
Mining Patterns and Violations using Concept Analysis

Christian Lindig
Saarland University

Department of Computer Science
Saarbrücken, Germany
lindig@cs.uni-sb.de

ABSTRACT
Large programs develop patterns in their implementation
and behavior that can be used for defect mining. Previous
work used frequent itemset mining to detect such patterns
and their violations, which correlate with defects. How-
ever, frequent itemset mining gives much more attention
to patterns than to the instances of these patterns. We
are proposing a more general framework to understand and
mine purely structural patterns and violations. By combin-
ing patterns and their instances into blocks, we gain access
to the rich theory of formal concepts. This results in a novel
geometric interpretation, which helps to understand previ-
ous mining approaches. Blocks form a hierarchy in which
each block corresponds to a pattern and neighboring blocks
to a violation. Furthermore, blocks may be computed effi-
ciently and searched for violations. Using our open-source
tool Colibri/ML, we mined patterns and violations from
five open-source projects in less than a minute each, includ-
ing the Linux kernel.

Categories and Subject Descriptors
D.2.4 [Requirements/Specifications]: Statistical meth-
ods; D.2.7 [Distribution, Maintenance, and Enhance-
ment]: Documentation; D.2.5 [Testing and Debugging]:
Debugging aids

General Terms
Algorithms, Documentation, Reliability

1. INTRODUCTION
While classifying something as a software defect requires a
specification, we can find potential defects without a specifi-
cation. This is based on the observation that large software
systems exhibit patterns in their implementation or behav-
ior and that deviations from these patterns correlate with
defects (Engler et al., 2001). An automatic analysis of such

warn_printf

…

struct_define
struct_new

vafuncall

va_sta
rt

va_end

sn
pr
int
f

scan_args

wa
rn
_p
rin
t

rai
se

zstream_sync

AddExponent

●
●

●
●

●
●

●
●

●

…

…

…

3502

17

●
●

● ●

●

●●
●●

●

●

…

●

●

1974
… …

●●

Callees

Ca
lle

rs

Ruby 1.8.4
Call Relation

2

●
●

Figure 1: Call relation for Ruby 1.8.4. The pattern
{va_start, va_end} becomes visible as a block. It is
violated by function vafuncall. This violation be-
comes visible as an imperfect block.

deviations is practical for large systems and is especially
suited to find latent bugs.

Patterns in code and behavior are a consequence of small
and orthogonal interfaces. They force clients to combine
functions to implement a certain functionality. For exam-
ple, implementing in C a function with a varying number of
arguments (like printf) requires the concerted use of macros
va_start, va_arg, and va_end. Hence, we see many func-
tions that call both va_start and va_end. For example,
the source code for the Ruby 1.8.4 interpreter includes sev-
enteen such functions. But it also includes one function
(vafuncall) that calls va_start but not va_end. This de-
viation is indeed a bug that was corrected in a later release.

Mining software for structural patterns and their viola-
tions was pioneered by Li and Zhou (2005) with PR-Miner1,
a tool that mines programming rules from source code and
flags violations. Patterns are not limited to a known set
of patterns or names but are purely structural. Li and Zhou
demonstrated effectiveness and efficiency of this approach by
reporting 27 previously unknown bugs in the Linux kernel,
PostgreSQL, and Apache HTTP server. PR-Miner uses fre-
quent itemset mining to detect patterns and their violations.
The authors also note that “frequent itemset mining algo-
rithms were not designed exactly for this purpose” and de-
velop some ad-hoc mechanisms like applying frequent-item
mining twice.
1Programming Rule Miner

The goal of this paper is not to improve upon the ex-
cellent results of PR-Miner but to improve the foundation
for detecting structural patterns and their violations. Our
hope is that this will lead to new applications of the idea
that stands behind PR-Miner. In particular, we propose a
unified representation for patterns and their instances that
uncovers their hierarchical nature and provides an intuitive
geometric interpretation.

Our formalism is based on the following insight: any bi-
nary relation (like a call relation) can be represented as a
cross table like in Figure 1, which sketches the call relation
of Ruby 1.8.4. A caller f and a callee g are related (marked
with a dot), if f calls g. In such a table rows (callers) and
columns (callees) may be permuted without changing the
underlying relation. By picking a suitable permutation, we
can make a pattern visible as a block. Figure 1 shows the
block for pattern {va_start, va_end} as well as the seven-
teen functions that are instances of this pattern. In addition,
the violation of this pattern by function vafuncall becomes
visible as an imperfect block : vafuncall calls va_start but
not va_end, which leaves a gap in the block.

Mining patterns from a relation can be understood as
finding the blocks of the relation. Analogously, detecting
violations of patterns can be understood as finding imper-
fect blocks. Patterns and violations can be mined from any
binary relation, not just a call relation. However, for illus-
tration we shall stick with the call relation as an example for
the most part of the paper and present another application
in Section 8.

1.1 Contributions
This paper makes the following contributions:

• Blocks unify patterns and their instances, which were
previously treated seperately and ad-hoc. Further-
more, blocks provide a geometric interpretation of pat-
terns and violations.

• A block hierarchy captures the recursive relation of
blocks and violations: patterns correspond to blocks
and violations correspond to neighboring blocks.

• Case studies show the efficiency and practicality of the
proposed formalism. Call patterns and their violations
could be identified statically for the Python interpreter
within twenty seconds, and for the Linux kernel within
one minute.

• We draw the connection between patterns, their in-
stances and violations, and formal concept analysis
(Ganter and Wille, 1999), which provides a theory to
study them.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the relation between patterns and blocks,
where Section 3 shows how to compute them from an input
relation. Analogously, Section 4 introduces violations of pat-
terns and Section 5 shows how to identify them efficiently.
Section 6 explores the recursive relation of patterns and vi-
olations. Section 7 reports performance numbers gathered
from the analysis of open-source projects. Section 8 and
Section 9 demonstrate the versatility of the binary relation
in program analysis. The paper closes with a discussion of
related work in Section 10 and our conclusions in Section 11.

Project Supp. Pattern

Ruby 1.8.4 17 va_start, va_end
Apache HTTP 2.2.2 20 va_start, va_end

29 apr_thread_mutex_lock
apr_thread_mutex_unlock

Linux 2.6.10 28 add_wait_queue,
remove_wait_queue

53 acpi_ut_acquire_mutex,
acpi_ut_release_mutex

27 journal_begin,
journal_end

Linux 2.6.17 31 kmalloc, copy_from_user,
kfree

Phyton 2006-06-20 59 PyEval_SaveThread,
PyEval_RestoreThread

Table 1: Patterns found in open-source projects.

2. PATTERNS AND BLOCKS
A relation associates objects and their features, like callers
and callees in the example above. A pattern is a set of
features shared by objects. These objects are called the in-
stances of the pattern. For defect detection, the goal is to
find patterns that have many instances because these pat-
terns are likely to capture a universal principle. As we shall
see, patterns and instances are unified by blocks.

For example, the Ruby interpreter contains the following
pattern: functions raise and int2inum are called together
from 107 different functions. These functions are the in-
stances of pattern {raise, int2inum}. The number of in-
stances (107) is called the support for the pattern.

Table 1 illustrates more patterns and their support that
we mined from the call relation of systems implemented in
C. Most of them show the familiar pattern of allocation and
deallocation of a resource. The interesting fact is not that
they exist but that we were able to find them without know-
ing the names of these functions in advance.

Formally, a relation R ⊆ O × F is a set of pairs. Each
pair (o, f) relates an object o ∈ O and a feature f ∈ F . A
pattern is a set of features F ⊆ F and its instances are a set
of objects O ⊆ O. Given a set of objects O we can ask what
features these objects share; likewise, given a set of features
F we can ask for its instances. Both answers are expressed
with the prime operator ′ (which one can think of as the
derivative of a set).

Definition 1 (Features, Instances). Given a rela-
tion R ⊆ O × F and a set of objects O ⊆ O, objects share
the set O′ ⊆ F of features. Likewise, a set of features F ⊆ F
has instances F ′ ⊆ O, defined as follows:

O′ = {f ∈ F | (o, f) ∈ R for all o ∈ O}
F ′ = {o ∈ O | (o, f) ∈ R for all f ∈ F}

A pattern (a set of features) corresponds to a maximal
block in a cross table—see Figure 2. A block is characterized
by two sets: a pattern and its instances, which form the sides
of the block. The formal definition interlocks a pattern and
its instances:

Definition 2 (Block). For a relation R ⊆ O × F , a
block is defined as a pair (O, F) of objects and their features
such that O′ = F and F ′ = O holds. The cardinalities |O|
and |F | are called support and pattern width, respectively.

block
(O,F)

support
|O|

pattern
F

instances
O

Callees (Features)
Ca

lle
rs

 (O
bj

ec
ts

)

width
|F|

size
214

2

107 81

3

size
243

Ca
lle

rs
 (O

bj
ec

ts
)

Callees (Features)

Figure 2: A block is a pair (O, F) of a pattern F
and its instances O. Overlapping patterns lead to
overlapping blocks, where large patterns have fewer
instances and vice versa. The size of a block can be
used to identify interesting patterns.

Note that a block is defined as a pair of two sets and
therefore objects and features are unordered. However, to
visualize a block (O, F) in a cross table we have to put the
elements of O and F next to each other. For this reason,
typically not all blocks can be made visible in a table at the
same time.

Because patterns are sets, a subset relation may hold be-
tween them. For example, the Ruby interpreter exhibits
the pattern {raise, int2inum}, which has 107 instances. Of
these 107 instances, a subset of 81 instances also call func-
tion funcall2. These 81 instances thus form a wider pattern
{raise, int2inum, funcall2} with fewer instances.

Patterns in a subset relation correspond to overlapping
blocks (see Figure 2). Pattern {raise, int2inum} is repre-
sented by a tall but slim block, whereas the larger pattern
{raise, int2inum, funcall2} is represented by a wider but
shorter block. The size |O| × |F | of a block (O, F) can be
used as a criterion to find interesting patterns—large blocks
are good candidates.

Blocks unify patterns and their instances.

3. COMPUTING ALL BLOCKS
Finding patterns requires to identify the blocks of a relation.
The crucial question is how to do this efficiently, at least for
the blocks that we are most interested in.

The problem of computing all blocks of a relation is solved
by formal concept analysis (Ganter and Wille, 1999). The
definition of a block corresponds to a so-called formal con-
cept. Concepts (and hence blocks) form a hierarchy which
is defined by (O1, F1) ≤ (O2, F2) ⇔ O1 ⊆ O2. Indeed, the
hierarchy is a lattice (see Figure 4). This means, among
other things, that any two blocks have a unique common
sub block and any intersection of two blocks is a block in
the hierarchy as well.

The call relation for the Ruby interpreter has 7280 blocks.
Most blocks are small, as can be seen from the frequency
distribution for block size (|O| × |F |) in Figure 3. A bar in
the diagram for size s represents the number of blocks whose
size is in an interval of width 10 that is centered at s. There
are 6430 blocks of size 20 or less and 88 blocks of size 100 or
more. Likewise, 7043 patterns have a support of 20 or less
and 24 patterns have support of 100 or more. We are most
interested in large blocks that exceed a minimum support

1

10

100

1000

10000

0 100 200 300 400 500

Fr
eq

ue
nc

y

Block Size |O|x|F|

1

10

100

1000

10000

0 100 200 300 400 500

Fr
eq

ue
nc

y

Pattern Support |O|

Figure 3: Distribution of block size |O|×|F | and pat-
tern support |O| in Ruby 1.8.4. From 7280 blocks,
88 blocks are of size 100 or bigger and 24 patterns
have support 100 or higher.

8/0

4/1

2/3

7/1

4/2 3/2

2/3

2/2

1/4

3/3

2/4 1/4

0/8

1/4

Features

O
bj
ec
ts ● ● ●

● ●
●●

●

● ●
● ●
● ●
● ● ●

●
●

● ● ●
●

● ● ●

Figure 4: The blocks of a relation form a lattice.
Each block corresponds to a formal concept—two
such correspondences are shown. The numbers in-
side each concept denote |O|/|F |: support and width
of a rule.

because they are likely to represent a regularity in the Ruby
implementation.

A relation R ⊆ O × F may have up to 2n blocks where
n = min(|O|, |F|). The actual number of blocks strongly
depends on the density |R|/(|O| × |F|) of the relation (or
table). The exponential case only holds for extremely dense
tables. The density of the call relation for Ruby (and other
systems—see Table 2) is below one percent, which is why
the number of blocks is typically dominated by O(|R|3).

Since we are most interested in the fraction of patterns (or
blocks) with high support and large size, it would be wasteful
to compute all blocks of a relation. The key observation
for an efficient algorithm is that the blocks highest in the
hierarchy exhibit the highest support (see Figure 4). In
other words: as we move down in the hierarchy, support

Call Relation

Project |O| |F| Density Blocks

Ruby 1.8.4 3502 1974 0.002 7280
Linux 2.6.0 11131 7176 < 0.001 11308
Python 2.4.3 2624 1627 0.002 4870
Lua 5.1 766 664 0.005 1523
Apache 2.2.2 2256 1576 0.002 3301

Table 2: Statistics for the call relation of open-
source projects.

|O| decreases monotonically while |F | increases. The size
|O| × |F | of blocks maximizes towards the middle of the
hierarchy. They are interesting because they combine wide
patterns that still have relatively high support.

3.1 Algorithm in a Nutshell
The best-known algorithm for concept analysis is by Ganter
and Wille (1999); it computes efficiently the set of all con-
cepts. However, it does not compute the lattice of concepts
explicitly, nor does it work breadth-first. Taken together,
this makes it less suitable for the exploration of only the
topmost concepts in the lattice. We sketch a simple yet effi-
cient algorithm below, more details can be found in Lindig
(2000).

The top concept (or block) for a relation R ⊆ O × F is
({}′, {}′′) and serves as a starting point. Given any con-
cept (O, F), we can compute a sub concept (Of , Ff) for
each feature f ∈ F \ F that is not already part of (O, F):
(Of , Ff) = ((F ∪{f})′, (F ∪{f})′′). This list of sub concepts
contains all lower neighbors of (O, F) but may also contain
additional concepts. The following criterion holds only for
lower neighbors and is used to identify them: (Of , Ff) is a
lower neighbor if and only if for all x ∈ Ff \F the following
holds: (F ∪ {x})′′ = (F ∪ {f})′′.

The above algorithm is implemented in Colibri/ML, a
command-line tool for concept analysis (Lindig, 2007). It
takes a textual representation of a relation and computes
all blocks and block violations. As sketched above, Col-
ibri/ML avoids computing all blocks by starting from the
top block and then moving to lower blocks breadth-first
while blocks still exceed a given minimum support.

Colibri/ML worked well for our cases studies (see Sec-
tion 7 for its performance). For very large systems (|O| >
20 000) the more advanced algorithm by Stumme et al. (2002)
could provide an alternative, as it is explicitly designed for
extreme scalability.

Formal concept analysis computes all blocks
from a relation.

4. VIOLATIONS
When a pattern is represented as a block, a violation of
such a pattern is represented by an imperfect block. The
initial example in Figure 1 shows such an imperfect block
formed by pattern {va_start, va_end}, its instances, and
one function that only calls va_start. Adding the missing
call to va_end would remove the violation and make the
block perfect.

A similar situation is shown more schematically on the
left in Figure 5. Closer inspection reveals that an imper-
fect block is really a composition of two blocks. Block A
represents a pattern; this pattern is violated by a (small)
number of violators belonging to a subset of block B, where
the patterns of A and B overlap. This is equivalent to B
being a super block of A in the block hierarchy (shown on
the right of Figure 5). Together they leave a gap in a block
as wide as block A and as tall as block B. The width of the
gap is the number of corrections necesary in any violator to
remove the violation.

Just like not every block constitutes an interesting pattern
that captures a universal quality, not every gap constitutes
an interesting violation of a pattern. We are only interested
in gaps within blocks that we already have found interesting.

Project Supp. Conf. Violated Pattern

Linux 2.6.17 141 0.97 mutex_lock,
mutex_unlock

Linux 2.6.16 48 0.98 down_failed, up_wakeup
Linux 2.6.0 44 0.96 kmalloc, vmalloc
Linux 2.6.0 68 0.99 printk, dump_stack
Python1 59 0.98 PyEval_RestoreThread,

PyEval_SaveThread
Ruby2 24 0.96 id_each, rb_block_call
1 SVN 2006-06-20 2 CVS 2006-06-20

Table 3: Some pattern violations; the underlined
call was missing.

D

B C

A
support

A

support
B

A=(O₁,F₁)

B=(O₂,F₂)

B
A

violators gap

Figure 5: A pattern and its violation are represented
by two blocks that are neighbors in the lattice: block
A represents a pattern which is violated by block
B. Our confidence that such a violation is genuine
depends on the support of both blocks.

This typically means that we demand a minimum support
for block A before we would consider it. In addition, we
believe that fewer violations of a pattern make these viola-
tions more credible. This is expressed in the confidence for
a violation.

Definition 3 (Violation, Confidence). Given a
pattern represented by block A = (O1, F1) and a second block
B = (O2, F2) with A < B, the objects O2 \ O1 violate pat-
tern F1. The confidence that these violations are genuine is
|O1|/|O2|.

Confidence is the probability that any object that exhibits
features F1 also exhibits features F2. A rule with a support
of 100 instances and two violations yields a confidence of
100/102 = 0.98. In the initial example from Ruby 1.8.4,
rule {va_start, va_end} has support 17 and one violation.
This results in a confidence of 17/18 = 0.94. Table 3 shows
some additional violated patterns from open-source projects.

A violation is a composition of two blocks.

5. FINDING VIOLATIONS
An imperfect block like on the left side of Figure 5 can be
constructed from block A and any super block. In the partial
block hierarchy on the right of Figure 5, these are blocks B,
C, and D, as well as all their super blocks.

The violations of block A with the highest confidence are
those represented by the upper neighbors of A in the block

8

4

2

7

4 3

2

2

1

3

2 1

0

1

0.50

0.50

0.88

0.29

0.50

0.43

0.75 0.50
0.33

0.75

0.66

0.57

0.50

B
A

B

A

0.78 0.44
Confidence

violation independent

Figure 6: Block hierarchy for the example from Fig-
ure 1. Each block is marked with its support; shaded
blocks have support of 3 or greater and edge labels
indicate confidence for pattern violations.

hierarchy: blocks B and C in Figure 5. The reason is that,
as we move up in the hierarchy, blocks become slimmer but
taller. Since confidence essentially expresses the height ra-
tio of two blocks and we are looking for blocks of almost
equal height, immediate neighbors represent pattern viola-
tions with the highest confidence.

Figure 6 shows the block hierarchy from the example in
Figure 1; the number inside each block indicates the support
for the pattern represented by that block. Links between
blocks represent violations—some are labeled with the con-
fidence of the violation. As we have observed above, support
decreases monotonically as we move down in the hierarchy.
On the other hand, confidence is non-monotonic. There is
no obvious algorithm to identify only the violations with the
highest confidence.

A pragmatic approach to identify violations is to consider
only those that violate patterns exceeding a minimum sup-
port. These are represented by the top blocks in a hierar-
chy; in Figure 6 all blocks with support of at least three
are shaded. Traversing all edges of the lattice breadth-first,
starting from the top element then will find all interesting
violations. This is most efficient with an algorithm that com-
putes blocks and their neighbors on demand, rather than all
blocks beforehand.

Violations correspond to neighboring blocks.

6. TWO PATTERNS OR ONE VIOLATION?
The recursive nature of a block hierarchy causes a dilemma:
whether a block is a pattern or contributes to the violation
of another pattern is a matter of interpretation.

When two blocks A and B with A < B have almost the
same support, the confidence for a violation of B is close to
one. This is the situation presented above in Figure 5 and
in the middle of Figure 6. In that case we regard B as a
block that contributes to a violation of block A.

An alternative situation is shown in Figure 6 on the right:
two blocks A and B with A < B where B has about twice
the support of A. Considering B as violating A would result
in a low confidence. It is thus more sensible to assume that A
and B are overlapping but otherwise independent patterns.
This would mean that both A and B represent a correct
usage, even though one pattern (B) is a subset of the other
(A).

Patterns1 Violated Patterns2

Project # Width # Violators Gap

Ruby 1.8.4 143 2.67 39 1.49 2.26
Linux 2.6.0 112 2.52 19 1.21 1.05
Python 2.4.3 163 2.32 8 1.00 1.62
Lua 5.1 5 2.00 0 0.00 0.00
Apache 2.2.2 25 2.08 1 1.00 1.00
1 with support ≥ 20 2 with confidence ≥ 0.95

Table 5: Patterns and violations in the call relation
of C Programs.

We analyzed the call relations of the projects in Table 2
for independent but overlapping patterns. We considered
all patterns with support of at least 20 and a violation
confidence below 60%. We found no such patterns in the
Linux 2.6.0 kernel, none in Lua 5.1, one in Apache HTTP,
but 59 such patterns in Python 2.4.3, and 49 in Ruby 1.8.4.
For example, a typical pair of patterns in Python is {PyType-
_IsSubtype, PyErr_SetString, PyErr_Format} with sup-
port 42 and {PyType_IsSubtype, PyErr_SetString} with
support 202. We have no immediate explanation why some
systems show many overlapping patterns, while others show
none at all. Both systems that show them are interpreters
and we suspect that these include a considerable number of
functions which call many functions such that overlapping
patterns can emerge.

In addition to confidence, we may use a second criterion
to classify two blocks as either independent or violating:
the width of the gap (see Figure 5), which is the number
of corrections needed to make an object an instance of the
violated pattern. If a pattern has width 5, it is likely that a
true error misses one call, rather than two or three. We thus
could demand that a violation should have a small gap. As
a consequence, we would only consider one block violating
another if both blocks have about the same height and about
the same width.

Using gap width to identify violations requires patterns of
a considerable width. Otherwise gap width is too bound to
be useful as a criterion. This is the case for patterns that we
found in C programs, where most patterns have width two.

Table 5 presents some statistics for open-source projects
to support this: columns under Patterns indicate the num-
ber of patterns with support of at least 20 and their average
width. Columns under Violated Patterns indicate how often
these were violated, by how many functions (column Vio-
lators), and the average number of missing calls (column
Gap). Because the average gap width is between one and
two, it cannot be used as a criterion to classify blocks as
violations or patterns.

Patterns and violations are recursive.

7. PERFORMANCE
Thinking about patterns and their violations as a hierar-
chy of blocks is not just a theoretical model but is also well
suited for an implementation. We outlined in Sections 3 and
4 efficient algorithms to compute all blocks and to find vio-
lations of patterns above a minimal support. Here we report
some performance numbers gathered with Colibri/ML, a

Support ≥ 20 ≥ 30 ≥ 40

Confidence 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95

Ruby 1.8.4 10.8 10.7 9.9 10.7 9.2 8.3 9.1 8.4 8.3 7.6 8.3 7.6
Linux 2.6.0 68.9 73.4 68.7 73.4 50.7 55.1 55.1 50.7 43.4 47.6 43.4 46.8
Python 2.4.3 19.3 17.8 19.3 19.4 15.7 14.3 15.7 14.3 14.2 12.9 14.3 12.9
Lua 5.1 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.2
Apache 2.2.2 3.1 3.1 2.8 2.9 2.8 2.5 2.8 2.5 2.7 2.4 2.7 2.7

Table 4: Time in seconds to analyze call relations for pattern violations with Colibri/ML on a 2 GHz
AMD-64.

command-line tool for concept analysis implemented in Ob-
jective Caml2.

Our test subjects were the open-source applications writ-
ten in C that we have used throughout the paper. These
range from the small Lua interpreter (12 kLOC of C code3),
over medium-sized systems like the Apache HTTP server
(207 kLOC), the Python and Ruby interpreters (300 kLOC,
209 kLOC), to the Linux 2.6 kernel (3.6 MLOC). For the
Linux kernel the actual size of the system depends strongly
on the configuration because drivers can be included into
the kernel, compiled into modules, or not be used at all.
We configured a kernel for a small server where all relevant
modules are integrated into the kernel.

From each application we extracted the call relation and
analyzed it for violations of patterns. We extracted the call
relation by building a binary of each application, disassem-
bling it, and analyzing labels and jumps with a small script.
This static analysis is fast but misses computed jumps and
calls from function pointers. While these are rare in C ap-
plications, this simple technique would not work for C++
where methods are invoked via jump tables.

Table 4 reports wall clock times in seconds for the analy-
sis of pattern violations. The analysis was run on a 2GHz
AMD-64 on Linux for several levels of minimum support and
confidence. For example, analyzing Python for all violations
with support of at least 20 instances and confidence ≥ 0.85
took 17.8 seconds. The analysis of the Linux kernel took
about a minute, while smaller systems could be analyzed
within less than 20 seconds. The analysis is faster for higher
confidence and support levels because it must consider fewer
blocks; however, the overall impact of these parameters are
not prohibitive in any way. The memory requirement was
about 100MB for the analysis of Linux and 20MB for the
other systems.

Finding pattern violations is efficient.

8. ENCODING ORDER
Our analysis of the call relation is control-flow insensitive:
all calls from a function are considered, ignoring their or-
der and whether they are actually possible. This is a good
fit for our framework because it is based on sets. However,
we briefly like to demonstrate that a flow-sensitive analysis
can be encoded as well by discussing the approach by Wa-
sylkowski (2007). Using our framework, he discovered the
previously unknown bug #165631 in the AspectJ compiler.

Wasylkowski observes statically for objects of a Java class
C sequences of incoming method calls. The order of these
2Colibri/Java is forthcoming (Götzmann, 2007)
3as reported by David A. Wheeler’s SLOCCount

calls is encoded as C.a ≺ C.b, denoting “call C.a may pre-
cede call C.b”. Each observation is local to a method that
uses an instance of C as a parameter or local variable. The
result is a relation R over methods (that use class C) and
pairs (C.a ≺ C.b) of methods from class C. An analysis of
this relation reveals methods that use class C in an unusual
way: for instance, the bug found in AspectJ was detected
because the buggy method never called C.hasNext() after
calling C.next(), which was a common observation in other
methods. Overall, he analyzed within minutes over 35 000
methods that used almost 3000 classes.

The example shows that sequences and graphs, which lend
themself not to characterization by feature sets, may be an-
alyzed for patterns using an appropriate encoding. This
particular encoding, however, may grow exponentially and
is thus best suited for small graphs or sequences. An alter-
native is an encoding ≺n that considers only nodes or events
whose distance is bound by n.

Sequences may be encoded as relations to
facilitate their analysis.

9. INLINING
When a function f calls lock but not unlock this is not nec-
essarily an error: f may call g, which in turn calls unlock.
Hence, f calls unlock indirectly, as sketched in Figure 7.
Both f and g violate pattern {open, close} but we can avoid
this false positive by applying inlining. Inlining works for
any relation R ⊆ O × F where O = F holds, like in a call
relation. Li and Zhou (2005) explain inlining in terms of
data flow analysis; we provide here an alternative explana-
tion that solely works on the input relation.

Inlining derives from an existing relation R0 ⊆ X ×X a
new relation R1 ⊇ R0 according to the following rules:

(f, g) ∈ R0 ⇒ (f, g) ∈ R1

(f, g) ∈ R0 ∧ (g, h) ∈ R0 ⇒ (f, h) ∈ R1

In the derived relation R1 a function f is related with the
function it calls directly (g), as well as those that it calls
indirectly (h) through one intermediate function. Inlining
may be repeated to capture indirect calls through two in-
termediate functions, and so on, to account for even more
indirect calls.

So far we have fixed f by attributing close to it, but have
not fixed g yet by attributing open to it. This can be easily
expressed using the prime operator:

(f, g) ∈ R0 ⇒ (g, x) ∈ R1 for x ∈ {g}′′

●

●

● ●
●●

●

● ●
● ●
● ●
● ● ●

●
●
● ●
●

● ● ●

f

g
g

●
●●

●

●
● ●
● ●
● ● ●

●● ●
●

● ● ●

f

g
g

●

●

● ●

g'

op
en

clo
se

op
en

clo
se

Figure 7: Function f calls open directly, but close
indirectly through g. Inlining attributes the indirect
calls of close to f . Likewise, all functions that are
called by all callers of g are attributed to g as well.

Object set g′ is the set of all functions calling g and g′′ is
the set of all functions called by all callers of g. These are
attributed to g in R1.

Inlining can be expressed solely on the in-
put relation.

10. RELATED WORK
There are many ways to find software defects. The best way
is by checking a program against an independent specifica-
tion or test. A failing test then can be used to locate the
defect automatically (Cleve and Zeller, 2005). We are focus-
ing on a scenario without such external references. Instead,
we aim to identify intrinsic patterns in a software system’s
implementation or behavior and deviations from these pat-
terns. Such deviations are then suggested as potential de-
fects.

10.1 Mining Patterns
Mining patterns from programs for program understand-
ing, specification, or documentation has inspired many re-
searchers, especially in the domain of temporal behavior.
The following approaches do not develop a notion of devia-
tion and therefore are only interesting in so far as they could
provide relations that could be mined for deviations.

Finite Automata. Cook and Wolf (1998) have written
the seminal work about learning finite-state machines from
event sequences. ADABU by Dallmeier et al. (2006) dynam-
ically mines automata from Java classes that characterize
the state of objects as seen through observer methods pro-
vided by their interface. A similar approach is by Xie and
Notkin (2004) where object state is observed trough the re-
turn values of methods. This leads to more detailed but also
less general automata. In constrast to these dynamic ap-
proaches, Henzinger et al. (2005) learn permissive interfaces
by repeatedly generating candidate automata that capture
legal method sequences and checking them against an ab-
stract program interpretation. While elegant, it works only
for a subset of Java.

Dynamic Invariants. Dynamic invariants, as conceived
by Ernst et al. (2001) and mined with DAIKON, represent
logical relations between data that held during test execu-
tions. Observed relations like a < b are suggested as pro-
gram invariants. DAIKON works by checking a list of fixed
relations between pairs of variables and field and thus can-
not infer new invariants. However, by checking a long list

of relations between many pairs, a considerable variety of
patterns can be mined. A simpler variation of DAIKON was
proposed by Hangal and Lam (2002).

10.2 Mining Violations
The most formal and well established systems for the notion
of consistency in software are type systems, and type infer-
ence in particular (Pierce, 2002). Undoubtedly, they pre-
vent the introduction of bugs on a routine basis. However,
advances in type theory only benefit future programming
languages and type systems of existing languages are often
too weak to express consistency. Hence, there is a strong in-
terest in mining patterns and violations in existing software
with the goal to identify defects.

Sets of Sequences. Hofmeyr et al. (1998) observe se-
quences of system calls for intrusion detection. Normal
behavior is characterized by a set of short overlapping se-
quences. Abnormal behavior is detected when unknown se-
quences occur. This approach was refined by Dallmeier et al.
(2005) for defect localization in Java programs: the AMPLE
tool compares sequences of method calls issued by objects
across passing and failing test cases. The class that shows
the largest deviation in behavior between passing and fail-
ing test cases is suggested as a culprit. Hence, this violation
does not imply a detaild fix, unlike the method proposed
here.

Cluster Analysis. Dickinson et al. (2001) employ cluster
analysis to separate normal program traces from traces trig-
gering bugs. While this can capture a very wide range of
behavioral patterns, cluster analysis has very little explana-
tory power, unlike the patterns and violations we propose
here.

Mining Correlations. Liblit et al. (2005) mine violations
in an abstract sense. They observe a statistical correlation
of program failure with return values of functions (which are
then used in control-flow statements) and predicates. This
correlation has high explanatory power but depends on a
high number of varying program executions to develop a
statistical notion of normal behavior.

Pairs of Functions. Weimer and Necula (2005) learn
pairs of function calls (like open/close) from program traces.
They look specifically for violations of these pattern in error-
handling code that misses the call to the second function.
They detect a considerable number of defects. The paper
is also remarkable for its comparison with other defect lo-
calization approaches. Conceptually, this approach learns
purely structural patterns and does not depend on prior
knowledge—like us. Unlike us, patterns are ordered pairs
whereas we consider unordered sets of any size.

Checking known Patterns. Engler et al. (2001) coined
the slogan of bugs as deviant behavior and introduced a
tool that searches for bug patterns. Each instance of such
a pattern expresses an inconsistent view of the state of a
program and hence a likely bug. The difference to our for-
malism is that Engler et al. can only detect known patterns
of inconsistency but not find new ones. On the other hand,
searching for known patterns results in high precision.

Mining Version History. Livshits and Zimmermann
(2005) mine patterns from the development history which

they represent as a sequence of transactions that add new
function calls. For each transaction they mine (using fre-
quent itemset mining) usage patterns of method calls being
added together. These patterns are presented to the user for
confirmation as being correct; based on them, dynamic tests
search for violations of these patterns. The static mining
step for patterns is similar to our approach (and could have
used it), whereas violation detection is done dynamically us-
ing program instrumentation and test cases. The detection
of test cases is limited to pairs of functions whereas we can
detect violations of any pattern.

10.3 PR-Miner
PR-Miner by Li and Zhou (2005) inspired us to propose
concept analysis as a better foundation for their analysis
that identifies purely structural sets of features and their
violations. PR-Miner is based on frequent itemset mining
and mines closed feature sets. A violation (called a rule) is
represented as an implication A ⇒ B where A and B are
closed feature sets.

A closed itemset corresponds to a pattern in our formalism
and also to a block, which has the additional benefit that it
includes the instances of the pattern. A rule corresponds to
neighboring blocks in our formalism, again with the benefit
of also representing all instances and thus making theory and
implementation more uniform. The notion of confidence in
both formalisms is equivalent.

The short characterization of PR-Miner above might sug-
gest that blocks and formal concepts provide no added ben-
efit. However, we like to argue that a precise understanding
of what PR-Miner does is greatly enhanced by the theory
of formal concept analysis. This seems evident both from
our simpler and shorter explanation of mining, algorithms,
as well as the discussion of the block hierarchy and its size.
Combining patterns and instances into blocks gives access to
a rich algebra and intuitive geometric interpretation which
simply does not exist for closed itemsets in isolation.

Li and Zhou report impressive performance numbers using
an off-the-shelf implementation for frequent itemset mining.
They clearly benefit from years of development of these tools
in the data-mining community. However, we believe that the
performance of Colibri/ML provides viable alternative for
practical problems.

PR-Miner implements some data flow analysis to minimize
false positives. It is based on the insight that a pattern {a, b}
might be implemented not just by calling a and b directly,
but by calling a and c, which in turn calls b. This analysis
is independent of the mining and can be implemented for
either system. Indeed, what is expressed as a data flow
analysis by Li and Zhou (2005) can be also expressed as
operation on the input relation R as in Section 9.

PR-Miner analyzes variable declarations in addition to
function calls. Again, this is not inherent to the mining
and can be implemented for any system by making these
part of the input relation.

11. CONCLUSIONS
Formal concept analysis provides a practical and theoretical
framework to identify structural patterns and violations in
binary relations. The analysis assumes no a priori knowl-
edge like names or pre-defined patterns—unlike many pre-
vious approaches. Pattern violations have been shown to
correlate with bugs in software systems. The main benefit

over classical frequent itemset mining (Agrawal and Srikant,
1994) is that blocks (or concepts) unify a pattern and its
instances. Together they form a rich and well-studied alge-
bra; furthermore, they offer a geometric interpretation which
provides intuition: violations correspond to imperfect blocks
in a cross table.

A relation (like a call relation) induces a block hierarchy.
Each block corresponds to a pattern and neighboring blocks
correspond either to independent patterns, or a violation—
depending on the associated confidence. This is the main
conceptual result of this paper.

Formal concept analysis gives us complexity results for
pattern mining: the number of blocks (or patterns) induced
by a relation may grow exponentially. This happens only
for dense relations; call relations, at least, tend to be sparse.
On top of that, only a small fraction of blocks exceeding
a minimum support are of interest and can be computed
efficiently using an implementation that we provide (Lindig,
2007).

Algorithms for formal concept analysis are practical al-
though they lack the performance tuning that went into al-
gorithms and implementations for frequent itemset mining
(Hipp et al., 2000). We provide an open-source implementa-
tion Colibri/ML that was able to analyze the call relation
of the Linux kernel within one minute, and smaller systems
like the Python interpreter in under twenty seconds.

Earlier work on detecting anomalies often had a special
focus on pairs of function calls (Weimer and Necula, 2005;
Yang and Evans, 2004), rather than the more general pat-
terns we studied. However, we found that most call pat-
terns in open-source projects implemented in C have width
between two and three (see Table 5). This is a posteriori a
justification for the special interest in such pairs.

The starting point of our analysis is a binary relation.
This implies that we analyze sets of features related with ob-
jects. This seeming limitation may be overcome using clever
encodings, as demonstrated by Wasylkowski (2007). We are
also encouraged by the success of code query languages like
CodeQuest (Hajiyev et al., 2006), which represent software
at their core using relations. By extending them with our
analysis would become possible to mine many more source
code relations for patterns and violations.

Future Work. Patterns and violations as we mine them
do not capture intrinsically the notion of program execution.
We like to take advantage of this for providing better sup-
port of non-executable code. By this we mean configuration
files for services like mail, HTTP, or firewalls. They con-
trol security-critical applications but almost no support for
them exists beyond syntax checkers and syntax highlight-
ing. Patterns can capture best practices that can be learned
from existing configuration files. For example, a pattern may
represent a combination of flags in a firewall rule. A system
administrator could be warned before deploying an unusal
flag combination in a firewall rule. We believe that this kind
of support could be provided by editors on a routine basis
as they do it today for syntax highlighting.

All in all, we have shown that formal concept analysis
provides an appealing theoretical and practical framework
to identify structural patterns and their violations.

Acknowledgements. Discussions with Silvia Breu, David
Schuler, and Valentin Dallmeier improved this paper.

References
R. Agrawal and R. Srikant. Fast algorithms for mining asso-

ciation rules in large databases. In 20th Intern. Conf. on
Very Large Data Bases (VLDB), pages 487–499. Morgan
Kaufmann Publishers, 1994.

Holger Cleve and Andreas Zeller. Locating causes of pro-
gram failures. In Proc. 27th Intern. Conf. of Software
Engineering (ICSE 2005), St. Louis, USA, 2005. To ap-
pear.

J. Cook and A. Wolf. Discovering Models of Software
Processes from Event-Based Data. ACM Transactions
on Software Engineering and Methodology, 7(3):215–249,
July 1998.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller.
Lightweight defect localization for Java. In Andrew Black,
editor, European Conf. on Object-Oriented Programming
(ECOOP), pages 528–550, 2005.

Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski,
and Andreas Zeller. Mining object behavior with adabu.
In Proc. of the 2006 Intern. Workshop on Dynamic System
Analysis (WODA), pages 17–24. ACM Press, 2006.

William Dickinson, David Leon, and Andy Podgurski. Find-
ing failures by cluster analysis of execution profiles. In
Proc. of the 23rd Intern. Conf. on Software Engineering,
ICSE 2001, pages 339–348. IEEE Computer Society, May
2001.

Dawson Engler, David Yu Chen, and Andy Chou. Bugs
as inconsistent behavior: A general approach to inferring
errors in systems code. In Proc. of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP-01), pages
57–72, New York, October 21–24 2001. ACM Press.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and
David Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Transac-
tions on Software Engineering, 27(2):1–25, February 2001.

Bernhard Ganter and Rudolf Wille. Formal Concept Anal-
ysis: Mathematical Foundations. Springer, Berlin – Hei-
delberg – New York, 1999.

Daniel Götzmann. Formal concept analysis in Java. Bache-
lor thesis, Saarland University, Computer Science Depart-
ment, 2007.

Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. cod-
equest: Scalable source code queries with datalog. In Eu-
ropean Conf. on Object-Oriented Programming (ECOOP),
volume 4067 of Lecture Notes in Computer Science, pages
2–27. Springer, 2006.

Sudheendra Hangal and Monica S. Lam. Tracking down soft-
ware bugs using automatic anomaly detection. In Proc.
of the 24th Intern. Conf. on Software Engineering (ICSE-
02), pages 291–301, New York, May 19–25 2002. ACM
Press.

Thomas A. Henzinger, Ranjit Jhala, and Rupak Majum-
dar. Permissive interfaces. In Proc. of the 10th European
Software Engineering Conf. ESEC/SIGSOFT FSE, pages
31–40. ACM, 2005.

Jochen Hipp, Ulrich Güntzer, and Gholamreza
Nakhaeizadeh. Algorithms for association rule mining—A
general survey and comparison. SIGKDD Explorations,
2(1):58–64, 2000.

Steven A. Hofmeyr, Stephanie Forrest, and Somayaji So-
mayaji. Intrusion detection using sequences of system
calls. Journal of Computer Security, 6(3):151–180, 1998.

Zhenmin Li and Yuanyuan Zhou. PR-Miner: Automatically
extracting implicit programming rules and detecting vio-
lations in large software code. In Proc. of the 10th Euro-
pean Software Engineering Conf. ESEC/SIGSOFT FSE,
pages 306–315. ACM, September 2005.

Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and
Michael I. Jordan. Scalable statistical bug isolation. In
Proc. ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), pages 15–26, June
2005.

Christian Lindig. Colibri/ML. http//code.google.com/p/
colibri-ml/, 2007. Open-source tool for concept analy-
sis, implements algorithm from Lindig (2000).

Christian Lindig. Fast concept analysis. In Gerhard
Stumme, editor, Working with Conceptual Structures -
Contributions to ICCS 2000, pages 152–161, Aachen, Ger-
many, August 2000. Shaker Verlag.

V. Benjamin Livshits and Thomas Zimmermann. Dy-
namine: finding common error patterns by mining soft-
ware revision histories. In Proc. of the 10th European
Software Engineering Conf. ESEC/SIGSOFT FSE, pages
296–305. ACM, 2005.

Benjamin C. Pierce. Types and Programming Languages.
The MIT Press, Cambridge, Massachusetts, 2002.

Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier,
and Lotfi Lakhal. Computing iceberg concept lattices with
Titanic. Data Knowl. Eng, 42(2):189–222, 2002.

Andrzej Wasylkowski. Mining object usage models (doctoral
symposium). In Proc. of the 29th Intern. Conf. on Soft-
ware Engineering (ICSE 2007), Minneapolis, MN, USA,
May 2007.

Westley Weimer and George C. Necula. Mining temporal
specifications for error detection. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS),
volume 3440 of Lecture Notes in Computer Science, pages
461–476. Springer, 2005.

Tao Xie and David Notkin. Automatic extraction of object-
oriented observer abstractions from unit-test executions.
In Proc. of the 6th Intern. Conf. on Formal Engineering
Methods (ICFEM 2004), pages 290–305, November 2004.

Jinlin Yang and David Evans. Automatically inferring tem-
poral properties for program evolution. In Intern. Sympo-
sium on Software Reliability Engineering, pages 340–351.
IEEE Computer Society, 2004.

