, counters reflect state correspondinaréonp
eters already allocated, not the current request.

The counters work with two other stage€GsBY_ARGS(c, rs)
and REGSBY_BITS(c, rs). The StageREGSBY_ARGS(c, rs) uses
argument counter to implement the # arguments ta registers”
policy. Given a request, it uses the valueof counterc to drop
the firstn registers from listrs. Depending on whether registers
remain, it applies one of two rules at the lower left of Figére
If no registers remainREGSBYARGS-NONE), the request is passed
to the next stage. If registers remaReGSBYARGS-FITs), the first
remaining register is used to satisfy the request, provigedidth
is equal to the width of the argument. If the widths don't nmatc
something has gone wrong, and the automaton halts with an err
This stage is seldom used because most conventions cosirtf bit
arguments, not arguments themselves. One exception is 8 M
R3000 (Section 3.6).

The stag®REGSBY_BITS(c, 7s) uses bit countet to implement
the “n bits of arguments to bits of registers” policy. Given a
request, it uses the value of counterc to drop enough registers
from list rs to account for the: bits already allocated. Its behavior
is similar to that of the “by arguments” stage, and it is disa
by two rules at the lower right of Figure 6. If no registers eem
(REGSBYBITS-NONE), the request is passed to the next stage; oth-
erwise the first remaining register is used to satisfy theiesty
provided the widths matctREGSBYBITS-FITS).

What if the width of the request is different from the width of
the first remaining register?

o |If the request is too wide for the first register, one could aise
combination of registers to satisfy the request. For exagpl
64-bit request might be satisfied using two 32-bit registers

If a request is large enough to exhaust registers, one caald u
registers to satisfy as much of the request as possible gitten
the remaining space from the next stage. For example, at64-bi
request might be satisfied using one 32-bit register andfzit32-
area in the overflow block.

Both of these alternatives are covered by &essBYBITSs-
SowmeE rule, which appears at the bottom of Figure 6. The rule
takes the first available registértemporarily changes the value
of the counter, and recursively requests a locatido hold the
remaining bits. As described in Figure 4, the functiombine
takes the two narrow locationsand ¢ and returns a wide
location¢”.

If the request is too narrow for the first register, the stamdd
halt the compiler with a bug report (an unsupported width) or
could widen the request implicitly. Widening the requestas

the same as inserting a precedingEN stage; for example, to
pass a 64-bit floating-point value on the Pentium, we might us
an 80-bit floating-point register if one is available, buguest

a 64-bit memory slot from the successor stage if no register i
available. If the stage widens a request, it may need tonmeng
the counter to indicate that more bits were allocated than were
actually requested.

It is often necessary to split requests; for example, it immmn to
require that a large struct be passed partly in registerpartty in
memory. But we have never seen a convention that needed émwid
a request implicitly, perhaps because such a conventiohdwas!
likely only if a datum were to require more bits when represdiin

a register than when represented in memory. Therefore tunde
alternative is not implemented in our system and not shown in
Figure 6.

Named counters, although crucial for sharing state among
stages, can be inconvenient. For the common case in which a
BITCOUNTER(c) is followed directly byREGSBY _BITS(c, 7s), we
provide the syntactic sugarsEREG$rs), which creates a fresh,
private countee:

USEREG$7s) = [BITCOUNTER(c), REGSBY_BITS(c, 75)].

Padding The alignment of a request normally affects only its
placement in the overflow block: bytes of padding are inserte

as needed to be sure a parameter’s address is a multiple of its

alignment. But some calling conventions insert paddinghevieen
using registers. These conventions can be specified by astage
PAD(c), which rounds a bit counter up to respect alignment, as
shown in the the left column of Figure 6. Timep rule multiplies

by mem_size in order to convert from alignment units to bits.

Choice among stages Many calling conventions pass different
types of parameters in different kinds of registers. Fomgxa,
the Alpha convention passes floating-point values in flgagiaint
registers and other values in integer registers. We imphé¢siech

a rule using a “choice” stage, which uses the kind and widtarof
allocation request to decide which alternative stage shsatisfy
the request. A choice stage operates on a list in which paestic
and stages alternate; its formdsioICE([p1, S1, . . ., Dn, Sn]). AS
shown in theCHoicke rule at the upper right of Figure 6, a choice
stage works a bit like a Lispond; when a request reaches the stage,
it evaluates the predicates one at a time, and it behave® disgh
stage whose predicate is satisfied. If no predicate is satjsfio
rule applies, and the automaton halts with an error.

A predicatep is a function that takes a width, a kind, and the
store; it returns a Boolean. Our C++ and Lua implementations
provide extra support for many common cases, includingipates
that check for a particular kind, a particular width, and gtipalar
value for a given counter.

Arbitrary state transition = Sometimes the location of a param-
eter depends on the width or kind of a previous parameter. On
the MIPS, for example, if the second parameter is a floating-
point parameter, its placement depends on the type offitsie
parameter. We solve this problem by introducing historytage
that makes a permanent state transition on the relevanmnptea
The stageFIRST_CHOICE(c, [p1, $1, - - -, Pn, Sn]) iS like the stage
CHOICE([p1, $1, - - -, Pn, Sn]), €XCept that the choice is made once,
when the first request reaches the stage, instead of eacla tieze
quest reaches the stage. After the first request choosesgebs
counterc is set toi, and theFIRST_CHOICE(c, [p1, S1, - - - , Pns Sn)
stage behaves likg from then on. The implementation is shown in
the FIRSTCHoICE-INIT andFIRsTCHoICE-LATER rules at the middle
right of Figure 6, and an example appears in Section 3.6.

3.5

An implementation of staged allocation provides three afens
on specifications:
e Theinit operation creates a fresh steravhereos(c) = 0 for
all ¢, then forms the automatqss, o). In addition toss, init
requires thestart address of the overflow block and the byte
order andnem_size of the target machine.

¢ The allocate operation takes a requeséty, k, al) and an
automaton, uses Figure 6 to computeraand ¢ satisfying
(ss,0)Q(w, k, al) =% o/, mutates the internal state to re-
places with ¢’, and returng.

e Thefreeze operation takes an automaton and returns the over-
flow block and the set of registers used by previous calls to

Implementing and using staged allocation

allocate. Thefreeze operation is most easily formalized by

generalizing the rules in Figure 6 to keep track of what liocet

are allocated.

To use staged allocation to implement a calling convention,
a compiler needs two specificationsarms and results. Both
specifications are used in every procedure definition andeaye
call site. For all of the examples in this paper, parametees a
allocated in a single pass, and a specification is simply aesene
of stagesss. We show how to generalize to multiple passes in step 2
below.
Given a specification and a list of formal or actual paranseter
here is how a compiler computes the location of each paramete
1. Pass thearms specification tainit to create a fresh automa-

ton.

From the type of each parameter, compute a width, kind, and
alignment. Callallocate once for each parameter, and re-
member the location returned.

2.

Most conventions can allocate parameters in a single pass, i
which caseallocate is simply called on each parameter in
turn, in the order in which the parameters appear in the sourc
code. But some conventions may require multiple passes. For
such conventions, we use a specification that gives not only
a sequence of stages but also a sequence of predicates
[p1,...,pn]. Each predicate specifies one pass of the alloca-
tion: a parameter is allocated on pass its width, kind, and
alignment satisfy; but did not satisfy any earlier predicate.

When all parameters have been allocated fealéze to get the

set of registers used and an overflow block. The overflow block
becomes part of the stack frame; in our compiler, the overflow
block is composed with other blocks using a simple dechazati
technique (Lindig and Ramsey 2004). The set of registers is
used in liveness analysis: at a call site, this set is keptdivthe
call; in a procedure definition, this set is assumed to be é@fin
on entry.

The results specification is used in similar fashion at call sites and
return statements.

3.

3.6 More complex examples

The conventions and examples shown above are relativelplaim
To show more of the stages described in Section 3, we pregent t
somewhat more complex examples: the MIPS R3000 convention,
which is notoriously complex and error-prone (Bailey and/ida

son 1995), and the 1A-64 convention.

MIPS On the MIPS, the first 16 bytes of parameters normally
go in integer registerg4—r7, and the remaining parameters go
on the stack. But floating-point parameters are subject toemo
complicated rules, and because these rules depend on #eftyp
the first parameter, we needre&RST_CHOICE stage, as shown in
the upper part of Figure 9. The only fine point is the use ofrthie
stage. A 64-bit floating-point parameter in the second fmrsgoes
into integer register pair6—r7, regardless of the size of the first
parameter; registars may go unused. Because the 64-bit floating-
point parameter is the only parameter with an alignment ofe,
achieve this end usingaD.

When the first parameter is a floating-point parameter, we use
the middle part of Figure 9. The first two floating-point pasders
are placed by counting arguments, not bits: the first pammet
occupies either floating-point registet2 or floating-point register
pair£12—£13 (here calledi12), depending on its size. The second
parameter, if it is also a floating-point parameter, goesitimee
£14 or d14. Remarkably, if a procedure takes four 32-hit floating-
point parameters, the first two gofn2 andf 14, the next two go in

parms =

[WIDEN(Aw.round_up(w, 32))

,ARGCOUNTER "args")

,BITCOUNTER("bits")

,PAD("bits")

, FIRST_CHOICE(cfe,
[Mw, k, o).k = "float", (first parameter is floating-poift
, Mw, k, o).true, []

,REGSBY_BITS("bits", [r4,...
, OVERFLOW(¢,, UP, 16)

]

)

(first parameter is floating-point=
CHOICE(
[Mw, k,0).k = "float" A w = 32,
REGSBY_ARGS("args", [£12, £14])
,Mw, k,o).k ="float" A w = 64,
REGSBY_ARGS("args", [d12,d14]),
, Mw, k, 0).true,

)

results =

[WIDEN(Aw.round_up(w, 32))

, WIDTHS([32, 64, 128])

, CHOICE(
[Mw, k,0).k = "float", USEREGS[£O0,...,£3])
, Mw, k,o).true, USEREGE[r2, r3])
)

]

Figure 9. The standard MIPS R3000 calling convention

parms =
[WIDEN(Aw.round_up(w, 64))
,BITCOUNTER("bits")
, CHOICE(
Mw, k,0).k = "float" A o("bits") < 512,
USEREGS|[£S,...,f15])
, Mw, k, o).true,
REGSBY_BITS("bits", [outO, ..., out7])

)

, OVERFLOW(co, UP, 16)]

results =
[cHOICE(

Mw, k, al).k = "float" A w < 82,
[WIDTHS([32, 64, 82]), USEREGS[£8])]

, Mw, k, o).true,
[WIDEN(Aw.round_up(w, 64))
, WIDTHS([64, 128])
» USEREGE[r8, r9])]])]

Figure 10. The standard IA-64 convention

r6 andr7, andf13 andf15 are not used. More examples of MIPS
parameter placements appear in Figure 13 in Appendix B.

IA-64 The standard C convention for IA-64, shown in Figure 10,
is also complex. This convention sets aside eight integeregght
floating-point registers for passing parameters. Like thghA con-
vention in Figure 2, it uses at most eight of these sixteerstexs,
even if more than eight parameters are passed. Also like lirieaA
convention, it leaves “gaps” in the integer registers taespond

to floating-point parameters. But unlike the Alpha convemtiit
leaves no gaps in the floating-point registers; instea€aitds regis-
ters unused at the end. To place a floating-point parametaneed
the semantics, “if fewer than eight parameters have beesegas
use the next available floating-point register; otherwiset@the
overflow block.” We implement this convention using the ciaun
testing predicate ("bits") < 512.

The results convention shows one oddity: most floating-point
results are returned in floating-point registers, but a hi28quad-
precision floating-point result is returned in the integegister
pair r8—r9.

4. Variations and extensions

Section 3 tells only part of the story about allocating lomat for
parameters: there are a number of variations and possibéa-ex
sions. Some we know to be useful; others might not be.

When aREGSBY_BITS stage splits a large parameter across
multiple locations, it uses the equatiéf = combine(¢, £'). This
equation puts the most significant bits of the parameter é th
first location, which is appropriate for a big-endian maehi®n
a little-endian machine, it makes more sense to use theiequat
£"" = combine(#', £). Our implementation uses the equation appro-
priate to the byte order of the target machine.

A convention might want to pass two small parameters togethe
in a single large register. To do so, we could define a vanatio
REGSBY_BITS that would split a register into two locations.

A variation on theBITCOUNTER stage could increment its
counter not by the width of the request but by the total width o
the machine locations that are used to satisfy that regéeshave
chosen to use the width of the request because that is how most
calling conventions seem to be described. Usually the twadihsi
are the same.

Our WIDEN stage stores a small parameter in the least signifi-
cant bits of a larger location. But some conventions, inclgdhe
Mac OS X Power PC convention (Apple 2003), store a small pa-
rameter in thenostsignificant bits of a larger location.

Some conventions, including the OS X convention, reserve
“shadow” space on the stack for parameters passed in negiste
To support such conventions, we provide alternate versibtise
stages above, calle&tEGSBY_BITS_RESERVE USEREGSRESERVE
and REGSBY_ARGS_RESERVE Even when such a stage finds a
register, it also allocates an extra location from its sasoge but
it does not do anything with the extra location. In tRecsBy-
BiTs andReEGSBYARGsrules in Figure 6, this behavior amounts to
adding a new premise

(ss,0)Q(w, k, al) L g,

ignoringé, and threadingr appropriately. In our implementations,
these “reserving” stages share code with the original ¥essbf the
same stages.

Using therReseRVEforms, Figure 11 shows a specification for
the Mac OS X convention on the Power PC. This specification is
suitable for passing parameters that are multiples of 32ibisize.

Itis also suitable only for non-varargs functions, becabgeOS X
convention requires that a parameter passed to the vapaki®f
a varargs C function be passedhnth floating-point and integer
registers (Apple 2003, p55). To implement this conventiaubd
require a new kind of composite locatidn= both(¢1, £2) such
that writing ¢ writes both¢; and/>. We would also need BOTH
stage with suitable semantics. Finally, we would need thd kito
distinguish a parameter passed to a varargs function fratstme
parameter passed to a function with a non-varargs prototype

As these examples should make clear, staged allocatiort is no
a complete, definitive language for specifying calling camions.

parms =
[WIDEN(Aw.round_up(w, 32))
,BITCOUNTER("bits")
, CHOICE(
Mw, k,o).k = "float",

[WIDEN(Aw.64), USEREGSRESERVE([f1,...,£13])]
, Mw, k, o).true,
REGSBY_BITS_RESERVE"bits", [r3,...,r10])

)

, OVERFLOW(c¢,, UP, 4)
]

results = CHOICE(
Mw, k,0).k = "float",
[WIDEN(Aw.64), USEREGS[£1])]
, Mw, k,o).true,
[WIDEN(Aw.32), USEREGE[r3, r4])]

)

Figure 11. The OS X PowerPC convention

Rather, itis a framework for organizing the specificatiod ample-
mentation of calling conventions—a framework that coverssim
conventional techniques, but that can be expanded at need.

5. Results

We report on experience implementing and using stagedaaitot
and we compare staged allocation with CCL.

5.1 Implementation experience

Staged allocation is not just for formal specification; itritended

to be easy to implement. To evaluate the cost of implementa-

tion, we have added staged allocation to two different céengi

Quick C--, which is implemented in a combination of Objective

Caml and Lua, and Machine SUIF, which is implemented in C++.

e Quick C-- is an implementation of &, which is a language

and a run-time interface whose primary mission is to support
retargetable compilation of multiple programming langesg

ber is comparable to measurement error. We therefore fattiseo
programmer-time costs: the effort of writing the implensgiuns.

Developing staged allocation required significant intalial ef-
fort, but the results of that effort are captured conciselffigure 6,
which we have used to guide our implementations. The program
ming effort can be summarized by these statistics:

Quick G-~ (Caml) Machine SUIF (C++)

88 lines glue code
229 linesmaincode | 621 lines code
20 constructor methods
45 top-level functions| 63 other methods
14 datatypes 29 classes

It is difficult to make meaningful comparisons between Carolp
grams and C++ programs, but the main points appear to be these
e Both implementations are small: 229 and 621 lines respagtiv
Only non-blank, non-comment lines are counted.

e Quick G-- uses an additional 88 lines of “glue code,” which
makes the Caml implementation callable from Lua scripts
(Ramsey 2005). Using Lua has two advantages: it is consis-
tent with the way we configure the whole Quick-€compiler,
and it enables us to experiment with (and debug!) calling con
ventions without rebuilding the compiler. The Machine SUIF
compiler does not use Lua, so our C++ implementation has no
glue code.

Although both implementations follow Figure 6, the Camleod
has significantly fewer top-level functions than the C++e&od
has methods, even when constructor methods are omittesl. Thi
is because Caml allows nested functions but C++ does net allo
nested methods.

The C++ code requires classes to do jobs that the Caml code
handles using other language constructs. Of the C++ classes
6 represent record types or exceptions, 3 represent atishsmc
used in the implementation (e.g., location), and 20 are used
in the implementations of stages. Stages written in Caml use
anonymous functions, which need no special declarations.

The effort of building our implementation for Quick-€ is in-
separable from the effort of developing Figure 6. But withu¥e 6

(Peyton Jones, Ramsey, and Reig 1999; Ramsey and Peytonn hand, we were able to build an implementation for Machine

Jones 2000). The <& language has just enough of a type
system to help a compiler put values in machine registees: th
type of a value is its width in bits. When a value is passed
to a separately compiled procedure, the-Gompiler needs
help deciding what kind of register should hold it. A-€
program provides such help by attaching a kind to every actua
and formal parameter; at any call site, the kind of each &ctua
parameter must match the kind of the corresponding formal
parameter at the declaration of the procedure called. értbiel
compiler, kinds are passed directly to automata.

Machine SUIF is a flexible, extensible compiler infrastruc-
ture whose primary mission is to support the development of
machine-specific optimizations and profile-driven optimiz
tions (Smith and Holloway 2000). It is also used to evaluate
architectural ideas.

Internally, Machine SUIF treats a source-language typenas a
abstraction that has a size and alignment. The abstracgion ¢
also be asked whether its values are Booleans, integerge(sig
or unsigned), floating-point numbers, pointers, enumendii-
erals, structures, unions, or arrays. The answer is useahte c
pute a kind for staged allocation.
In both compilers, the compile-time costs of using staged al
location are negligible. For examplgprof reports thai0.1% of
Quick C--'s execution time is spent in staged allocation; this num-

SUIF fairly quickly: one of us (Olinsky), who had no prior exp
ence with compiler back ends or with Machine SUIF, built atfirs
implementation in one week. Then, part-time over three weh&
embedded the implementation in Machine SUIF, debuggedidt, a
simplified the code. The C++ code that implements calling-con
ventions using staged allocation is significantly easieetw and
maintain than the code it replaced:
¢ The calling convention is implemented only once, where teefo
it had been implemented both at call sites and in the geoerati
of a procedure’s prolog.

e Structured arguments and scalar arguments are handlegl usin
the same code, where before structures had been handled spe-
cially and separately.

We conclude that the effort required to implement stageatation
is small and that the benefits are worth the effort.

5.2 Specification experience

As shown above, we have written specifications for standard C
calling conventions on the Alpha, 1A-64, MIPS, Pentium, and
Power PC. The Alpha, IA-64, and Pentium back ends have passed
Bailey and Davidson’s (2003) tests for interoperation wfté na-

tive C compiler. Our MIPS machine is not fast enough to rus¢he
tests, and on the Power PC, Bailey and Davidson’s tests are im

Staged CCL
Machine Allocators parms+res total
Alpha 13+6 — —
IA-64 11+12 — —
MIPS R3000 20+7 37+11 63
Pentium 4+9 — —
PowerPC 12+6 — —
SPARC 5+6 17+10 45
VAX * 2+3 14+10 37
68020 2+3 11+11 35
88100 5+3 21+10 42

Table 1. Number of lines in specifications (neans untested)

practical: even if we limit parameter types taar, short, int,
float, anddouble, Bailey and Davidson’s procedure generates
over 70,000 tests. Instead, these platforms have passedimby
test, which symbolically evaluates assembly language frmma-
tive compiler and checks that registers are used as predictedrby o
specifications. They have also passed execution tests otidng
with randomly generated prototypes (Lindig 2005).

We have also written specifications of SPARC, VAX, 68020,
and 88100 calling conventions. We cannot test them at presan
to enable comparisons with CCL, we include them in Appendix A

Most of the effort of writing a specification goes into under-
standing the calling convention. Writing the simple speatfions
for the Pentium, SPARC, VAX, 68000, and 88000 took just min-
utes each, for example. Writing the IA-64 specification el
deeper thought; eventually we decided we wanted a predioate
test the value of a named counter. Once we used this predicate
the 1A-64 specification worked on its first tests. The modiaift
specification to write was the MIPS specification, because sb
difficult to understand the convention. We did so by reversgi-e
neeringlcc’s implementation (Fraser and Hanson 1995). This job
was fairly easy becausec’s argreg function matches up nicely
with our allocation stages: it counts argumemMKECOUNTER),
counts bytes of parameters allocated (relategit@ OUNTER), re-
members whether the first argument was a floating-point aegtim
(FIRST_CHOICE), and uses the byte count to index an array of reg-
isters REGSBY _BITS). By automatically comparing our code with
code from the native C compiler, we debugged our specificétio
about half an hour.

Table 1 compares the sizes of our specifications and CCL spec-
ifications; it counts the number of non-blank, non-commamd
required to write each specification. For staged allocati@nshow
line counts from our Lua implementations in Quick-CFor CCL,
we show counts from Appendix B of Bailey’s (2000) PhD thesis.
Each count for value passing, whether for staged allocatidor
CCL, is reported as a sum: parameters+results. To make compa
isons fair, we show two counts for each CCL specification: the
“parms+res” count includes only those parts of the CCL djmeei
tion that describe value passing; “view changes” and glabases
are omitted. The “total” count shows the total size of each_.CC
specification, including parts that are not used by the CQilsto
Even when these unused parts are omitted, our specificatiens
about half the size of CCL's.

5.3 Other comparisons with CCL

Before making further comparisons with CCL, we provide abri
summary based on Bailey 200§4.3. Unfortunately, CCL descrip-
tions are too big to include examples in this paper.

Summary of CCL CCL treats each parameter, each result, and
each location as a “resource.” Like our machine locatioashee-
source has a width, but it also has two Boolean propertiesthven

it has been allocated to hold a parameter and whether it ibia

to be allocated. The values of these properties change atatee

of an automaton changes. A resource that represents a garame
result also has a type, which appears to be equivalent tochikin
staged allocation.

A CCL specification describes a mapping from each parameter
to a location. Locations are arranged in ordered sets ofeddets,
and a CCL description includes code that indicates from lwhic
ordered set locations should be allocated. The CCL int&pre
iterates through the parameters, at each step allocatmdirdt
location whose properties identify it as unallocated arailable.

If the location is too small, CCL appears to allocate moratons
and combine them somehow. If the location is too big, CCLrretu
it, and the compiler must figure out what to do with the too-big
location?

A CCL description includes rules that trigger changes t@pro
erties as the state of the automaton changes. In practess thles
are triggered by the allocation of a location, and they aesiue
mark other locations as unavailable. For example, in the RI0RS
specification, if floating-point registef12 is allocated, the rules
mark integer registerst andr5 as unavailable. In other words, the
rules are used to implement arclusion relation

CCL also provides other information. It lists the registetese
values are preserved across calls, and it also includestsimge
called aview change which serves two purposes: it accounts
for changes in the names of stack locations as the stackepoint
moves, and on machines that have register windows, it atefamn
changes in the names of registers as register windows monve. T
information appears not to be used by the CCL tools.

Comparison The work based on CCL is largely complementary
to staged allocation.

e Bailey and Davidson’s work is all about P-FSAs: identifying
this class of automata, devising an enumeration procedaure f
computing P-FSAa, analyzing P-FSAs, and using P-FSAs to
generate test cases. The specification language, CCL, isalm
an afterthought, which explains why it has no publishedaynt
or semantics.

Staged allocation is all about the specification languagén+d

ing the syntax and semantics, expressing standard calling c
ventions, repeatedly refining and simplifying the langyagel
implementing it in different compilers. The P-FSA is an af-
terthought; we have replicated Bailey and Davidson's algo-
rithms for analysis and testing, but in our implementatjans
never build a P-FSA or related tables.

Implementation comparison At 229 lines of Objective Caml
and 621 lines of C++, our implementations of staged allocati
are much smaller than the implementation of CCL. The program
generator for CCL is about 2500 lines of Icon (Griswold an@sGr
wold 1996). Because Icon is a very high-level language, & dh
Icon is more nearly equivalent to a line of Objective Camhthaa

line of C++. CCL’s program generator emits a table that mashb
terpreted at compile time; the interpreter requires ande lines

of C.

To port either staged allocation or CCL to a new compiler need
not require writing any new code, provided the implementati
language of the new compiler is Objective Caml or C++ (fogsth
allocation) or C (for CCL). But if the new compiler is writtén a
new language, like Java for example, significant reimplaatem

1 Private communication from Jack Davidson, 2 Oct 2002.

would be required for either staged allocation or CCL. In the
case of staged allocation, the rules in Figure 6 would haveeto
reimplemented in Java. In the case of CCL, the table intezpre
would have to be rewritten in Java, and some part of the pnogra
generator would have to be rewritten to emit tables in JagaaBse
the implementation of CCL is no longer available, we don’okn
how much of CCL’s program generator would have to be rewritte
It might seem unfair to compare the implementations of CCL
and staged allocation, because CCL talks about the stackepoi
and about volatility of registers, and staged allocatioesdoot.

e Our framework precludes some attractive language-design p
sibilities. For example, given their close similarity, itowd
be satisfying ifREGSBY_BITS and REGSBY _BITS_RESERVE
could be expressed as different combinations of simplen-pri
itives. The problem is that decomposing these operatiaias in
simpler primitive stages would require more communication
between the primitives. We prefer to keep the communication
simple and to live with the near-duplication of primitives.

Our framework excludes not only many obviously bad conven-
tions but also some that might be considered reasonable. For

But as far as we can tell, CCL is used only to place parameters
and results; its implementation does not generate codeafondth
movement of the stack pointer or with volatility of register

6.

Evaluating the design There is no obvious yardstick by which
to measure the quality of a language for describing callomyen-
tions. The common “core-language” approach to design—iiclvh
the best language is the one that is the most expressive hdile
ing the fewest primitives—is not appropriate for callingneen-
tions. The reason is that there are many conventions we vpraid
fer not to express. Becausay function that maps each list of pa-
rameter types to a list of distinct machine locations is dtilegte
parameter-passing convention, the space of potentiabotions is
large. But there are far more “bad” conventions than “goadé
(A convention is bad if it wastes machine resources or is ton-c
plicated.) So it is a bad idea to ask for the simplest langubge
expresses the most conventions.

good languageestrictswhat can be said. But because the design
space of good calling conventions is not well understoode-a r
strictive approach runs the risk that the domain-specifiglage
may be unable to express some necessary convention. Wedave a
dressed that risk by designing staged allocation as an sikten
framework, not just a language. The essence of the frameisork
captured by the form of the judgmefds, o)Q(w, k, al) = o
This judgment, together with the stages we have designetlres
our considered opinions about a space of “good” convenfidks
language primitives, our stages are big by design; we haxeut:

ing big primitives will make it more likely not only that sing
specifications describe good conventions but also that goodl
ventions can be described by simple specifications. For¢hison,

for example, we have madeRrRST_CHOICEa primitive even though

it can be defined by some (slightly scary) syntactic sugar.

several consequences.
* New kinds of stages can be added by hand with relatively few |ocation of each slot in a stack frame by accumulating andrsgl

example, there is no way to express any convention of the form

“pass parameters in registers if and onlglifparameters can be

passed in registers; otherwise, pass all parameters otatiie’s

Such a convention is certainly conceivable, but in the ader

of keeping common cases simple, we have chosen to describe

only conventions in which parameters can be allocated oae at

time (in some order).

Returning to evaluation, we believe that, aside from punely
ternal questions about the perspecuity of its syntax an&sgos,
a language for describing calling conventions should béuatad
empirically. Does it describe common conventions? Can good
ventions be specified simply? Does the language discourade b
conventions? Can it stretch to accommodate legacy comvemnti
however awkward? By these measures, we are satisfied wighdsta
allocation.

Discussion

Completing the convention Although the rules for passing pa-
rameters and results are the most complicated part of agaitin-
vention, a convention also has other parts:

e The convention says where overflow parameters and resalts ar
expected; stack-frame layout must put them there. Franoaitay
must also put saved registers where the convention saysrihe r
time system expects to find them.

e The convention says how a return address is passed to a.callee

e The convention says what registers the compiler may use and
which of those registers must be preserved across calls.

e The convention says which way the stack grows, which registe
is the stack pointer, and how the stack pointer is aligned.

e The convention says whether deallocating stack space osed t

pass parameters is the job of the caller or the callee. Irc&ypi
C calling conventions, the caller deallocates, but in a eanv
tion that supports proper tail calls, the callee must deat®
(Ramsey and Lindig 20034).

These parts of a calling convention are trivial to specifg aasy

to implement, except for frame layout. We lay out stack frame-

ing a declarative, constraint-based technique, which coegpthe

A better approach is a “domain-specific” approach in which a

The centrality of the judgmenfss, o)@Q(w, k, al) = o/ has

constraints: a stage should not base decisions on infamati
that is not part of the formal model (such as the names of
parameters), and it should not maintain private state that i Othertechniques for specifying automata One might think that
not in o. Of course, if a new kind of stage is to be useful automata naturally lead to regular expressions. But reguiares-
for specification as well as implementation, it must be given sions and the tools based on them are designed orgdeptcer-
a formal semantics. tain sequences of inputs and to reject others. A parametsim
automaton must not only accept a sequence of inputs (pagamet
types); it must also produce a location for each input. Andust
accepteverysequence of inputs; if a parameter-passing automaton
rejects any sequence of inputs, the convention it spectfiesom-
pleteand therefore incorrect. Regular expressions are not mseh u
for specifying calling-convention automata.

We can imagine specifying an automaton by giving its nodes
and edges. Any set of nodes and edges can be written using

a set of simultaneous linear equations (Lindig and Ramse)20

These loose constraints leave room for bad new ideas aswell a
good. For example, it would be easy but incorrect to add astag
that allocates a single location to multiple parametettdaigh
such an error would be caught by Bailey and Davidson’s analy-
sis of consistency). An idea we consider bad but could be done
correctly would be to choose a counterdirbased on informa-
tion about parameters.

2FIRST_CHOICE is not “good,” but it is necessary to support C calling
conventions that are, in our opinion, poorly designed.

FIRST_CHOICE, USEREGS and OVERFLOW. But a direct specifi-
cation of nodes and edges would be long, hard to write, andl har
to read: Bailey and Davidson (1996) report 9 nodes and 90sedge

for the relatively simple SPARC convention; the more comple

Conclusion Staged allocation is simple, readable, precisely de-

MIPS convention takes 70 nodes and 772 edges. Our own mea-fined, and easy to implement. It can describe a variety ofulisef
surements show that the Mac OS X Power PC convention takes atconventions with a minimum of notation. It can be packaged in

least 2,815 nodes and 28,150 edges. Direct specificatiotdvoeu
impractical.

The existing technique most closely related to staged atiloc
is combinator parsingHutton 1992), which could be used to map
a sequence of types to a sequence of locations. The mairediffe
in feel would be in handling choices: where staged allocatises
explicit predicate functions, classic combinator parshandles
choice using a success/failure model and a choice opeitadbdr t
takes two parsers and returns a parser. We could adopt tlielmo
for staged allocation, but we think oaroICE stage and predicates
will be easier for a compiler writer who has not seen comloinat
parsing.

Applications Our primary goal has been to build a retargetable
compiler that supports standard C calling conventions.$Baged
allocation is good for more than just standard conventi¢is.
example, we use staged allocation to define a special caament
that is used to start a new user-level thread. To start adhrea
we take a functionf and a valuer, create a stack, and return a
program counter that, when jumped to, caflee) on that stack.
Ordinarily, the program counter we return would point to gpat
of code written in assembly language—this code wouldfggtdx
off the stack and calf (x). By defining a special-purpose calling
convention, we make it possible to write this code in our seur
language, instead. The code is written using te- thread"
calling convention, which looks for parameters on the stack
in registers. The calling convention is named using theeign
keyword.
foreign "C-- thread"
Cmm_start_thread_helper(bits32 f, bits32 x) {

f(x);

foreign "C" abort();
}
The call tof(z) is not supposed to return, so if it does return, we
call the C functiorabort.

Using staged allocation to define new calling conventiong ma
have other benefits. In Quick-€, it is especially easy to define a
new calling convention, because the Lua specifications iihga
conventions are read at compile time. By pointing to diffiere
Lua code on the compiler's command line, we can change gallin
conventions without rebuilding the compiler. By making eas
S0 easy, we hope to enable more extensive experiments ahesg |
set out by Davidson and Whalley (1991).

There are also advantages to specifying new calling cororent
to be used only at certain call sites. For example, many denspi
inline the fast path of allocation (Appel 1992), which me#mat
statically, there are many calls to the garbage collectdrdipnam-
ically, these calls are rare. It therefore makes sense igrdaspe-
cial “GC convention” with the goal of minimizing code sizen®
candidate is a convention in which as many registers ashjessie
preserved across the cdlin particular, if the call to the garbage
collector passes no parameters, the convention shouleéthaskle
any registers for passing parameters—registers that revahpe-
ters in other conventions should be callee-saves in the G@ce
tion. With similar goals in mind, specialized GC convensicre
used in production compilers, such as Standard ML of Neweyers
(George 1999).

3This convention implies unnecessary saves at most calighbicost of
saving some registers unnecessarily is tiny compared toateof garbage
collection.

a configuration language, like Lua, or it can be implemented i
compiler’s native language, like C++. We hope these progevtill
make it the specification technique of choice for future emions
and the implementation technique of choice for future cdenpi

ACKNOWLEDGEMENTS
Our implementation in Machine SUIF would have been impdesib
without the enthusiasm and support of Glenn Holloway. Sukgp
Ryu found many errors in a draft of this paper. Joao Dias,08im
Peyton Jones, Andreas Rossberg, and Mike Smith made helpful
suggestions. This paper has also benefited from the comments
criticisms, and suggestions of many anonymous refereesaré/e
especially grateful to the POPL referees for their difficaitd
insightful questions.

This work has been supported by NSF grants CCR-0096069 and
ITR-0325460, by an Alfred P. Sloan Research Fellowship, tand
a gift from Microsoft.

References

Appel, Andrew W. 1992. Compiling with Continuations Cam-
bridge: Cambridge University Press.

Apple Computer. 2003Mach-O Runtime Architecture

Bailey, Mark W. 2000. CSDL: Reusable Computing System De-
scriptions for Retargetable Systems SoftwarehD thesis,
University of Virginia, Dept of Computer Science.

Bailey, Mark W. and Jack W. Davidson. 1995. A formal model and
specification language for procedure calling conventioims.
Conference Record of the 22nd Annual ACM Symposium on
Principles of Programming Languaggsages 298-310.

. 1996. Target-sensitive construction of diagnostic prots

for procedure calling sequence generators. Proceedirths of

ACM SIGPLAN '96 Conference on Programming Language

Design and Implementatioim SIGPLAN Notices 31 (May):

249-257.

. 2003. Automatic detection and diagnosis of faults in
generated code for procedure calls. IEEE Transactions on
Software Engineering 29 (November): 1031-1042.

Davidson, Jack W. and David B. Whalley. 1991. Methods for
saving and restoring register values across function .calls
Software—Practice & Experience 21 (2): 149-165.

Fraser, Christopher W. and David R. Hanson. 199Retargetable
C Compiler: Design and ImplementatioRedwood City, CA:
Benjamin/Cummings.

George, Lal. 1999. SMLNJ: Garbage collection APIl. As of
November 2005, available fromttp://www.smlnj.org/
compiler-notes/gc-api.ps.

Griswold, Ralph E. and Madge T. Griswold. 1996The Icon
Programming LanguageThird edition. San Jose, CA: Peer-
to-Peer Communications.

Hutton, Graham. 1992. Higher-order functions for parsifaurnal
of Functional Programming 2 (July): 323—-343.

lerusalimschy, Roberto. 2003 Programming in Lua Lua.org.
ISBN 85-903798-1-7.

Leroy, Xavier, Damien Doligez, Jacques Garrigue, Didienfy,
and Jérome Vouillon. 2004The Objective Caml system re-
lease 3.08: Documentation and user’s manubRIA. Avail-
able athttp://pauillac.inria.fr/ocaml/htmlman.

Lindig, Christian. 2005. Random testing of C calling corniams.

In Sixth International Symposium on Automated and Analysis-
Driven Debugging (AADEBUG)pages 3-11.

Lindig, Christian and Norman Ramsey. 2004. Declarativemmm
sition of stack frames. [13th International Conference on
Compiler Construction (CC 2004Yol. 2985 ofLNCS pages
298-312.

Mealy, George H. 1955. A method for synthesizing sequential
circuits. Bell System Technical Journal 34 (5): 1045-1079.
Peyton Jones, Simon L., Norman Ramsey, and Fermin Reig. 1999

C--: a portable assembly language that supports garbage col-
lection. InInternational Conference on Principles and Prac-
tice of Declarative Programmingvol. 1702 of LNCS pages
1-28. Springer Verlag.

Ramsey, Norman. 2005. Embedding an interpreted languagg us
higher-order functions and types. Journal of Functional Pr
gramming. To appear. A preliminary version of this paper ap-
peared inProceedings of the ACM Workshop on Interpreters,
Virtual Machines, and Emulatorgune 2003.

Ramsey, Norman and Christian Lindig. 2002. Custom calling
conventions in a portable assembly language. Unpublished
paper available ahttp://www.eecs.harvard.edu/ nr/
pubs/custom-abstract.html.

Ramsey, Norman and Simon L. Peyton Jones. 2000. A single inte
mediate language that supports multiple implementatidns o
exceptions. Proceedings of the ACM SIGPLAN '00 Confer-
ence on Programming Language Design and Implementation,
in SIGPLAN Notices 35 (May): 285-298.

Smith, Michael D. and Glenn Holloway. 2000. An introduc-
tion to Machine SUIF and its portable libraries for analysis
and optimization. Se@ttp://www.eecs.harvard.edu/
machsuif/software/nci/overview.html.

Stroustrup, Bjarne. 1997.The G++ Programming Language
Third edition. Reading, MA: Addison-Wesley.

A. More examples

For illustrative purposes, Figure 12 shows example spatifics
for several machines that are not supported by our compitesse
specifications are untested, but at least they give an idsiaefnd
complexity.

B. Details of the MIPS R3000 convention

Here we explore some details of the calling convention fa th
MIPS R3000. Figure 13 shows where parameters are placed by
calls to some 4-argument C functions. The left column shdwes t
type of each parameted:for double, i for int, andf for float.

The right column shows the location in which each parameter i
passed. The notatidn(sp) indicates a location on the stack, in the
overflow block.

Figure 14 shows the exclusion relation for today's MIPS RB0OO
convention as implemented hyc (Fraser and Hanson 1995), ver-
sion 4.2. We computed the relation by running: on all C proce-
dures that passat, float, Or double parameters in registers. We
then parsed the assembly output and identified the sets figthe,
which are sets of registers that are never used in the saine cal

The same exclusion relation can be expressed in the style
of CCL using rules; for example, one rule says “if batt8 andf14
are used, thewr6 may not be used.” To express the relation re-
quires 23 such rules. This example, brief though it is, sstgge
why we prefer to specify complex conventions usiigoICE and
FIRST_CHOICE constructs, not using exclusion.

VAX parms =
[OVERFLOW(c,, UP, 4)]

VAX results =
[WIDEN(Aw.round_up(w, 32), USEREG$[r0, r1])]

68020 parms =
[OVERFLOW(c,, UP, 8)]

68020 results =
[WIDEN(Aw.round_up(w, 32), USEREG$[d0, d1])]

88100 parms =
[WIDEN(Aw.32)
, USEREGS[r2,...,19])
, OVERFLOW(co, UP, 8)

]

88100 results =
[WIDEN(Aw.round_up(w, 32)), USEREG§[r2, r3])]

SPARC parms =
[WIDEN(Aw.round_up(w, 32))
,USEREGS|[r8,...,r13])

, OVERFLOW(c,, UP, 8)

SPARC results =
[WIDEN(Aw.round_up(w, 32))
, CHOICE(
[Mw, k, o).k = "float",
USEREGS][£0, £1])
,Mw, k,0).true,
USEREG$[£8])

J

Figure 12. Untested specifications for which we have no corre-
sponding back ends

d-d-i-f £12-£13-£14-£15-16(sp) - 20(sp)
di-di £12-£13-16- 16(sp) - 24(sp)
di-i-f f£12-£13-16-1r7-16(sp)

i-i-isi r4-r5-r6-r7

i-i-i-d r4-r5-16-16(sp)—20(sp)

i-i-di r4-r5.-r6-x7-16(sp)

i-di-i rd-r6-r7-16(sp) - 20(sp)

dd-i-i f£12-f13 - £14-£15 - 16(sp) - 20(sp)
ffff £12-f14-16-17

fi-f-i £12.r5-16-17

d-f-fi f£12-f13-£14 .17 - 16(sp)

ffdi f12-f14 167 -16(sp)

i-f-if r4-rb-r6-r7

i-f-i-i r4-rb-r6-r7

i-i-fi r4-r5-1r6-r7

Figure 13. Example parameter placements on MIPS R3000

{{ra,£12}, {r4,£13}, {r4, £14}, {r4, £15}, {r5,£13},
{r5,£14}, {r5,£15}, {r6, £13,£14}, {r6, £15}, {r7,£15}}

Figure 14. Exclusion sets for the MIPS R3000 convention

