Mining Trends of Library Usage

Yana Momchilova Mileva - Valentin Dallmeier - Martin Burger - Andreas Zeller
_ Saarland University, Saarbriicken, Germany
{mileva, dallmeier, mburger, zeller}@cs.uni-saarland.de

ABSTRACT

A library is available in multiple versions. Which one should
I use? Has it been widely adopted already? Was it a good
decision to switch to the newest version? We have mined
hundreds of open-source projects for their library dependen-
cies, and determined global trends in library usage. This
wisdom of the crowds can be helpful for developers when
deciding when to use which version of a library—Dby helping
them avoid pitfalls experienced by other developers, and by
showing important emerging trends in library usage.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Reliability

General Terms

Measurement, Reliability

1. INTRODUCTION

Most of today’s software projects heavily depend on the
usage of external libraries. Each of those libraries comes
in different versions. One would assume that it is wise to
always rely on the latest library version, as it is the version
that is currently the most refined one, well-structured and
bug-free. However, in practice, things are different.

In this paper, we leverage the wisdom of the crowds when
it comes to the usage of individual library versions. We con-
sider the choice of the majority to be the wise choice in re-
gard to which library version should be used. To explore the
choices made, we mined information from the history of 250
APACHE' projects and the external libraries they use, in or-
der to answer the following question: Which library versions
are the most popular ones? After introducing the concept in
Sections 2 and 4, we present three different approaches that
analyze the popularity of versions from different angles:

"http://www.apache.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWPSE-Evol’09, August 24-25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-678-6/09/08 ...$5.00.

e In Section 5, we present usage trends of different li-
brary versions throughout several years and give a vi-
sual means for following the evolution of a library ver-
sion usage.

e Section 6 analyzes the usage of the available library
versions at the present moment.

e Section 7 discusses a reliability measure for new library
versions—namely, the number of times developers have
switched back from a specific version.

Those three approaches give different information about how
different versions of a library are used. Such information
can be valuable for both the libraries users as well as for the
library developers.

As a result of our analysis, we have developed a tool called
AKTARI (Section 8) that assists library users is selecting
which library version to use: “Based on the global usage of
log4j 1.2.15 it is not recommendable to use this version.”

2. POPULARITY OF LIBRARY VERSIONS

The decision to use a specific library version usually de-
pends on factors like reliability, functionality, usability, doc-
umentation, quality and compatibility. All of those factors
come into play when a user decides whether to use a spe-
cific library version or not. By analyzing the choices made
by software developers with respect to the usage of library
versions, we estimate which are the most popular ones and
thus the ones recommended for usage.

Having such information available can be valuable for two
groups of developers:

Library users. Library users can highly profit from know-
ing how frequently a particular library version is used
by the majority. Suppose, for example, that many peo-
ple have switched back from a particular version—due
to a bug in it, for example. Then, warning potential
new users of this version can help them avoid facing
the same issues again. Users can thus save time and
improve the quality of their software product.

Library developers. Up to now, library developers did
not have any other means for getting user feedback
except direct communication with the users. With our
approach, they can evaluate how successful a particu-
lar version is and thus improve the future development
of their library. Our technique thus gives library de-
velopers a means of collecting indirect feedback from
users to provide better service.

3. EARLY ADOPTERS VS.
LATE FOLLOWERS

Like with any other product, it takes time until the major-
ity of the users starts using it. According to Rogers’ theory
of Diffusion of innovation [6] the adoption of an innovation
follows an S curve and there are several categories of inno-
vation adopters. These include:

Early adopters (called innovators by Rogers) are those
users who immediately start using a new technology
and who are willing to take the associated risks.

Late followers (called late majority by Rogers) are those
users who adopt a new technology after the majority
of the users’ community has already done so.

When it comes to library versions usage, users can be
classified in a similar way—those who start using the new
library version immediately after it is out and those who
prefer to wait and see if it is safe to switch. Both approaches
have their positives and negatives and every user has reasons
for such behavior, such as the need for new functionality
(early adopters) or security (late followers).

Whatever the reasons behind the decision to switch, our
approach can give valuable information. The recommen-
dations made by AKTARI most likely won’t influence early
adopters, as they know about the risks and benefits of be-
ing the first ones to use a new version and their reasons for
switching are not risk-driven. However, our approach can
assist late followers in making an informed decision about
which library version to use.

4. ANALYZING THE USAGE OF LIBRARY
VERSIONS

In this paper we focus on the analysis of JAVA programs.
More specifically, we focus on programs that are managed
by MAVEN?, a widely adopted project management tool for
JAVA projects. In MAVEN, library dependencies are stored
explicitely in meta information files, which makes it easy to
extract and analyze version usage.

To analyze the global usage of library versions, we used
250 real-life open-source projects from the APACHE foun-
dation, one of the largest and most popular repositories for
open-source JAVA projects. In total, we analyzed the usage
of 450 different external libraries versions per month over
the period of two years.

In a project managed by MAVEN, meta data describing
the project data is represented by MAVEN’s Project Object
Model (POM). MAVEN relies on the presence of a central
repository that stores different versions of commonly used
libraries.

Since its first release in 2002, MAVEN has become the lead-
ing open-source project management tool for JAVA projects.
The actual number of projects using MAVEN cannot be mea-
sured directly. However, in September 2008, the central
MAVEN repository was hit over 250 million times [5]. Usu-
ally, a MAVEN installation checks the central repository only
once per day, which implies that MAVEN is actively used by
a large number of developers.

In MAVEN, required libraries are described as dependen-
cies in an XML file called pom.zml, a descriptive declaration

http://maven.apache.org/

<project>
<dependencies>
<dependency>
<groupld>servlet-api</groupIld>
<artifactId>javax.servlet</artifactId>
<version>2.3</version>
</dependency>
</dependencies>
</project>

Figure 1: Declaring a dependency to the servlet-api
library in a MAVEN Project Object Model

of a POM. Library usage information is stored in <depen-
dency> elements. These elements list all the libraries that
the project depends on. Each element has three manda-
tory children: a group id (company, team, organization, or
other group), an artifact id (unique id under group id that
represents a single dependency), and a version (specific re-
lease). These three components uniquely identify a specific
version of a library. Thus, <dependency> elements define
all required libraries unambiguously, including their version
number. Figure 1 shows an excerpt from a pom.zml file.

To analyze the usage of library versions, we collected de-
pendencies for all of the 250 APACHE projects on a monthly
basis over a period of two years. For each month, we de-
termined the library usage information for all dependencies
referenced by at least one project.

S. LIBRARY VERSION USAGE TRENDS

Suppose you are head of a team developing a library. How
can you make sure that you are providing the best service
for its users? In order to determine the evolution of the
usage of libraries and their versions, we mined the entire
archive history of the aforementioned 250 APACHE open-
source projects for the period January 2007 to January 2009
(excluding).

As a first example, consider the usage trend of the junit
library for this period. In Figure 2, one can see that version
3.8.1, which is the oldest version of this library used in that
period of time, remained the most popular and widely used
one. It was even more popular that the latest 4.4 version.
From a user’s point of view, we investigated the reason be-
hind this behavior and found out that there was a big API

80

— junit 3.8.1
<<<<< junit 3.8.2
===- junit 4.4

60

40

20

0
Jan2007 Apr2007 Jul2007 Oct2007 Jan 2008 Apr2008 Jul2008 Oct 2008

Figure 2: Usage trends of the junit library

— log4j 1.2.8
44444 logdj 1.2.14
----log4j 1.2.15

0
Jan 2007 Apr2007 Jul2007 Oct2007 Jan 2008 Apr2008 Jul 2008 Oct 2008

Figure 3: Usage trends of the log4j library

change from 8.z to 4.xz. There are examples of projects’
problem reports where it is stated that switching will be
“lots of work” (e.g. Gentoo bug entry 129773). Also due to
the change in the API there was an issue with backwards-
compatibility—we found examples of users who decided to
stick to the older versions as the 4.x ones had compatibility
issues with the ant library. Also, the 4.z versions required a
newer jdk version; the developers were concerned that this
might be a reason for their clients to not use their product.
Figure 3 shows another example of usage trends of the
different versions of the logjj library. The usage of log4j
1.2.8 was at its highest point in mid-2007. What strikes
however is the usage of the log4j 1.2.15 version: At the
moment it was released, there was a peak in its usage history
and then a fast and sudden drop shortly afterwards. This
was due to a bug in its implementation (see Apache bug
entry 43304). Projects decided to switch to the new version
(indicated by a drop in the usage of the 1.2.8), but after
discovering the bug they switched back (drop in 1.2.15) and
switched to the closest earlier version (increase in 1.2.14).
The fact in this case is that 1.2.15 was rejected by its users.
Those are only a few of the many examples of trends in li-
brary versions usage. For developers of libraries, such trends
clarify the ways the users are using individual versions. As
developers know what the differences between each version
are, they can link the specific library version features to the
library popularity and thus analyze the users’ needs.

Trends in library usage are a method for displaying the
preferences of the users.

6. MOST POPULAR VERSIONS

When a software developer decides to use a library, she
has to decide which of the available versions is the best one
to use. As this choice is made at a certain fixed moment
in time, the recommendation should also be based on the
usage at this particular moment in time.

To identify the most popular and thus recommendable
library versions for usage in January 2009, we mined the 250
projects and their library dependencies for January 2009.
Some of our results are depicted in Table 1.

To measure the popularity of a particular version, we con-
sider the number of current usages of the version the user

Table 1: Usage of library versions for January 2009

Library name and version Times used

junit 3.8.1 60
junit 3.8.2 9
junit 4.4 7
log4j 1.2.8 10
log4j 1.2.14 9
log4j 1.2.15 0
servlet-api 2.3 4
servlet-api 2.5 1
derby 10.1 6
derby 10.2 1

wants to switch from and the number of current usages
of the version the user wants to switch to. For example,
for a developer using derby 10.1 that wants to switch to
derby 10.2, we would recommend not to do so, as in only
#derby 10.2/(#derby 10.2 + #derby 10.1) = 1/(1+6) =
14% of the cases version 10.2 is used. We again investi-
gated the reasons behind this usage behavior and found a
commit message stating that the developers will stick to ver-
sion 10.1, “until TranQL can handle 10.2”, which reveals a
compatibility problem in the newer 10.2 version. Develop-
ers should be warned about such issues with the versions in
order to make a better informed choice as of which version
is recommendable for them to use.

Knowledge about popular versions helps developers in
deciding which versions to choose.

Of course, every developer may have individual reasons
when and why to switch to a new version. However, if a large
majority of developers uses a specific library version (e.g.
Junit 3.8.1) this information should be taken into account.

7. SWITCHING BACK TO EARLIER
VERSIONS

When the developers of a software project switch from
an old library version to a newer one, they usually do so
either because the old version had problems that were fixed
in the new one or because the new one offered more and/or
better functionality. On the other hand, there are users
who prefer to wait before they switch—such that once they
switch, they will not have problems with a defective library
version. However, identifying when it is safe to switch is a
difficult task. Here again, the vote of the majority comes
into play.

For projects that migrate early to a new library version,
it might be that they migrate back to an older version. In
most cases, the reason for switching back is that the new
version has some issues that make it unusable for the spe-
cific needs of the project. If this is the case, the end user
should be warned about such library versions and should
avoid switching to them.

Again, we have mined the same 250 APACHE projects
and their history (January 2007-January 2009). However,
this time we were interested in the number of times people
switched back from a particular library version.

Table 2: Switching back to older library versions for
the period January 2007—January 2009

Library # usages # switched back %
junit 3.8.1 1501 0 0%
junit 3.8.2 293 1 <1%
junit 4.4 84 0 0%
logdj 1.2.8 269 3 2%
logdj 1.2.14 114 0 0%
logdj 1.2.15 7 4 57%
servlet-api 2.3 182 0 0%
servlet-api 2.5 10 1 10%
derby 10.1 147 0 0%
derby 10.2 31 0 0%

Table 2 presents the cases of the junit, log4j, serviet-api
and derby libraries (these libraries are among the top most
widely used libraries in our set of projects for the specified
period). The first column in the Table gives the library
name and version. The second column shows the number
of times a particular library version was used in this period.
The third column shows how frequently this specific library
version was discarded, and the developers switched back to
an older version in the same period. The fourth column
gives the percentage of times a particular library version
was switched back from.

Switching back and forth between versions is very time
consuming and can introduce bugs in the code (if, for ex-
ample, the library API has changed, the project code also
has to be changed). That is why developers usually do not
switch back from a particular library version once they have
switched to it—unless it really has a problem. As one can
see, the most popular version of junit is 3.8.1. No project
ever switched back from using this version, thus indicating
that this is a very good version of junit to use. The servlet-
api 2.5 version, for example, was switched back from in 10%
of the cases. We found bug reports pointing to a problem
the 2.5 version has with Tomcat 5.5 (e.g. Grails bug entry
2053). The case that strikes the most, however, is the log4j
1.2.15 version, as in no less than 57% of the cases people
switched back from it. We investigated this case and found
out that the reason why so many users decided to switch
back is a bug in this version that prohibited its usage for all
MAVEN projects that depended on log4j, but did not depend
on the java mail and jms libraries. The problem with this
library version is also indicated in Figure 3 and Table 1, and
was thus detected by all of our techniques.

Finding reverts to previously used versions can show the
library developers how big the impact of a library issue is. It
can also show the library users how reliable a specific library
version is and thus give them yet another indication if they
should switch to it.

The number of times a library version was switched back
from is a strong indicator of the quality of the library.

8. RECOMMENDATIONS WITH AKTARI

We have presented three approaches for analyzing the us-
age of library versions. All of them give information that is
complementing the others and should thus be used together.

 Aktan PR s @ Javadocw If:{) Declarationw = Consolq @ Progresq

& Library | Version | Popularity |Switched back from | Trend

P | logdj 1.2,15 (1% 5T Stable
Junit 381 R4% 0% Increasing

Figure 4: AKTARI—Eclipse plug-in design

Please select a library from the list to see its versions usage distribution in
February 2009,
Library Name: [‘logéi =)

Draw. Hi2s
sz Bizas
Oizae

Oizs
s

D1z

| Ouzis

14% Ed Wiz

versions Distribution for February 2009 for

Figure 5: AKTARI—web-tool

Combining usage trends with times users switched back
from a library gives an indication to the library developers
what design mistakes they made and also how big the impact
of a bug in their library is.

When giving recommendations as to which library to use,
one should take into account as many factors as possible.
For new projects, backwards-compatibility for their clients
is not an issue—in this case considering only the popular-
ity at a certain moment in time might be misleading, as it
takes into account all kinds of factors, including the age of
the projects. However, adding information about how many
times a library was switched from will give a better recom-
mendation, since it also considers if a library is bug-free and
thus the developers of a new project will be able to choose
the newest and most reliable version.

On the other hand, considering only the popularity of a
version disregarding the emerging increasing and decreasing
trends might also be misleading. This is why we believe that
all of the presented approaches bring different information
and combined they are a powerful tool for library versions
usage recommendations.

We have combined and integrated our library analysis
techniques into a tool called AKTARI® that comes in two
forms—an Eclipse plug-in and a Web tool.

The plug-in assists library users in selecting the most rec-
ommendable, according to the majority of users, library ver-
sion. It detects which versions are being used by the project
and gives information regarding the global usage of these
versions (see Figure 4—tool’s planned design).

The Web tool (Figure 5) is available for the library de-
velopers who want to check the usage trend of their library.
It offers diagrams (like the ones in Figure 2) as well as Pie
charts that represent each of the three analysis techniques
described, and thus assists developers in analyzing usage,
success and popularity of their library. It is available at
http://www.st.cs.uni-saarland.de/softevo/aktari. php4

9. THREATS TO VALIDITY

As any empirical study, this study has limitations that
must be considered when interpreting its results. We iden-
tified the following threats to validity.

3« Aktari” is the Swahili word for “crowd”.
4Publicly available starting June 7th, 2009.

The number of projects may affect the outcome. It
is possible that the addition or the removal of a par-
ticular project from the set of analyzed projects might
influence the results. However, we have mined hun-
dreds of projects and we believe that this possibility is
small.

Results might not hold for non-MAVEN projects.
The advantage of MAVEN is that it eases dependency
management. However, it does not impose restric-
tions on which version of a library can be used. Also,
the libraries used in a project depend on the scope of
the project and not on its management tools. We are
therefore convinced that our results are also valid for
projects that do not use MAVEN.

The implementation may have errors. A final source
of threats is that our implementation could contain er-
rors that affect the outcome. To control these threats
we did a careful cross-checking of the data and the
results to eliminate mistakes in the best possible way.

10. RELATED WORK

A lot of related work has been done to support developers
in adjusting their code to a new version of a library.

SpotWeb [7] is a tool that crawls open source repositories
to mine frequent usage patterns for libraries. These patterns
are then presented to a developer that wants to start using
a library. In contrast to this work, our approach tries to
suggest when a developer should switch to a new version of
a library.

Another tool that aims at making the process of switching
versions easier is CatchUp! [3]. It is a plugin for Eclipse that
records refactoring operations applied when switching to a
new library. Recorded refactorings can then be replayed for
clients that also want to switch to that version.

Dagenais and Robillard [1] use a partial program analy-
sis technique to suggest replacements for calls to methods
that are no longer present in the new version of a library.
The presented tool gathers suggestions by mining the ver-
sion history of the library and is based on the assumption
that changes to replace a deleted method happen in the same
change set.

Holmes and Walker [4] analyze library’s API popularity
and based on the usage frequency of the API elements direct
the library users to using the popular ones.

To the best of our knowledge, our approach is the first
that tries to recommend or dissuade from switching library
versions based on global usage history.

11. CONCLUSION AND FUTURE WORK

There are many different libraries available and each of
them exists in many different versions. Thus, choosing the
right version to use is a potential problem for many devel-
opers.

This paper presents an approach to supporting developers
in this decision. The technique is based on the popular vote
of the majority. The more people use a particular version,
the higher its usage is recommended.

The results presented can also serve library developers
when trying to evaluate the quality of their projects. Seeing
the popular vote of the majority clearly shows the opinion
of users regarding a particular library version.

Generally, we believe that trends in software, as accumu-
lated over the histories of hundreds of projects, can result in
recommendations that are immediately useful. We want to
further explore the potential of such wisdom of the crowds
and have already identified a number of ways this work can
be extended and improved:

Identify Early Adopters and Late Followers. In or-
der to be able to give recommendations that are more
project-specific we plan to differentiate between early
adopters and late followers projects and give them li-
brary usage recommendations accordingly.

Include Bug Fix Information. In order to further advo-
cate the case of switching to a new version, we plan to
include bug data: ”In version 3.2 50 bugs were fixed
and 10 of them relate to your project. Switching to
version 3.2 will fix existing issues in your code.”

Cost vs. Benefit of Switching. In order to assess the
cost of switching, we plan to use static and dynamic
program analysis techniques and to compare the source
and bytecode before and after the switch [2, 8].

Acknowledgments: Yana Mileva is funded by Microsoft
Research Cambridge Lab. Valentin Dallmeier is supported
by the Saarland Graduate School of Computer Science. The
authors thank Andrzej Wasylkowski for his comments on the
paper as well as the anonymous reviewers for their feedback.

12. REFERENCES

[1] B. Dagenais and M. P. Robillard. Recommending
adaptive changes for framework evolution. In ICSE ’08:
Proceedings of the 30th international conference on
Software engineering, pages 481-490. ACM, 2008.

[2] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller.
Mining object behavior with ADABU. In WODA 2006:
ICSE Workshop on Dynamic Analysis, May 2006.

[3] J. Henkel and A. Diwan. Catchup!: capturing and
replaying refactorings to support API evolution. In
ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 274-283,
New York, NY, USA, 2005. ACM.

[4] R. Holmes and R. J. Walker. Informing Eclipse API
production and consumption. In eclipse ’07:
Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange, pages 70-74, New York, NY,
USA, 2007. ACM.

[5] S. M. Kerner. Apache Maven Goes Commercial. http:
//www.serverwatch.com/news/article.php/3784681,
November 2008.

[6] E. M. Rogers. Diffusion of Innovations. The Free Press,
1962.

[7] S. Thummalapenta and T. Xie. Spotweb: detecting
framework hotspots via mining open source repositories
on the web. In MSR ’08: Proceedings of the 2008
international working conference on Mining software
repositories, pages 109-112. ACM, 2008.

[8] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting
object usage anomalies. In Proceedings of the 11th
European Software Engineering Conference held jointly
with 15th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 35—44,
September 2007.

