
Calibrated Mutation Testing
Jaechang Nam

The Hong Kong University of Science and Technology
Kowloon, Honk Kong

jcnam@cse.ust.hk

David Schuler · Andreas Zeller
Saarland University, Saarbrücken, Germany

{ds, zeller}@cs.uni-saarland.de

Abstract—During mutation testing, artificial defects are in-
serted into a program, in order to measure the quality of a
test suite and to provide means for improvement. These defects
are generated using predefined mutation operators—inspired by
faults that programmers tend to make. As the type of faults varies
between different programmers and projects, mutation testing
might be improved by learning from past defects—Does a sample
of mutations similar to past defects help to develop better tests
than a randomly chosen sample of mutations? In this paper, we
present the first approach that uses software repository mining
techniques to calibrate mutation testing to the defect history
of a project. Furthermore, we provide an implementation and
evaluation of calibrated mutation testing for the JAXEN project.
However, first results indicate that calibrated mutation testing
cannot outperform random selection strategies.

Index Terms—mutation testing, version control, bug database

I. INTRODUCTION

One goal of software testing is to find defects as early
as possible, e.g. by using automated test suites. But how
do we know that a test suite is good at finding defects?
Mutation testing aims to answer this question by seeding
artificial defects (mutations) into a program, and then checking
whether the test suite detects them. But how representative
mutations are for real faults? Andrews et al. [2] showed
in their study that mutations are better representatives for
real faults than faults generated by hand. However, different
types of faults are made in different projects [9]. Therefore,
mutation testing might be improved by learning from the
defect history. As future defects are often similar to past
defects, mutations that are similar to past defects can help
to develop tests that also detect future bugs. This motivated
us to develop calibrated mutation testing, a technique that
produces mutations according to characteristics of defects that
were made in the past. To this end, we mine the repository of
a project for past fixes. These fixes represent attempts to cure
a defect, and thus provide information about past defects. By
producing mutation sets that share properties with these past
fixes we calibrate mutation testing to the defect history of a
project (Figure 1 summarizes our approach).

In this paper, we make the following contributions:

• We show how to mine and categorize fixes from different
sources.

• We demonstrate how to calibrate mutation testing from
past fixes.

Original Program Mine Fixes

1 2 3 4 5

Report to TesterInsert Calibrated Mutations

Issue Tracker Rcs

Fig. 1. The process of calibrated mutation testing. First fixes are mined from
different sources. Then the mutations are (Step 2) calibrated to characteristics
of the fixes and (Step 3) presented to the tester.

• We provide an experimental evaluation of our approach
for the JAXEN [1] project.

The paper is organized as follows. First, we describe how
to mine and classify fixes for a project (Section II). Using
data from the collected fixes, we give details on how to
calibrate mutation testing to the defect history of a project
(Section III). In our evaluation (Section IV), we compare the
defect detection capability of prioritizations that are based on
different selection schemes. Then, we discuss the threats to
validity (Section V), and the related work (Section VI), and
close with conclusion and consequences (Section VII).

II. CLASSIFYING PAST FIXES

Calibrated mutation testing aims to produce mutations sim-
ilar to past defects, as made during the development of a
project. To this end, we need to obtain information about these
defects. We do this by learning from fixes, as they represent
attempts to cure a defect, and thus describe a defect. In the
following sections, we describe how to collect and classify
past fixes for a software project.

A. Mining Fix Histories

Defects are constantly fixed during the development of a
project. These fixes, however, are documented in different
ways. Thus, we mine fixes for a project from different sources:

• Revision Control System (RCS): Revision Control System
such as cvs, svn, and git provide commit messages, and
these messages may contain the keyword ‘fix’ to represent
if revisions are for fixing defects or features. We use
the Kenyon framework [4] for collecting such commits
automatically. Then, we manually validate if they are
really fix revisions.

• Issue Tracker connected with RCS logs: Several commit
logs may contain the issue index numbers of an issue



Total 134 fixes

25

5
7

Fixe
s fro

m
 Te

stin
g

4
2

fi
xe

s
fr
o
m

 I
ss

u
e
 T

ra
ck

e
r

e
xp

lic
it
ly

 c
o
n
n
e
ct

e
d
 w

it
h
 S

V
N

 l
o
g
s

99 Fixes from only SVN logs

4

21

17

6

50

11

Fig. 2. Collected fixes for the JAXEN project.

tracking system. We can collect the revisions containing
a these numbers automatically with Kenyon, and then
manually check whether they are really fix revisions
corresponding to a certain issue.

• Testing: We can compare the test results for two adjacent
revisions to obtain fixes. If a test case fails on the former
revision and passes in the latter one, this is a fix revision.

B. Subject Project

A project has to fulfill several criteria, to be suitable for
calibrated mutation testing. It has to have a version history
that lasts long enough, such that we can learn from past fixes.
There has to be an issue tracker from which we can extract
bugs that were fixed. Furthermore, it has to come with a JUnit
test suite, such that we can test several revisions automatically
and apply mutation testing on it.

The JAXEN XPath engine fulfills these criteria. It has a
version history of 1319 revisions that span a duration of about
7 years. It is of medium size (12,438 lines of code), and comes
with a JUnit test suite that consists of 690 test cases.

Figure 2 shows the fixes that we collected for JAXEN, with
the techniques described in the previous section. In total we
got 134 fixes. Out of these, 99 fixes were extracted from the
version archive (svn), 42 from the issue tracker, and 57 from
comparing the test results of subsequent revisions. Some of the
fixes extracted from different sources are overlapping, which is
shown by a Venn-Diagramm. For example, 21 of the fixes that
were extracted from the version archive were also extracted
from the issue tracker.

C. Fix Categorization

The collected fixes were categorized according to the fix
pattern taxonomy proposed by Pan et al. [16]. The taxonomy
categorizes fixes based on syntactical factors and their source
code context. For example, the ‘IF-APC’ pattern describes
fixes that add a precondition check via an if statement. In

TABLE I
FIX PATTERN PROPERTIES AND THEIR VALUES.

Properties Values

Flow control(C), data(D)
Fix change add(A), remove(R), modify(M)
Syntactic if(IF), method call(MC), operation(OP),

switch(SW), exception handling(EX),
loop(LP), variable declaration(DC),
casting(CT)

total Pan et al. propose 27 fix patterns. However, some fixes
could not be categorized by the taxonomy, so we added 12
new fix patterns.

For each fix pattern, we also determined several properties
that describe its effects. The flow property describes the impact
of the fix on control and data flow. The change property
indicates if new code was added, or existing code was changed
or deleted. The syntactic property describes which type of
statements were involved in the fix (e.g. if statements or
method calls). Table I shows all values for the different
properties. Note that a fix pattern can also be associated with
multiple values from each category.

Furthermore, we also determined the location for each fix—
that is the package, class, and method that were affected by
the fix. Thereby, we can identify areas of the program that are
more vulnerable than others.

By using these patterns and properties, each fix can be
categorized. Although the fixes were categorized manually,
each of the categorization steps could be automated.

III. CALIBRATED MUTATION TESTING

The idea of calibrated mutation testing is to adapt mutations
to the defects that occurred during the development of the
project. We obtain information about the defects by mining
past fixes. Using this data, we define mutation operators that
mimic defects that were fixed (Section III-A), and devise
mutation selection schemes based on the properties of previous
fixes (Section III-B).

A. Mutation Operators

To generate mutations similar to actual defects, we use the
fix patterns that are based on actual fixes. For a fix pattern we
derive a mutation operator that reverses the changes described
by the pattern. Thereby, we introduce defects similar to fixes
that are represented by this pattern.

For the JAXEN project, we examined the 10 most frequent
fix patterns, and checked which mutation operators reverse
this pattern. The results are summarized in Table II. The
first column gives the fix pattern ordered by their frequency
(column 5). Columns 2-4 show the properties associated with
each fix pattern. The mutation operator that corresponds to
a fix pattern is given in the last column. For 8 out of these
10 patterns, we found a corresponding mutation operator. For
our experiments we used JAVALANCHE [17, 18], a mutation
testing framework developed with focus on automation and
efficiency. One of the mutation operators that corresponds to



TABLE II
FIX CLASSIFICATION RESULTS FOR JAXEN. 10 MOST FREQUENT FIX PATTERNS.

Pattern Name Properties Frequency Mutation Operator
Flow Change Syntactic

Change of Assignment Expression (AS-CE) D M OP 18 replace assignments
Addition of an Else Branch (IF-ABR) CD A IF 13 skip else
Change of if condition expression (IF-CC) C M IF 13 negate jump in if
Addition of Precondition Check (IF-APC) C A IF 9 remove check
Method call with different actual parameter values (MC-DAP) D M MC 9 replace method arguments
Addition of a Method Declaration (MD-ADD) D A DC 9 -
Addition of Precondition Check with jump (IF-APCJ) C A IF 8 skip if
Removal of an Else Branch (IF-RBR) CD R IF 7 always else
Modify exception message (EX-MOD) N M EX 6 -
Addition of Operations in an Operation Sequence (SQ-AMO) D A MC 6 remove method calls

a pattern was already implemented in JAVALANCHE, and for
the seven others we had to implement new mutation operators.

For example, the corresponding mutation operator for the
‘IF-APC’ pattern (see Section II-C) removes checks. Checks
are if conditions without an else part. Thereby, code that was
previously guarded by the check gets executed regardless of
the check result.

B. Mutation selection schemes

As we do not want to apply all possible mutations ex-
haustively, we propose different selection schemes that aim to
represent past defects. To this end, a selection scheme takes
properties of past fixes into account and selects mutations
according to these properties. Therefore, we also mapped the
characteristics described in Section II-C to mutations, and
derived different selection schemes:

• Pattern-based scheme: Past fixes can be described by
fix patterns. Many of these fix patterns can be related
to mutation operators as described in Section III-A. By
using this relation, we can select a set of mutations that
reflects the distribution of fix patterns among the past
fixes.

• Property-based schemes: A fix pattern is characterized
by different properties (flow, change, and syntactic prop-
erties). We calculate the distribution of these properties
among all fixes. Then, we select a set of mutations that
manipulate these properties such that the distribution of
properties among the fixes is reflected—e.g. if more fixes
are associated with a property, also more mutations are
selected to manipulate this property. In this way, we get
three different mutation selection schemes, as there are
three different properties.

• Location-based schemes: Source code locations where
defects were fixed in the past may be more vulnerable
than other locations. Thus, we collect the locations of
the fixes and count their occurrences. Then, we select
mutations according to the distribution of fix locations.
By considering three different granularity levels (pack-
age, class, and method level), we obtain three different
location-based schemes.

• Random scheme: A scheme that randomly selects muta-
tions from all possible mutations serves as a benchmark.

From the different selection schemes, we obtain different
sets of mutations, which are calibrated to different aspects of
the defect history of the project. Note that the mutation selec-
tion schemes are not deterministic. When a selection scheme
is applied multiple times, different mutations may be chosen,
and only the distribution of the underlying characteristic stays
the same.

IV. EVALUATION

For the evaluation of our approach, we were interested if
mutation schemes that are based on properties of previous fixes
help to develop better tests than schemes that are based on a
random selection of mutations. But how do we define better or
good tests in this context? Although there are many different
opinions on what makes a good test, for our evaluation, we
consider a test to be good when it detects bugs.

Therefore, in an ideal setting, we would first apply each
mutation selection scheme to a project, and develop tests that
cover the selected mutations. Then, we would check how many
bugs these tests detect. Unfortunately, the first step is very
hard, as it would involve tremendous human effort to write
tests for all mutations, and the second step is impossible, as
we do not know all bugs that are in a project. Thus, we propose
an alternative evaluation setting that is based on the version
history of a project.

A. Evaluation Setting

For a project we check out every revision from the revision
control system. Then, we compile each revision using the build
scripts of this revision. If the revision can successfully be
compiled, we also run its unit tests and record the results of the
individual tests. With this approach, we obtain a matrix that
depicts which test passes or fails on which revision. Using this
data, we consider a test to detect a bug, if the test fails on a
revision and passes on a later revision.

For evaluating our approach we pick a specific revision.
Then, we compute all fixes as described in Section II up to this
revision. By learning from these fixes, we create mutation sets
according to different selection schemes. For these mutation
sets, we check by which tests each mutation is detected. Then,
we prioritize the tests in a way that they are sorted by the
number of additional mutations that they detect. In this way,



TABLE III
AVERAGE NUMBER OF DEFECTS DETECTED BY PRIORITIZATIONS CREATED ACCORDING TO DIFFERENT MUTATION SELECTION SCHEMES FOR REVISION

1229 OF JAXEN. VALUES THAT ARE BETTER THAN THE VALUES FOR THE RANDOM SCHEME ARE UNDERLINED AND STATISTICALLY SIGNIFICANT
VALUES ARE SHOWN IN BOLD FACE.

Top x Fix Location Property Random
percent Pattern Package Class Method Flow Change Syntactic

10 0.39 0.75 0.53 0.68 0.49 0.72 0.56 0.58
20 0.85 1.45 0.67 0.87 0.94 1.31 1.13 1
30 1.39 2.61 1.3 2.54 1.78 2.19 1.67 1.95
40 2.28 3.68 2.07 3.93 2.79 3.11 2.62 3.24
50 3.02 4.47 2.8 4.78 3.47 3.9 3.47 4.14
60 3.82 5.13 3.84 5.59 4.21 4.44 4.19 4.59
70 4.64 5.63 5.84 6.58 4.85 4.94 4.86 5.32
80 5.58 6.29 6.27 6.62 5.65 6.06 5.76 6.4
90 8.95 8.63 8.66 9.31 8.46 8.63 8.81 8.85
100 10 10 10 10 10 10 10 10

we obtain a test prioritization for each scheme. To assess the
quality of a prioritization, we check how many future bugs are
detected by the tests in the top x percent of the prioritization.
Again, the number of future bugs a test detects is derived from
the previously produced matrix.

B. Evaluation Results
We applied our approach on two revisions of JAXEN

(revisions 1229 and 931). We randomly chose these two
among the revisions that had enough (≥ 5) tests that detect
defects in future revisions. For each revision, we applied
the different selection schemes, and produced 100 different
mutation sets for each scheme. Then, we checked the average
failure detection ratios of the prioritizations that were produced
for these sets.

Table III shows the results for applying the different selec-
tion schemes on revision 1229 of JAXEN. The columns give
the selection scheme the prioritization is based on, and the
rows give the percentage of tests considered. A value in the
table depicts how many future faults are found on average by
tests in the top-x percent of a prioritization. Values that are
better than the values for the random scheme are underlined,
and statistically significant values are shown in bold face.

For the detected defects, especially for the random prior-
itization, one would expect a linear distribution, i.e. for the
top x percent x/10 bugs are detected. However all schemes
perform worse. This is due to the setup of the evaluation.
First the mutations are chosen, an then the tests are prioritized
according to these mutations. For the random scheme also the
mutations, which are used for the prioritization, are randomly
chosen and not the tests. When a test that detects a bug only
detects few or no mutations it is ranked low in all prioritization
schemes, and therefore, like in this case the prioritization
schemes perform worse than a linear distribution, which would
be achieved by randomly choosing tests.

The results for the prioritization based on the fix pattern
scheme (column 2) gives constantly worse values than the
ones for the random scheme (last column) for the top 10-
80 percent, and 7 out of them are significantly worse. Two
of the location based schemes, the package and method based
scheme (column 3 and 5), produce most times better results

than the random scheme. For the scheme that is based on the
package location (column 3) however, this is only statistically
significant for the top 20 and 30 percent of the tests cases. The
scheme that is based on the method location of previous fixes
(column 5) has statistically significant better values for the top
30 to 70 percent. For the scheme that is based on class location
(column 4) this trend does not seem to hold as it produces
values that are worse than the ones for the random scheme.
This effect seems counterintuitive and might be to nature of
the tests. Tests that perform well on mutations in a package
seem to be better in defect detection than tests that perform
well on mutations in defect prone classes. More specific
tests that perform well on mutations in defect prone methods
are again better in defect detection. The test prioritizations
generated for the property based techniques (column 6-8), on
the other hand, perform worse than the prioritization based
on a random selection of mutations, except for the change
property based scheme, which has better values for top 10-30
percent. However, these values are not statistically significant.

In order to check whether these results hold over the history
of the project, we also checked an earlier revision. Table IV
shows the corresponding results for revision 931. Note that for
almost all prioritization schemes at 90 percent all the defects
are detected. This is due to some tests that detect very few
mutations but no defect. Therefore, they are always ranked
very low by the different prioritizations. The prioritizations
based on the fix pattern type performs better for top 10 and
20 percent but worse for the rest. The location based schemes,
which performed best for revision 1229, do not perform well
on this revision. Only three values are better than the ones
for the random scheme, but none is statistically significant.
Among the property based prioritization schemes, the scheme
based on the flow property of fixes performs best. The top
10-30 percent perform better than the random scheme, but
again not statistically significant. From these results, we can
conclude that:

Random mutation selection schemes cannot be
outperformed by selection schemes based on defect history.



TABLE IV
AVERAGE NUMBER OF DEFECTS DETECTED BY PRIORITIZATIONS CREATED ACCORDING TO DIFFERENT MUTATION SELECTION SCHEMES FOR REVISION
931 OF JAXEN. VALUES THAT ARE BETTER THAN THE VALUES FOR THE RANDOM SCHEME ARE UNDERLINED AND STATISTICALLY SIGNIFICANT VALUES

ARE SHOWN IN BOLD FACE.

Top x Fix Location Property Random
percent Pattern Package Class Method Flow Change Syntactic

10 1.72 1.12 1.47 1.33 1.76 1.35 1.41 1.44
20 2.73 2.35 2.64 2.61 2.95 2.44 2.65 2.71
30 3.28 2.97 3.09 3.2 3.55 3.13 3.02 3.41
40 3.47 3.35 3.25 3.69 3.68 3.44 3.39 3.82
50 3.77 3.65 3.53 3.99 3.92 3.66 3.76 4.05
60 4.17 4.13 4.08 4.45 4.15 4.17 3.93 4.32
70 4.44 4.52 4.66 4.68 4.49 4.6 4.43 4.59
80 4.80 4.83 4.84 4.84 4.79 4.90 4.73 4.86
90 5 5 5 5 5 5 4.98 5
100 5 5 5 5 5 5 5 5

V. THREATS TO VALIDITY

Like any empirical study, this study is limited by threats to
validity.

• External Validity: As the evaluation was only carried out
on one project, we cannot claim that the results carry
over to other projects. However, the results may serve as
a starting point for further investigation and discussion.

• Internal Validity: Due to the randomness that goes into
the selection schemes, they are affected by chance. To
counter this threat, we produced 100 different mutation
sets for each scheme, averaged the results, and compared
the results to the average of 100 randomly chosen sets.
Furthermore, we followed rigorous statistical procedures
to evaluate the results.

• Construct Validity: We learned about past defects from
fixes. Although we used 3 different methods to mine
fixes, some of the fixes are missed—and thereby data
about past defects. For our evaluation we had to make
several approximations that may influence the results.
The test cases to detect (kill) mutations were chosen
from existing test cases rather than writing new ones.
This creates a bias towards the type of tests, as some
mutations are not detected, and tests that cover large
parts of the program get preferred. In addition, we only
evaluate against defects that were detected by tests that
exist in an earlier revision. This gives only a few defects
and creates a bias towards the type of defect.

VI. RELATED WORK

A. Mining software repository

Research studies on mining software repository have been
conducted for various purposes such as defect detection and
prediction, API usage recommendation, and developer social
network analysis [5, 6, 8, 10, 16, 20]. That is because software
repositories contain many software artifacts such as version
control histories, issue reports, source codes at a certain point,
email archives, etc.

Particularly, mining different kinds of patterns of software
artifacts from the repositories was the first step to achieve
those purposes. Livshits et al. [10] proposed DynaMine which

is a tool finding ‘common error patterns’ from software
revision histories. Zhong et al. [20] proposed MAPO which
is a tool mining and recommending ‘API usage patterns’ by
using source code repositories. While our approach collects
fix patterns to generate artificial defects for mutation testing,
they collected error patterns and used the patterns to discover
possible anomalies in source code.

Pan et al. [16] extracted bug fix patterns from seven open
source projects. In their study, they showed how similar and
consistent bug fix patterns are across all projects. Based on
their results, we analyzed fix patterns to generate artificial
defects that we consider similar to real defects. To our
knowledge, this is the first trial using past software histories
to calibrate mutation testing.

B. Mutation testing
In one of the first publications on mutation testing DeMillo

et al. [7] introduced the coupling effect that relates mutations
to errors and is stated as follows:

Test data that distinguishes all programs differing from a
correct one by only simple errors is so sensitive that it
also implicitly distinguishes more complex errors.

Offutt [13, 14] later provided evidence for the coupling effect
with a study on higher order mutants. The results of our work
can also be seen as a support for the coupling effect. They
indicate that tests detecting randomly chosen mutations are as
effective as tests detecting calibrated mutations.

Mutation selection was first proposed by Mathur [11], as a
way to reduce the costs for mutation testing, by omitting the
mutation operators that produce the most mutations. The goal
of mutation selection is to produce a smaller set of mutations,
such that tests that are sufficient (they detect all mutations) for
the smaller set are also (almost) sufficient for all mutations.

In an empirical study on 10 Fortran programs Offutt et
al. [15] showed that 5 out of 22 mutation operators are
sufficient—test suites that detect all selected mutations also
detect 99.5% of all mutations.

Barbosa et al. [3] did a similar study for C programs. They
proposed 6 guidelines for selecting mutation operators. In an
experiment on 27 programs, they determined 10 out of 39
operators producing a sufficient set with a precision of 99.6%.



A slightly different approach was taken by Namin et al. [12].
They tried to produce a smaller set of mutations that can
be used to approximate the mutation score for all mutations.
Using statistical methods, they came up with a linear model
that generates less than 8 percent of all possible mutations,
but accurately predicts the effectiveness of the test suite for
the full set of mutations.

In a recent study, Zhang et al. [19] compared these 3 dif-
ferent operator-based selection techniques to random selection
techniques. They showed that all techniques performed compa-
rably well, and that random selection can outperform the best
operator-based selection. This is similar to our results, were
we found no significant difference between more sophisticated
calibrated selection techniques and simple random techniques
in terms of fault detection ratios for the corresponding test
suites.

In contrast to our approach the selective approaches aim at
minimizing the number of mutation and to approximate the
results for all mutations, while our approach selects mutations
calibrated to past defects in order to approximate future
defects.

VII. CONCLUSION AND CONSEQUENCES

One application of mutation testing is to improve a test
suite by analyzing not detected mutations, and developing
new tests that detect them. In this paper we investigated
whether calibrating mutations to the defect history improves
this process, as future defects are often similar to past defects.
Although some calibrated schemes showed better result than
random selection for one revision, we found no scheme were
this trend manifests for more revisions.

Our results can be seen in line with previous research by
Zhang et al. [19]. They compared random selection schemes
with different operator selection schemes, and in their evalua-
tion random selection schemes were also not outperformed by
more sophisticated schemes. Furthermore, our results might
also be seen as support for the coupling effect—which states
that tests that are sensitive enough to detect simple errors also
detect complex errors. From our results, we can conclude that
tests that detect randomly chosen mutations are as effective as
tests that detect calibrated mutations.

Besides general improvements in terms of performance and
scalability, our future work will focus on the following topics:

Different evaluation setup
As our evaluation setting involves many compro-
mises, it might be worthwhile to change the eval-
uation setup. For example automated test generators
can be used to develop tests that detect mutations
proposed by a selection scheme.

Broader evaluation
Currently we only evaluated calibrated mutation test-
ing for one project. It might be that this project does
not suite our approach well. Therefore, we plan to
automate all steps necessary for calibrated mutation
testing and do a broader evaluation on more projects.

Acknowledgments. Jeremias Rößler, Rubin Wang, Dong-
sun Kim, and Gordon Fraser as well as the anonymous
reviewers provided helpful feedback on earlier revisions
of this paper.

REFERENCES
[1] JAXEN http://www.jaxen.org.
[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate

tool for testing experiments? In ICSE ’05: Proc. of the 27th International
Conference on Software Engineering, pages 402–411, 2005.

[3] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi. Toward the
determination of sufficient mutant operators for C. Software Testing,
Verification Reliability (STVR), 11(2):113–136, 2001.

[4] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey. Facilitating
software evolution research with kenyon. In ESEC/FSE-13: Proc. of the
10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 177–186, 2005.

[5] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining
email social networks. In Proc. of the 2006 international workshop on
Mining software repositories, MSR ’06, pages 137–143, New York, NY,
USA, 2006. ACM.

[6] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. Latent
social structure in open source projects. In Proc. of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineering,
SIGSOFT ’08/FSE-16, pages 24–35, New York, NY, USA, 2008. ACM.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41,
1978.

[8] S. Kim, E. Whitehead, and Y. Zhang. Classifying software changes:
Clean or buggy? Software Engineering, IEEE Transactions on, 34(2):181
–196, 2008.

[9] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things
changed now?: an empirical study of bug characteristics in modern open
source software. In Proc. of the 1st workshop on Architectural and
system support for improving software dependability, pages 25–33, 2006.

[10] B. Livshits and T. Zimmermann. Dynamine: finding common error
patterns by mining software revision histories. In ESEC/FSE-13: Proc.
of the 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 296–305, 2005.

[11] A. P. Mathur. Performance, effectiveness, and reliability issues in
software testing. In COMPSAC ’91: Proc. of the fifteenth International
Computer Software and Applications Conference, pages 604–605, 1991.

[12] A. S. Namin, J. H. Andrews, and D. J. Murdoch. Sufficient mutation
operators for measuring test effectiveness. In ICSE ’08: Proc. of the
30th international conference on Software engineering, pages 351–360,
2008.

[13] A. J. Offutt. The coupling effect: fact or fiction. ACM SIGSOFT Software
Engineering Notes, 14:131–140, 1989.

[14] A. J. Offutt. Investigations of the software testing coupling effect. ACM
Transactions on Software Engineering and Methodology (TOSEM), 1:5–
20, 1992.

[15] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An
experimental determination of sufficient mutant operators. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 5(2):99–
118, 1996.

[16] K. Pan, S. Kim, and E. J. Whitehead, Jr. Toward an understanding of
bug fix patterns. Empirical Softw. Engg., 14:286–315, June 2009.

[17] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation testing by
checking invariant violations. In ISSTA’09: Proc. of the Eighteenth
International Symposium on Software Testing and Analysis, pages 69–
80, 2009.

[18] D. Schuler and A. Zeller. (Un-)covering equivalent mutants. In
ICST’10: Proc. of the 3rd International Conference on Software Testing,
Verification and Validation, pages 45–54, 2010.

[19] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is operator-based
mutant selection superior to random mutant selection? In ICSE ’10:
Proc. of the 32nd International Conference on Software Engineering,
pages 435–444, 2010.

[20] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO: Mining
and recommending API usage patterns. In Proc. the 23rd European
Conference on Object-Oriented Programming (ECOOP 2009), July
2009.


