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Abstract

Reusable software components from a library
are individually indexed with a set of keywords.
To retrieve components the user incrementally
specifies a set of keywords that the searched
components are required to have. After each
step the selected components and the exact set
of remaining significant keywords needed to re-
fine the query further are presented to the user.
The process ensures that at least one compo-
nent is found and the user cannot specify con-
flicting keywords. The efficient computation of
retrieved components and significant keywords
is based on the precalculated concepts of the
library, which are natural pairs of component
and keyword sets. The concepts form a lat-
tice of super- and subconcepts and are obtained
by formal concept analysis of the relation over
components and keywords. The two main the-
orems state how to calculate the result of a
query and the remaining significant keywords
using the concept lattice. An implementation
of the proposed approach shows that the user
can select components quickly and precisely.

1 Introduction

Formally well founded retrieval approaches are often spe-
cific to a small class of programming languages and re-
quire trained users [Moorman Zaremski and Wing, 1993;
Rittri, 1991; Rollins and Wing, 1991; Kievernagel et al.,
1995]. Information retrieval approaches on the other
hand are more general and easier to use [Ostertag et

al., 1992; Maarek et al., 1991; Prieto-Diaz, 1990] but
sometimes lack clear semantics. We present a formally
founded and easy-to-use information retrieval approach
which permits fast incremental search with strong feed-
back to the user. For that purpose an initially unstruc-
tured collection of components is structured according to
its concepts as determined by formal concept analysis.

Each component is assigned an arbitrary number of
keywords. Formal concept analysis then groups compo-

nents and keywords for later retrieval to concepts, form-
ing a complete lattice of super- and subconcepts. For
retrieval the user specifies a query as a set of keywords,
selecting all components with at least those keywords
assigned. He chooses the keywords incrementally from
a list presenting only significant keywords: each chosen
keyword refines the query and shrinks the result to a non
empty set of selected components. That is, the user can
specify non-empty component sets only.

2 Example

Figure 1 shows the names of 12 Unix system calls to-
gether with a one-line description from their documen-
tation [Sun Microsystems, 1990] and assigned keywords.
Formal concept analysis groups names and keywords to
concepts which are maximal pairs of names and key-
words. This can be regarded as an automatic indexing
stage, needed to be performed initially and once the col-
lection has changed.

Figure 2 shows an incremental query: initially all key-
words may be chosen and all components are selected.
After the user has specified the keyword change only
components indexed with change are selected and the
set of selectable keywords shrinks to the remaining sig-
nificant keywords. Calculating the result of a query and
the set of remaining significant keywords is efficient and
thus permits immediate response even for large collec-
tions. The user refines the query by choosing one more
keyword from the presented list and thus the number of
selected components and remaining keywords decreases,
but at least one selected component is guarranteed. Af-
ter the user has chosen a third keyword exactly one com-
ponent and no significant keywords remain.

3 Formal Concept Analysis

Formal Concept Analysis was founded by Wille [Wille,
1982; Davey and Priestley, 1990a] and calculates a con-
cept lattice from a binary relation of objects and at-
tributes, called a formal context. The concept lattice
allows queries to be processed efficiently.

Definition 1 A context is a triple (O,A,R) where O



sys. call short description keywords
chmod change mode of file change mode permission file

chown change owner and group of a file change owner group file

stat get file status get file status

fork create a new process create new process

chdir change current working directory change directory

mkdir make a directory file create new directory

open open or create a file for reading or writing open create file read write

read read input read file input

rmdir remove a directory file remove directory file

write write output write file output

creat create a new file create new file

access determine accessibility of file check access file

Figure 1: Unix system calls together with short description and assigned keywords

step keywords components remaining keywords
1 – all all
2 change chdir chmod chown directory file group mode owner

permission

3 change file chmod chown group mode owner permission

4 change file mode chmod –

Figure 2: Incremental query

and A are sets of objects and attributes respectively and

R ⊆ O ×A is a relation among them.

Keyword indexed components are regarded to be a
formal context with components as objects and keywords
as attributes. A context can be visualized as a cross table
called a context table. Objects from a context share a
set of common attributes and vice versa:

Definition 2 For O ⊆ O and A ⊆ A from a formal

context (O,A,R) define common attributes ω(O)
def
=

{a ∈ A | ∀o ∈ O : (o, a) ∈ R} and common objects

α(A)
def
= {o ∈ O | ∀a ∈ A : (o, a) ∈ R}.

A concept is a pair of objects and attributes, each
synonymous with the other:

Definition 3 A concept c = (O,A) of a context

(O,A,R) is a pair where O ⊆ O, A ⊆ A, α(A) = O

and ω(O) = A. The extent of c is πo(c)
def
= O while the

intent is πa(c)
def
= A. The set of all concepts of (O,A,R)

is denoted by B(O,A,R).

Concepts are (partially) ordered—a concept’s extent
includes the extents of its subconcepts and the intent of
a concept includes the intents of its superconcepts:

Definition 4 Concepts c1 = (O1, A1), c2 = (O2, A2) ∈
B(O,A,R) are ordered by the subconcept-relation ≤:
c1 ≤ c2 iff O1 ⊆ O2. The structure of B and ≤ is

denoted by B(O,A,R).

The basic theorem of concept analysis states that the
concepts induced by a formal context form a complete
lattice. Any number of concepts have one greatest sub-
concept and one greatest superconcept in common.

Theorem 1 ([Wille, 1982]) Let (O,A,R) be a con-

text. Then B(O,A,R) is a complete lattice, the con-
cept lattice of (O,A,R). Infimum and suppremum are

given as follows:
∧
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Figure 3: Concept lattice for unix system calls



Figure 3 shows the concept lattice from the example
in figure 1. Each step from the query in figure 2 denotes
a concept, which together form a path. Instead of the
full pairs each concept c is labelled only with objects
(system calls) and attributes (keywords) introduced by
c. Each attribute is introduced by exactly one concept
and passed on to subconcepts; therefore each subcon-
cept of the concept labelled file also has file in its in-
tent. The same is true for objects, which are passed on
to superconcepts—so the exact concepts can be derived
from the figure. The concept introducing a given object
or attribute is denoted by σ(o) and µ(a) respectively:

Theorem 2 Let B(O,A,R) be a concept lattice and let

σ(o) for o ∈ O denote the smallest concept c for which

o ∈ πo(c) holds. Let µ(a) for a ∈ A denote the greatest

concept c for which a ∈ πa(c) holds. These concepts can

be expressed as follows: σ(o) = (α(ω({o})), ω({o})) and

µ(a) = (α({a}), ω(α({a}))).

There exist several algorithms to compute all concepts
from a context (O,A,R), especially the one by Ganter
[Ganter, 1986]. Because a concept lattice can consist of
2n concepts, in the worst case, with n = min(|O|, |A|),
their complexity is exponential. However, in our expe-
rience, the number of concepts typically grows linearly
with the number of objects. Ganter’s algorithm has time
complexity O(n · |A|· |O|2) where n is the number of con-
cepts of B(O,A,R)) [Ganter, 1986] and thus the typical
complexity is polynomial.

4 Concept Based Retrieval

Keyword indexed components form a context which in-
duces a concept lattice. The lattice is used to perform
queries efficiently and to give optimal feedback to the
user. A query is a set of keywords selecting all objects
assigned at least those keywords:

Definition 5 (Query) A set A ⊆ A is a query to a

concept lattice B(O,A,R). A component o ∈ O satis-

fies a query, iff ω(o) ⊇ A holds. The set of all compo-

nents satisfying a query is called result and is denoted

by [[A]]
def
= {o | o ∈ O, ω(o) ⊇ A}.

Each keyword from a query is introduced by a con-
cept. The extent of the infimum of all these concepts
constitutes the result of the query: all objects of concepts
smaller than the infimum are also part of the result.

Theorem 3 Let B(O,A,R) be a concept lattice and let

A ⊆ A be a query, then [[A]] = πo

(

∧

a∈A µ(a)
)

holds.

Once the concept lattice for a collection has been cal-
culated, the result for any query can be calculated ef-
ficiently using theorem 3. After a user has specified a
query, how can he refine it by adding another keyword
to the query but ensuring the new result is not empty?
The set of keywwords he can choose from is called the
set of significant keywords:

Definition 6 (Significant Keywords) Let A ⊆ A be

a query to B(O,A,R). The set of significant keywords

is denoted by 〈〈A〉〉
def
= {a ∈ A | ∅ ⊂ [[A ∪ {a}]] ⊂ [[A]]}

The set of significant keywords can be also computed
efficiently using theorem 4.

Theorem 4 Let A ⊆ A be a query to B(O,A,R), then
for the significant keywords which refine A the following

holds:

〈〈A〉〉 =
(

⋃

o∈[[A]]

ω(o)
)

\ πa

(

∧

a∈A

µ(a)
)

After the user has refined his query A by adding a ∈
〈〈A〉〉 the new result [[A∪{a}]] is determined incrementally
by computing one infimum: [[A ∪ {a}]] = πo(c[[A]] ∧ µ(a))
where c[[A]] =

∧

a∈A µ(a) is the infimum from the previ-
ous computation of [[A]].

5 Experiments

The presented approach has been implemented as a pro-
totype with a graphical user interface (figure 4) to man-
age a collection of 1658 documents of a Unix online docu-
mentation. It permits fast incremental queries, as shown,
and lets the user view the selected documents. The doc-
uments were indexed with keywords from a set of 92
keywords; the resulting concept lattice consists of 714
concepts and its initial computation takes 150 seconds
on a SPARCstation ELC.

For the collection of documents we investigated the
distribution of selected documents after two query steps
and the distribution of remaining significant keywords.
In 52% of all cases the number of selected documents is
less than 6 and the number of remaining keywords in 68%
of all cases is less than 2. Thus each step narrows the
search spaces significantly and so the user is led rapidly
to the searched documents.

We investigated systematically the time- and space-
complexity because, in the worst case, computing all con-
cepts from a context is exponential in time and space.
Randomly generated contexts with up to 2000 objects
were used to calculate the corresponding concept lat-
tices. Computing time ranged from 0.1 to 1000 seconds,
while the number of concepts varied from approx. 50 to
8000 which is far below the upper bound. The proposed
approach is thus well suited for at least small and middle
sized collections.

6 Conclusions

Keyword indexed components induce a concept lattice
which permits a fast, exact and incremental retrieval of
components. Queries have clear semantics and thus the
obtained results are comprehensible to the user. Because
each component is indexed independently of others the
collection of components is easy to maintain. The recal-
culation of the concept lattice, once the collection has



Figure 4: Selecting all documents indexed with change

and file.

changed, has typically polynomial effort as our experi-
ences have shown. Our prototype implemented to man-
age a collection of documents is promising: a user can
obtain documents with a few mouse clicks. This impres-
sion is supported by the distribution we found for se-
lected components and significant keywords. Moreover,
the concept-based approach is not specific to online doc-
umentation but also permits management of heteroge-
neous and multi-media collections. So concept analysis
has again appeared useful in software engineering [Krone
and Snelting, 1994].
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gor Snelting provided valuable comments of earlier ver-
sions of this paper.

A Proofs

A.1 Lemma

Let B(O,A,R) be a concept lattice. The pair of maps α
and ω form a Galois connection, that is for O1, O2 ⊆ O
and A1, A2 ⊆ A the following holds:

1. O1 ⊆ O2 ⇒ ω(O1) ⊇ ω(O2)

2. A1 ⊆ A2 ⇒ α(A1) ⊇ α(A2)

3. O1 ⊆ α(ω(O1)) and ω(O1) = ω(α(ω(O1)))

4. A1 ⊆ ω(α(A1)) and α(A1) = α(ω(α(A1)))

Proof: [Birkhoff, 1967], pp. 122.

A.2 Theorem 2

Proof: [Davey and Priestley, 1990b], pp 221–236.

A.3 Theorem 3

πo
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∧
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µ(a)
)

= πo
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a∈A

(α(a), ω(α(a)))
)

=
⋂
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α(a) =
⋂

a∈A

{o ∈ O | (o, a) ∈ R}

= {o ∈ O | ∀a ∈ A : (o, a) ∈ R}

= {o ∈ O | ω(o) ⊇ A} = [[A]]

A.4 Theorem 4

1. Let be a1 ∈ 〈〈A〉〉. We prove that (1) a1 ∈
⋃

o∈[[A]] ω(o) and (2) a1 6∈ πa(
∧

a∈A µ(a)) holds.

(1) Let be o1 ∈ [[A ∪ {a1}]] and consider:

o1 ∈ [[A ∪ {a1}]] = πo

(

∧

a∈A∪{a1}

µ(a)
)

=
⋂

a∈A∪{a1}

α(a) =
⋂

a∈A

α(a) ∩ α(a1)

From this o1 ∈ α(a1) ⇔ (o1, a1) ∈ R ⇔ a1 ∈ ω(o1)
follows. Because o1 ∈

⋂

a∈A α(a) = [[A]] holds, a1 is
member of the union over all ω(o):

a1 ∈
⋃

o∈[[A]]

ω(o)

(2) Assume a1 ∈ πa(
∧

a∈A µ(a)). ω maps the object
set of a concept to the set of common attributes so
the assumption can be expressed as:

{a1} ⊆ πa
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)

= ω
(
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Because α and ω form a Galois conncetion we can
show, that α(a1) is part of [[A]]:

α(a1) ⊇ α
(

ω
(

πo

(
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µ(a)
)))

= πo

(
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=
⋂

a∈A

α(a) = [[A]]

That is, α(a1) is superset of
⋂

a∈A α(a) and thus for
[[A ∪ {a1}]] follows:



[[A ∪ {a1}]] =
⋂

a∈A

α(a) ∩ α(a1) =
⋂

a∈A

α(a) = [[A]]

This contradicts [[A ∪ {a1}]] ⊂ [[A]] and thus a1 6∈
πa(

∧

a∈A µ(a)) must hold.

2. Let be a1 ∈
⋃

o∈[[A]] ω(o) and let be a1 6∈

πa(
∧

a∈A µ(a)). We prove (1) [[A ∪ {a1}]] 6= ∅, (2)
o ∈ [[A∪{a1}]]⇒ o ∈ [[A]] (that is [[A∪{a1}]] ⊆ [[A]]),
(3) [[A]] 6= [[A ∪ {a1}]]

(1) From a1 ∈
⋃

o∈[[A]] ω(o) follows, that ∃o1 ∈ [[A]] :

a1 ∈ ω(o1) holds. That is (o1, a1) ∈ R and thus
o1 ∈ α(a1). Consider now [[A ∪ {a1}]]:

[[A ∪ {a1}]] =
∧

a∈A∪{a1}

µ(a) =
⋂

a∈A∪{a1}

α(a)

=
⋂

a∈A

α(a) ∩ α(a1) ⊇ {o1} 6= ∅

(2) Let be o1 ∈ [[A ∪ {a1}]]. From [[A ∪ {a1}]] =
⋂

a∈A α(a)∩α(a1) follows that o1 ∈ α(a1) and o1 ∈
⋂

a∈A α(a) = [[A]]. Thus [[A ∪ {a1}]] ⊆ [[A]] holds.

(3) Assume [[A ∪ {a1}]] = [[A]]. That is:

⋂

a∈A

α(a) ∩ α(a1) =
⋂

a∈A

α(a)

From this α(a1) ⊇
⋂

a∈A α(a) follows. Because α

and ω form a Galois conncetion applying ω is anti-

monotone: ω(α(a1)) ⊆ ω
(

⋂

a∈A α(a)
)

Left and right hand side are both sets of attribut of
concepts and thus can be reformulated:

{a1} ⊆ πa(µ(a1)) ⊆ πa

(

∧

a∈A

µ(a)
)

This contradicts a1 6∈ πa(
∧

a∈A µ(a)).
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